# load packages needed
library(dplyr)
library(ggplot2)
library(knitr)
library(AER)
library(viridis)
library(hrbrthemes)
library(xtable)
library(knitr)
library(kableExtra)
library(DT)
library(stargazer)
library(plotly)
# set working directory
setwd("C:/Users/Asus/Dropbox/Research Project/covid19_restaurant/R coding")
# load file
load(file="C:/Users/Asus/Dropbox/Research Project/covid19_restaurant/data_csv/df_all2.Rdata")
# Create time variable
df_all2$t_id <- paste0((df_all2$STDR_YY_CD-2000), "Q", df_all2$STDR_QU_CD)
# STOR_CO
overall_STOR_CO <- df_all2 %>%
group_by(t_id) %>%
summarize(store = sum(STOR_CO))
ggplot(overall_STOR_CO, aes(x=t_id, y=store)) +
geom_line(aes(group=1)) + geom_point() +
labs(title = "Change in Total Stores from 2017Q1 to 2020Q2",
caption ="(Starting 2019Q1, the number of types of small business has increase from 45 to 100.)")+
xlab("Time") + ylab("No. of Stores")
### Stores of Food and Beverage (F&B)
# Create svc
df_all2$svc <- as.numeric(gsub("CS", "", df_all2$SVC_IND))
# Create variable for types of markets
# A: Local; D: Developing, R: Old, U: Tourist
df_all2$mk_type <- factor(df_all2$TRDAR_SE_CD,levels = c("A", "D", "R", "U"),
labels = c("Local", "Developing", "Old", "Tourist"))
# Food and Beverage: svc<200000
food_STOR_CO <- df_all2 %>%
filter(svc<200000) %>%
group_by(STDR_YY_CD, STDR_QU_CD, SVC_DES) %>%
summarize(Stores = sum(STOR_CO))
ggplot(food_STOR_CO, aes(y=Stores, x=interaction(STDR_QU_CD, STDR_YY_CD, lex.order = TRUE), group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES)) +
labs(title = "Change in Total Stores of Food/Beverage from 2017Q1 to 2020Q2",
caption ="(Starting 2019Q1, the number of types of small business has increase from 45 to 100.)",
color="Type of Food/Beverage")+
xlab("Time") + ylab("No. of Stores")
# Food and Beverage by type
food_STOR_CO2 <- df_all2 %>%
filter(svc<200000) %>%
group_by(t_id, mk_type, SVC_DES) %>%
summarize(Stores = sum(STOR_CO))
ggplot(food_STOR_CO2, aes(y=Stores, x=t_id, group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES)) +
labs(title = "Change in Total Stores of F&B by Market Types",
caption ="(Starting 2019Q1, the number of types of small business has increase from 45 to 100.)",
color="Type of Food/Beverage")+
xlab("Time") + ylab("No. of Stores") +
facet_wrap(~mk_type, scale="free") +
theme(axis.text.x = element_text( angle=70, hjust= 0.5, vjust = 0.5))
# Food and Beverage related: Supermarket, Convenience, Pre-cooked meal
food_sim_svc <- c(300001, 300002, 300010)
food_sim_STOR_CO <- df_all2 %>%
filter(svc %in% food_sim_svc) %>%
group_by(t_id, SVC_DES) %>%
summarize(Stores = sum(STOR_CO))
ggplot(food_sim_STOR_CO, aes(y=Stores, x=t_id, group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES)) +
labs(title = "Change in Total Stores of similar to F&B from 2017Q1 to 2020Q2",
color="Type of Food/Beverage")+
xlab("Time") + ylab("No. of Stores")
# by market type
food_sim_STOR_CO2 <- df_all2 %>%
filter(svc %in% food_sim_svc) %>%
group_by(t_id, mk_type, SVC_DES) %>%
summarize(Stores = sum(STOR_CO))
ggplot(food_sim_STOR_CO2, aes(y=Stores, x=t_id, group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES)) +
labs(title = "Change in Total Stores of similar to F&B by Market Types ",
color="Type of Food/Beverage")+
xlab("Time") + ylab("No. of Stores") +
facet_wrap(~mk_type, scale="free_x") +
theme(axis.text.x = element_text( angle=70, hjust= 0.5, vjust = 0.5))
Overall, there have been a little changes in numbers of restaurants and simmilar sectors.
# Two key variables:
# 1. THSMON_SELNG_AMT (Amount of Sales)
# 2. THSMON_SELNG_CO (Number of Sales; Tickets)
total_sale <- df_all2 %>% group_by(t_id) %>%
summarize(sales = sum(THSMON_SELNG_AMT, na.rm=TRUE))
ggplot(total_sale, aes(x=t_id, y=sales)) +
geom_line(aes(group=1)) + geom_point() +
labs(title = "Change in Total Sales from 2017Q1 to 2020Q2",
caption ="(Starting 2019Q1, the number of types of small business has increase from 45 to 100.)")+
xlab("Time") + ylab("Sales")
# sales by market type
sale_mkt <- df_all2 %>% group_by(t_id, mk_type) %>%
summarize(sales = sum(THSMON_SELNG_AMT, na.rm=TRUE))
ggplot(sale_mkt, aes(x=t_id, y=sales, group=mk_type)) +
geom_line(aes(color=mk_type)) + geom_point(aes(color=mk_type)) +
labs(title = "Sales by Market Types from 2017Q1 to 2020Q2",
caption ="(Starting 2019Q1, the number of types of small business has increase from 45 to 100.)", color = "Type of Markets")+
xlab("Time") + ylab("Sales")
### Sales of F&B
# sales of restaurants
sale_fb <- df_all2 %>%
filter(svc<200000) %>%
group_by(t_id, SVC_DES) %>%
summarize(Stores = sum(THSMON_SELNG_AMT, na.rm=TRUE))
ggplot(sale_fb, aes(y=Stores, x=t_id, group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES)) +
labs(title = "Change in Sales of F&B from 2017Q1 to 2020Q2",
color="Type of Food/Beverage")+
xlab("Time") + ylab("Sales")
sale_fb_mk <- df_all2 %>%
filter(svc<200000) %>%
group_by(t_id, mk_type, SVC_DES) %>%
summarize(Stores = sum(THSMON_SELNG_AMT, na.rm=TRUE))
ggplot(sale_fb_mk, aes(y=Stores, x=t_id, group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES)) +
labs(title = "Change in Sales of F&B from 2017Q1 to 2020Q2",
color="Type of Food/Beverage")+
xlab("Time") + ylab("Sales") +
facet_wrap(~mk_type, scale="free_x") +
theme(axis.text.x = element_text( angle=70, hjust= 0.5, vjust = 0.5))
# Sales per outlet
df_all2$sales_ind <- df_all2$THSMON_SELNG_AMT / df_all2$STOR_CO
df_all2$sales_ind[is.infinite(df_all2$sales_ind)] <- NA
sales.ind <- df_all2 %>%
group_by(t_id) %>%
summarize(Avg_Sales = mean(sales_ind, na.rm=TRUE))
ggplot(sales.ind, aes(x=t_id, y=Avg_Sales)) + geom_line(aes(group=1)) +
labs(title="Average Sales Per Store for All Sectors",
caption ="(Starting 2019Q1, the number of types of small business has increase from 45 to 100.)")+
xlab("Time") +
ylab("Average Sales Per Store")
# sales by market type
sale.ind.mk <- df_all2 %>% group_by(t_id, mk_type) %>%
summarize(avg_sales = mean(sales_ind, na.rm=TRUE))
ggplot(sale.ind.mk, aes(x=t_id, y=avg_sales, group=mk_type)) +
geom_line(aes(color=mk_type)) + geom_point(aes(color=mk_type)) +
labs(title = "Sales Per Store by Market Types from 2017Q1 to 2020Q2",
caption ="(Starting 2019Q1, the number of types of small business has increase from 45 to 100.)", color = "Type of Markets")+
xlab("Time") + ylab("Average Sales Per Store")
# Sales Per Store for Food & Beverage
sales.fb.ind <- df_all2 %>%
filter(df_all2$svc<200000) %>%
group_by(t_id, SVC_DES) %>%
summarize(Avg_Sales = mean(sales_ind, na.rm=TRUE))
ggplot(sales.fb.ind, aes(y=Avg_Sales, x=t_id, group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES)) +
labs(title = "Change in Sales Per Store of F&B from 2017Q1 to 2020Q2",
color="Type of Food/Beverage")+
xlab("Time") + ylab("Average Sales Per Store")
sales.fb.mk.ind <- df_all2 %>%
filter(df_all2$svc<200000) %>%
group_by(t_id, mk_type, SVC_DES) %>%
summarize(Avg_Sales = mean(sales_ind, na.rm=TRUE))
ggplot(sales.fb.mk.ind, aes(y=Avg_Sales, x=t_id, group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES)) +
labs(title = "Change in Sales Per Store of F&B from 2017Q1 to 2020Q2",
color="Type of Food/Beverage")+
xlab("Time") + ylab("Average Sales Per Store") +
facet_wrap(~mk_type, scale="free_x") +
theme(axis.text.x = element_text( angle=70, hjust= 0.5, vjust = 0.5))
# Number of Sales
ticket <- df_all2 %>%
group_by(t_id) %>%
summarize(tickets=sum(THSMON_SELNG_CO, na.rm = TRUE))
ggplot(ticket, aes(x=t_id, y=tickets)) + geom_line(aes(group=1)) +
labs(title="Total No. of Tickets (Numbers of Sales)",
caption ="(Starting 2019Q1, the number of types of small business has increase from 45 to 100.)") +
xlab("Time") + ylab("Total No. of Tickets")
## Tickets of F&B
# Number of Sales of F&B
ticket.fb <- df_all2 %>%
filter(svc<200000) %>%
group_by(t_id, SVC_DES) %>%
summarize(tickets=sum(THSMON_SELNG_CO, na.rm = TRUE))
ggplot(ticket.fb, aes(y=tickets, x=t_id, group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES)) +
labs(title = "Total Tickets of F&B from 2017Q1 to 2020Q2",
color="Type of Food/Beverage")+
xlab("Time") + ylab("Total Tickets")
ticket.fb.mk <- df_all2 %>%
filter(svc<200000) %>%
group_by(t_id, mk_type, SVC_DES) %>%
summarize(tickets=sum(THSMON_SELNG_CO, na.rm = TRUE))
ggplot(ticket.fb.mk, aes(y=tickets, x=t_id, group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES)) +
labs(title = "Total Tickets of F&B from 2017Q1 to 2020Q2",
color="Type of Food/Beverage")+
xlab("Time") + ylab("Total Tickets") +
facet_wrap(~mk_type, scale="free_x") +
theme(axis.text.x = element_text( angle=70, hjust= 0.5, vjust = 0.5))
# Tickets Per Store
df_all2$ticket.ind <- df_all2$THSMON_SELNG_CO / df_all2$STOR_CO
df_all2$ticket.ind[is.infinite(df_all2$ticket.ind)] <- NA
tickets.ind <- df_all2 %>% group_by(t_id) %>%
summarize(tickets_ind = mean(ticket.ind, na.rm=TRUE))
ggplot(tickets.ind, aes(x=t_id, y=tickets_ind)) + geom_line(aes(group=1)) +
labs(title="Tickets Per Stores", caption ="(Starting 2019Q1, the number of types of small business has increase from 45 to 100.)") +
xlab("Time") + ylab("Tickets Per Stores")
tickets.ind.mk <- df_all2 %>% group_by(t_id, mk_type) %>%
summarize(tickets_ind = mean(ticket.ind, na.rm=TRUE))
ggplot(tickets.ind.mk, aes(x=t_id, y=tickets_ind, group=mk_type)) +
geom_line(aes(color=mk_type)) + geom_point(aes(color=mk_type)) +
labs(title="Tickets Per Stores",
caption ="(Starting 2019Q1, the number of types of small business has increase from 45 to 100.)",
color="Type of Markets") +
xlab("Time") + ylab("Tickets Per Stores")
# Tickets of F&B
tickets.fb <- df_all2 %>%
filter(svc<200000) %>%
group_by(t_id, SVC_DES) %>%
summarize(avg_ticket = mean(ticket.ind, na.rm=TRUE))
ggplot(tickets.fb, aes(x=t_id, y=avg_ticket, group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES))
tickets.fb.mk <- df_all2 %>%
filter(svc<200000) %>%
group_by(t_id, mk_type, SVC_DES) %>%
summarize(avg_ticket = mean(ticket.ind, na.rm=TRUE))
ggplot(tickets.fb.mk, aes(x=t_id, y=avg_ticket, group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES)) +
labs(title="Average Tickets Per Store of F&B") +
xlab("Time") + ylab("Average Tickets") +
facet_wrap(~mk_type, scale="free_x") +
theme(axis.text.x = element_text( angle=70, hjust= 0.5, vjust = 0.5))
# Sales per Ticket
df_all2$sales.tic <- (df_all2$THSMON_SELNG_AMT/df_all2$THSMON_SELNG_CO)/df_all2$STOR_CO
df_all2$sales.tic[is.infinite(df_all2$sales.tic)] <- NA
sales.tic <- df_all2 %>%
group_by(t_id) %>%
summarize(avg_sales_tic = mean(sales.tic, na.rm=TRUE))
ggplot(sales.tic, aes(x=t_id, y=avg_sales_tic)) + geom_line(aes(group=1)) +
labs(title="Average Sales Per Ticket (Per Ticket and Per Store)",
caption ="(Starting 2019Q1, the number of types of small business has increase from 45 to 100.)") +
xlab("Time") + ylab("Average Sales Per Ticket")
sales.tic.mk <- df_all2 %>%
group_by(t_id, mk_type) %>%
summarize(avg_sales_tic = mean(sales.tic, na.rm=TRUE))
ggplot(sales.tic.mk, aes(x=t_id, y=avg_sales_tic, group=mk_type)) +
geom_line(aes(color=mk_type)) + geom_point(aes(color=mk_type)) +
labs(title="Average Sales Per Ticket (Per Ticket and Per Store)") +
xlab("Time") + ylab("Average Sales Per Ticket")
# Sales Per Ticket Per Store
sales.tic.fb <- df_all2 %>%
filter(svc<200000) %>%
group_by(t_id, SVC_DES) %>%
summarize(avg_ticket = mean(sales.tic, na.rm=TRUE))
ggplot(sales.tic.fb, aes(x=t_id, y=avg_ticket, group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES))
sales.tic.fb.mk <- df_all2 %>%
filter(svc<200000) %>%
group_by(t_id, mk_type, SVC_DES) %>%
summarize(avg_ticket = mean(sales.tic, na.rm=TRUE))
ggplot(sales.tic.fb.mk, aes(x=t_id, y=avg_ticket, group=SVC_DES)) +
geom_line(aes(color=SVC_DES)) +
geom_point(aes(color=SVC_DES)) +
labs(title="Sales Per Tickets of F&B",
color="Type of F&B") +
xlab("Time") + ylab("Sales Per Tickets") +
facet_wrap(~mk_type, scale="free_x") +
theme(axis.text.x = element_text( angle=70, hjust= 0.5, vjust = 0.5))
# MT_AVRG_INCOME_AMT: Monthly
# Data exists only for "local" markets
income <- df_all2 %>%
group_by(t_id) %>%
summarize(income = mean(MT_AVRG_INCOME_AMT, na.rm = TRUE))
ggplot(income, aes(x=t_id, y=income)) +
geom_line(aes(group=1)) +
labs(title="Income (only for 'Local' Market)",
caption = "(Income: the 70th Percentile of reported income for the national health insurance.)",
x ="Time", y="Income")
fpop <- df_all2 %>%
group_by(t_id) %>%
summarize(fpop = mean(TOT_FLPOP_CO, na.rm = TRUE))
ggplotly(
ggplot(fpop, aes(x=t_id, y=fpop)) + geom_line(aes(group=1))
)
fpop.mk <- df_all2 %>%
group_by(t_id, mk_type) %>%
summarize(fpop = mean(TOT_FLPOP_CO, na.rm = TRUE))
ggplotly(
ggplot(fpop.mk, aes(x=t_id, y=fpop, group=mk_type)) +
geom_line(aes(color=mk_type)) +
geom_point(aes(color=mk_type)) +
labs(title = "Floating Population", color ="Type of Markets") +
xlab("Time") + ylab("Floating Population") +
theme(axis.text.x = element_text( angle=70, hjust= 0.5, vjust = 0.5))
)
library(tidyr)
fld.fpop.age <- c('AGRDE_10_FLPOP_CO', 'AGRDE_20_FLPOP_CO', 'AGRDE_30_FLPOP_CO', 'AGRDE_40_FLPOP_CO','AGRDE_50_FLPOP_CO', 'AGRDE_60_ABOVE_FLPOP_CO')
fpop.age <- df_all2 %>%
group_by(t_id, mk_type) %>%
summarize(fpop.10 = mean(AGRDE_10_FLPOP_CO, na.rm=TRUE),
fpop.20 = mean(AGRDE_20_FLPOP_CO, na.rm=TRUE),
fpop.30 = mean(AGRDE_30_FLPOP_CO, na.rm=TRUE),
fpop.40 = mean(AGRDE_40_FLPOP_CO, na.rm=TRUE),
fpop.50 = mean(AGRDE_50_FLPOP_CO, na.rm=TRUE),
fpop.60 = mean(AGRDE_60_ABOVE_FLPOP_CO, na.rm=TRUE)
)
fpop.age %>%
gather(Age, fpop0, fpop.10, fpop.20, fpop.30, fpop.40, fpop.50, fpop.60) %>%
ggplot(aes(x=t_id, y=fpop0, group=Age)) +
geom_line(aes(color=Age)) +
geom_point(aes(color=Age)) +
facet_wrap(.~mk_type) +
labs(title = "Floating Population",
x = "\n Time",
y = "Floating Popualation \n") +
# xlab("Time") + ylab("Floating Population") +
theme(axis.text.x = element_text( angle=70, hjust= 0, vjust = 0),
axis.title.x=element_text(vjust=1), # X axis title
axis.title.y=element_text(vjust=1)) + # Y axis title +
scale_color_discrete(name="Age",
breaks = c('fpop.10', 'fpop.20', 'fpop.30',
"fpop.40", "fpop.50", "fpop.60"),
labels=c("10s", "20s", "30s", "40s", "50s", "60s and \n Above"))
# Population
# TOT_REPOP_CO
# TOT_HSHLD_CO
pop <- df_all2 %>% group_by(t_id) %>% summarize(pop=mean(TOT_REPOP_CO, na.rm=TRUE))
ggplot(pop, aes(x=t_id, y=pop)) + geom_line(aes(group=1))
pop.mk <- df_all2 %>% group_by(t_id, mk_type) %>% summarize(pop=mean(TOT_REPOP_CO, na.rm=TRUE))
ggplot(pop.mk, aes(x=t_id, y=pop, group=mk_type)) +
geom_line(aes(color=mk_type)) +
labs(title="Residence Population" ,
y ="Average Population",
x ="Time",
color ="Type of Markets")
# Household
house <- df_all2 %>% group_by(t_id) %>% summarize(house=mean(TOT_HSHLD_CO, na.rm=TRUE))
ggplot(house, aes(x=t_id, y=house)) + geom_line(aes(group=1))
house.mk <- df_all2 %>% group_by(t_id, mk_type) %>% summarize(house=mean(TOT_HSHLD_CO, na.rm=TRUE))
ggplot(house.mk, aes(x=t_id, y=house, group=mk_type)) +
geom_line(aes(color=mk_type)) +
labs(title="Household" ,
y ="Average No. of House holders",
x ="Time",
color ="Type of Markets")
# TOT_WRC_POPLTN_CO
wpop <- df_all2 %>% group_by(t_id) %>% summarize(wpop=mean(TOT_WRC_POPLTN_CO, na.rm=TRUE))
ggplot(wpop, aes(x=t_id, y=wpop)) + geom_line(aes(group=1)) +
labs(title = "Working Population from 2017Q1 to 2020Q2",
x="Time", y="Average Population")
wpop.mk <- df_all2 %>% group_by(t_id, mk_type) %>% summarize(wpop=mean(TOT_WRC_POPLTN_CO, na.rm=TRUE))
ggplot(wpop.mk, aes(x=t_id, y=wpop, group=mk_type)) +
geom_line(aes(color=mk_type)) +
labs(title="Working Population" ,
y ="Average Population",
x ="Time",
color ="Type of Markets")
# APT_HSMP_CO : No. of Apartment Complex
# APT_HSHLD_CO : No. of Households in Apartment Complexes
# AVRG_AE : Average Apartment Area
# AVRG_MKTC: Average Apartment Price
apt.complex<- df_all2 %>% group_by(t_id) %>% summarize(house=mean(APT_HSMP_CO, na.rm=TRUE))
ggplot(apt.complex, aes(x=t_id, y=house)) + geom_line(aes(group=1)) +
labs(title = "Apartment Complex from 2017Q1 to 2020Q2",
x="Time", y="No. of Apartment Complexes")
apt.complex.mk<- df_all2 %>% group_by(t_id, mk_type) %>%
summarize(house=mean(APT_HSMP_CO, na.rm=TRUE))
ggplot(apt.complex.mk, aes(x=t_id, y=house, group=mk_type)) +
geom_line(aes(color = mk_type)) + geom_point(aes(color=mk_type)) +
labs(title = "Apartment Complex from 2017Q1 to 2020Q2",
x="Time", y="No. of Apartment Complexes", color="Type of Markets")
# AVRG_AE
apt.area <- df_all2 %>%
group_by(t_id) %>%
summarize(area = mean(AVRG_AE, na.rm=TRUE))
ggplot(apt.area, aes(x=t_id, y=area)) +
geom_line(aes(group=1)) +
labs(title="Apartment Area from 2017Q1 to 2020Q2",
x = "Time", y="Average Apartment Area(Square Meter)")
apt.area.mk <- df_all2 %>%
group_by(t_id, mk_type) %>%
summarize(area = mean(AVRG_AE, na.rm=TRUE))
ggplot(apt.area.mk, aes(x=t_id, y=area, group=mk_type)) +
geom_line(aes(color=mk_type)) + geom_point(aes(color=mk_type)) +
labs(title="Apartment Area from 2017Q1 to 2020Q2",
x = "Time", y="Average Apartment Area(Square Meter)", color="Type of Markets")
# AVRG_MKTC
apt.price <- df_all2 %>%
group_by(t_id) %>%
summarize(price = mean(AVRG_MKTC, na.rm=TRUE))
ggplot(apt.price, aes(x=t_id, y=price)) +
geom_line(aes(group=1)) +
labs(title="Apartment Area from 2017Q1 to 2020Q2",
x = "Time", y="Average Apartment Price")
apt.price.mk <- df_all2 %>%
group_by(t_id, mk_type) %>%
summarize(price = mean(AVRG_MKTC, na.rm=TRUE))
ggplot(apt.price.mk, aes(x=t_id, y=price, group=mk_type)) +
geom_line(aes(color=mk_type)) + geom_point(aes(color=mk_type)) +
labs(title="Apartment Area from 2017Q1 to 2020Q2",
x = "Time", y="Average Apartment Price", color="Type of Markets")
# APT_HSHLD_CO : No. of Households in Apartment Complexes (Need to check)
# apt.hh<- df_all2 %>% group_by(t_id) %>% summarize(hh=mean(APT_HSHLD_CO, na.rm=TRUE))
#
# ggplot(apt.hh, aes(x=t_id, y=hh)) + geom_line(aes(group=1)) +
# labs(title = "Apartment Complex from 2017Q1 to 2020Q2",
# x="Time", y="No. of Apartment Households")
#
#
# apt.hh.mk<- df_all2 %>% group_by(t_id, mk_type) %>%
# summarize(hh=mean(APT_HSHLD_CO, na.rm=TRUE))
#
# ggplot(apt.hh.mk, aes(x=t_id, y=hh, group=mk_type)) +
# geom_line(aes(color = mk_type)) + geom_point(aes(color=mk_type)) +
# labs(title = "Apartment Complex from 2017Q1 to 2020Q2",
# x="Time", y="No. of Apartment Complexes")
# VIATR_FCLTY_CO
total.fac<- df_all2 %>% group_by(t_id) %>% summarize(fac=mean(VIATR_FCLTY_CO, na.rm=TRUE))
ggplot(total.fac, aes(x=t_id, y=fac)) + geom_line(aes(group=1)) +
labs(title="Facility from 2017Q1 to 2020Q2",
x="Time", y="No. of Facilities")
total.fac.mk<- df_all2 %>% group_by(t_id, mk_type) %>% summarize(fac=mean(VIATR_FCLTY_CO, na.rm=TRUE))
ggplot(total.fac.mk, aes(x=t_id, y=fac, group=mk_type)) +
geom_line(aes(color=mk_type)) + geom_point(aes(color=mk_type)) +
labs(title="Facility from 2017Q1 to 2020Q2",
x="Time", y="No. of Facilities", color="Type of Markets")
# Type of Facilities
fac <- df_all2 %>%
group_by(t_id) %>%
summarize(public = mean(PBLOFC_CO, na.rm=TRUE),
bank = mean(BANK_CO, na.rm=TRUE),
hospital = mean(GEHSPT_CO, na.rm=T),
clinic = mean(GNRL_HSPTL_CO, na.rm=T),
parmacy = mean(PARMACY_CO, na.rm=T),
kindergarten = mean(KNDRGR_CO, na.rm=T),
elementary = mean(ELESCH_CO, na.rm=T),
junior.high = mean(MSKUL_CO, na.rm=T),
high.school = mean(HGSCHL_CO, na.rm=T),
univ = mean(UNIV_CO, na.rm=T),
department.store = mean(DRTS_CO, na.rm=T),
supermarket = mean(SUPMK_CO, na.rm=T),
movie = mean(THEAT_CO, na.rm=T),
lodging = mean(STAYNG_FCLTY_CO, na.rm=T),
airport = mean(ARPRT_CO, na.rm=T),
rail = mean(RLROAD_STATN_CO, na.rm=T),
bus.terminal = mean(BUS_TRMINL_CO, na.rm=T),
subway = mean(SUBWAY_STATN_CO, na.rm=T),
bus = mean(BUS_STTN_CO, na.rm=T)
)
# paste0(colnames(fac)[-1], collapse = ", ")
fac %>%
gather(fac_type, fac_no, public, bank, hospital, clinic, parmacy, kindergarten,
elementary, junior.high, high.school, univ, department.store, supermarket, movie,
lodging, airport, rail, bus.terminal, subway, bus ) %>%
ggplot(aes(x=t_id, y=fac_no, group=fac_type)) +
geom_line(aes(color=fac_type)) + geom_point(aes(color=fac_type)) +
labs(title = "Type of Facilities ",
x= "Time",
y= "No. of Facilities",
color = "Type of Facilities") +
guides(color=guide_legend(ncol=2)) +
theme(axis.text.x = element_text( angle=70, hjust= 0, vjust = 0),)
# fac by market type
fac.mk <- df_all2 %>%
group_by(t_id, mk_type) %>%
summarize(public = mean(PBLOFC_CO, na.rm=TRUE),
bank = mean(BANK_CO, na.rm=TRUE),
hospital = mean(GEHSPT_CO, na.rm=T),
clinic = mean(GNRL_HSPTL_CO, na.rm=T),
parmacy = mean(PARMACY_CO, na.rm=T),
kindergarten = mean(KNDRGR_CO, na.rm=T),
elementary = mean(ELESCH_CO, na.rm=T),
junior.high = mean(MSKUL_CO, na.rm=T),
high.school = mean(HGSCHL_CO, na.rm=T),
univ = mean(UNIV_CO, na.rm=T),
department.store = mean(DRTS_CO, na.rm=T),
supermarket = mean(SUPMK_CO, na.rm=T),
movie = mean(THEAT_CO, na.rm=T),
lodging = mean(STAYNG_FCLTY_CO, na.rm=T),
airport = mean(ARPRT_CO, na.rm=T),
rail = mean(RLROAD_STATN_CO, na.rm=T),
bus.terminal = mean(BUS_TRMINL_CO, na.rm=T),
subway = mean(SUBWAY_STATN_CO, na.rm=T),
bus = mean(BUS_STTN_CO, na.rm=T)
)
# paste0(colnames(fac)[-1], collapse = ", ")
fac.mk %>%
gather(fac_type, fac_no, public, bank, hospital, clinic, parmacy, kindergarten,
elementary, junior.high, high.school, univ, department.store, supermarket, movie,
lodging, airport, rail, bus.terminal, subway, bus ) %>%
ggplot(aes(x=t_id, y=fac_no, group=fac_type)) +
geom_line(aes(color=fac_type)) + geom_point(aes(color=fac_type)) +
labs(title = "Type of Facilities ",
x= "Time",
y= "No. of Facilities",
color = "Type of Facilities") +
guides(color=guide_legend(ncol=2)) +
theme(axis.text.x = element_text( angle=70, hjust= 0, vjust = 0),) +
facet_wrap(~mk_type)