#assign
a1 <- c(2,4,7,3)
assign("a2",c("2","4","7","3"))
a1
## [1] 2 4 7 3
a2
## [1] "2" "4" "7" "3"
#baris bilangan
a3 <- seq(1,10,by=0.5)
a4 <- seq(1,10,length.out=12)
a3
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
## [16] 8.5 9.0 9.5 10.0
a4
## [1] 1.000000 1.818182 2.636364 3.454545 4.272727 5.090909 5.909091
## [8] 6.727273 7.545455 8.363636 9.181818 10.000000
#bilangan berulang
a5 <- rep(1,3)
a6 <- rep(1:3,3)
a7 <- rep(1:3,1:3)
a8 <- rep(1:3,rep(2,3))
a9 <- rep(1:3,each=2)
a5
## [1] 1 1 1
a6
## [1] 1 2 3 1 2 3 1 2 3
a7
## [1] 1 2 2 3 3 3
a8
## [1] 1 1 2 2 3 3
a9
## [1] 1 1 2 2 3 3
#karakter berpola
a10 <- paste("A",1:10,sep="")
a11 <- paste0("A",1:10)
a12 <- paste("A",1:10,sep="-")
a13 <- paste0("A",a8)
a10
## [1] "A1" "A2" "A3" "A4" "A5" "A6" "A7" "A8" "A9" "A10"
a11
## [1] "A1" "A2" "A3" "A4" "A5" "A6" "A7" "A8" "A9" "A10"
a12
## [1] "A-1" "A-2" "A-3" "A-4" "A-5" "A-6" "A-7" "A-8" "A-9" "A-10"
a13
## [1] "A1" "A1" "A2" "A2" "A3" "A3"
#akses vector
a2[3]
## [1] "7"
a3[10:15]
## [1] 5.5 6.0 6.5 7.0 7.5 8.0
a10[c(4,7,9)]
## [1] "A4" "A7" "A9"
a13[-c(1:2)]
## [1] "A2" "A2" "A3" "A3"
#panjang vector
length(a4)
## [1] 12
Tentukan output syntax berikut :
c("la","ye")[rep(c(1,2,2,1),times=4)]
## [1] "la" "ye" "ye" "la" "la" "ye" "ye" "la" "la" "ye" "ye" "la" "la" "ye" "ye"
## [16] "la"
c("la","ye")[rep(rep(1:2,each=3),2)]
## [1] "la" "la" "la" "ye" "ye" "ye" "la" "la" "la" "ye" "ye" "ye"
Buatlah syntax agar dihasilkan output vektor sebagai berikut.
xy<-paste(c("X","Y"),1:10,sep="")
xy
## [1] "X1" "Y2" "X3" "Y4" "X5" "Y6" "X7" "Y8" "X9" "Y10"
angka<-c(1,4,7,10,13,16,19,22,25,28)
angka
## [1] 1 4 7 10 13 16 19 22 25 28
names(angka)<-xy
names(angka)
## [1] "X1" "Y2" "X3" "Y4" "X5" "Y6" "X7" "Y8" "X9" "Y10"
angka
## X1 Y2 X3 Y4 X5 Y6 X7 Y8 X9 Y10
## 1 4 7 10 13 16 19 22 25 28
a14 <- 1:12
a14
## [1] 1 2 3 4 5 6 7 8 9 10 11 12
b1 <- matrix(a14,3,4)
b1
## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
## [2,] 2 5 8 11
## [3,] 3 6 9 12
b2 <- matrix(a14,3,4,byrow=TRUE)
b2
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12
b3 <- matrix(1:10,4,4)
## Warning in matrix(1:10, 4, 4): data length [10] is not a sub-multiple or
## multiple of the number of rows [4]
b3
## [,1] [,2] [,3] [,4]
## [1,] 1 5 9 3
## [2,] 2 6 10 4
## [3,] 3 7 1 5
## [4,] 4 8 2 6
b4 <- matrix(1:10,4,5)
b4
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 5 9 3 7
## [2,] 2 6 10 4 8
## [3,] 3 7 1 5 9
## [4,] 4 8 2 6 10
b5 <- a14
b5
## [1] 1 2 3 4 5 6 7 8 9 10 11 12
#mengubah objek vector ke matrix
dim(b5)<-c(6,2)
dim(b5)
## [1] 6 2
#mengggabungkan baris
b6 <- matrix(1:4,2)
b7 <- matrix(6:9,2)
b8 <- rbind(b6,b7)
b6
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
b7
## [,1] [,2]
## [1,] 6 8
## [2,] 7 9
b8
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
## [3,] 6 8
## [4,] 7 9
#menggabungkan kolom
b9 <- cbind(b7,b6)
b9
## [,1] [,2] [,3] [,4]
## [1,] 6 8 1 3
## [2,] 7 9 2 4
#dimensi matriks
dim(b8)
## [1] 4 2
dim(b9)
## [1] 2 4
dim(a14)
## NULL
length(b3)
## [1] 16
#akses matrix
b2
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12
b2[2,3]
## [1] 7
b2[2,2:4]
## [1] 6 7 8
b2[1:2,]
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8
b2[c(1,3),-2]
## [,1] [,2] [,3]
## [1,] 1 3 4
## [2,] 9 11 12
b2[10]
## [1] 4
#assign
c1 <- array(a14,dim=c(2,2,3))
c1
## , , 1
##
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
##
## , , 2
##
## [,1] [,2]
## [1,] 5 7
## [2,] 6 8
##
## , , 3
##
## [,1] [,2]
## [1,] 9 11
## [2,] 10 12
c2 <- array(a14,dim=c(2,1,2,3))
c2
## , , 1, 1
##
## [,1]
## [1,] 1
## [2,] 2
##
## , , 2, 1
##
## [,1]
## [1,] 3
## [2,] 4
##
## , , 1, 2
##
## [,1]
## [1,] 5
## [2,] 6
##
## , , 2, 2
##
## [,1]
## [1,] 7
## [2,] 8
##
## , , 1, 3
##
## [,1]
## [1,] 9
## [2,] 10
##
## , , 2, 3
##
## [,1]
## [1,] 11
## [2,] 12
c3 <- array(a14,dim=c(1,2,4,2))
c3
## , , 1, 1
##
## [,1] [,2]
## [1,] 1 2
##
## , , 2, 1
##
## [,1] [,2]
## [1,] 3 4
##
## , , 3, 1
##
## [,1] [,2]
## [1,] 5 6
##
## , , 4, 1
##
## [,1] [,2]
## [1,] 7 8
##
## , , 1, 2
##
## [,1] [,2]
## [1,] 9 10
##
## , , 2, 2
##
## [,1] [,2]
## [1,] 11 12
##
## , , 3, 2
##
## [,1] [,2]
## [1,] 1 2
##
## , , 4, 2
##
## [,1] [,2]
## [1,] 3 4
c4 <- array(a14,dim=c(3,4))
c4
## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
## [2,] 2 5 8 11
## [3,] 3 6 9 12
#akses array
c2[,,1,] #lembar 1 dari c2
## [,1] [,2] [,3]
## [1,] 1 5 9
## [2,] 2 6 10
c2[,,,2] #buku ke 2 dari c2
## [,1] [,2]
## [1,] 5 7
## [2,] 6 8
c2[,,1,3] #lembar ke 1 buku ke 3 dari c2
## [1] 9 10
a15 <- c("A","B","AB","O")
a15
## [1] "A" "B" "AB" "O"
#skala pengukuran nominal
d1 <- factor(a15)
d1
## [1] A B AB O
## Levels: A AB B O
d2 <- factor(a15,levels=c("O","A","B","AB"))
d2
## [1] A B AB O
## Levels: O A B AB
levels(d2)
## [1] "O" "A" "B" "AB"
a16 <- c("SD","SMP","SMA")
a16
## [1] "SD" "SMP" "SMA"
#skala pengukuran ordinal
d3 <- ordered(a16)
d3
## [1] SD SMP SMA
## Levels: SD < SMA < SMP
d4 <- ordered(a16, levels=a16)
d4
## [1] SD SMP SMA
## Levels: SD < SMP < SMA
d5 <- factor(a16, levels=a16, ordered=TRUE)
d5
## [1] SD SMP SMA
## Levels: SD < SMP < SMA
levels(d4)
## [1] "SD" "SMP" "SMA"
#akses factor
d1[2]
## [1] B
## Levels: A AB B O
d4[2:3]
## [1] SMP SMA
## Levels: SD < SMP < SMA
a1; b2; c1; d2
## [1] 2 4 7 3
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12
## , , 1
##
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
##
## , , 2
##
## [,1] [,2]
## [1,] 5 7
## [2,] 6 8
##
## , , 3
##
## [,1] [,2]
## [1,] 9 11
## [2,] 10 12
## [1] A B AB O
## Levels: O A B AB
a1
## [1] 2 4 7 3
b2
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12
c1
## , , 1
##
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
##
## , , 2
##
## [,1] [,2]
## [1,] 5 7
## [2,] 6 8
##
## , , 3
##
## [,1] [,2]
## [1,] 9 11
## [2,] 10 12
d2
## [1] A B AB O
## Levels: O A B AB
e1 <- list(a1,b2,c1,d2)
e2 <- list(vect=a1,mat=b2,array=c1,fac=d2)
e1
## [[1]]
## [1] 2 4 7 3
##
## [[2]]
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12
##
## [[3]]
## , , 1
##
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
##
## , , 2
##
## [,1] [,2]
## [1,] 5 7
## [2,] 6 8
##
## , , 3
##
## [,1] [,2]
## [1,] 9 11
## [2,] 10 12
##
##
## [[4]]
## [1] A B AB O
## Levels: O A B AB
e2
## $vect
## [1] 2 4 7 3
##
## $mat
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12
##
## $array
## , , 1
##
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
##
## , , 2
##
## [,1] [,2]
## [1,] 5 7
## [2,] 6 8
##
## , , 3
##
## [,1] [,2]
## [1,] 9 11
## [2,] 10 12
##
##
## $fac
## [1] A B AB O
## Levels: O A B AB
#akses list
e1[[1]]
## [1] 2 4 7 3
e2$fac
## [1] A B AB O
## Levels: O A B AB
e2[2]
## $mat
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12
e1[c(2,4)]
## [[1]]
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12
##
## [[2]]
## [1] A B AB O
## Levels: O A B AB
dim(e2)
## NULL
length(e2)
## [1] 4
names(e2)
## [1] "vect" "mat" "array" "fac"
#assign
a17 <- 11:15
d5 <- factor(LETTERS[6:10])
f1 <- data.frame(d5,a17)
a17
## [1] 11 12 13 14 15
d5
## [1] F G H I J
## Levels: F G H I J
f1
#akses data frame
f1[1,2]
## [1] 11
f1[3,]
f1$d5
## [1] F G H I J
## Levels: F G H I J
f1[,"a17"]
## [1] 11 12 13 14 15
colnames(f1)
## [1] "d5" "a17"
str(f1)
## 'data.frame': 5 obs. of 2 variables:
## $ d5 : Factor w/ 5 levels "F","G","H","I",..: 1 2 3 4 5
## $ a17: int 11 12 13 14 15
summary(f1)
## d5 a17
## F:1 Min. :11
## G:1 1st Qu.:12
## H:1 Median :13
## I:1 Mean :13
## J:1 3rd Qu.:14
## Max. :15
#mengecek jenis objek : is.___(…)
is.vector(a7)
## [1] TRUE
is.matrix(a6)
## [1] FALSE
is.array(b9)
## [1] TRUE
is.factor(d3)
## [1] TRUE
is.list(e2)
## [1] TRUE
is.data.frame(f1)
## [1] TRUE
#mengubah jenis objek : dan as.___(…)
a4
## [1] 1.000000 1.818182 2.636364 3.454545 4.272727 5.090909 5.909091
## [8] 6.727273 7.545455 8.363636 9.181818 10.000000
as.vector(a3)
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
## [16] 8.5 9.0 9.5 10.0
as.matrix(a3)
## [,1]
## [1,] 1.0
## [2,] 1.5
## [3,] 2.0
## [4,] 2.5
## [5,] 3.0
## [6,] 3.5
## [7,] 4.0
## [8,] 4.5
## [9,] 5.0
## [10,] 5.5
## [11,] 6.0
## [12,] 6.5
## [13,] 7.0
## [14,] 7.5
## [15,] 8.0
## [16,] 8.5
## [17,] 9.0
## [18,] 9.5
## [19,] 10.0
as.array(a3)
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
## [16] 8.5 9.0 9.5 10.0
as.factor(a3)
## [1] 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
## Levels: 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
as.list(a3)
## [[1]]
## [1] 1
##
## [[2]]
## [1] 1.5
##
## [[3]]
## [1] 2
##
## [[4]]
## [1] 2.5
##
## [[5]]
## [1] 3
##
## [[6]]
## [1] 3.5
##
## [[7]]
## [1] 4
##
## [[8]]
## [1] 4.5
##
## [[9]]
## [1] 5
##
## [[10]]
## [1] 5.5
##
## [[11]]
## [1] 6
##
## [[12]]
## [1] 6.5
##
## [[13]]
## [1] 7
##
## [[14]]
## [1] 7.5
##
## [[15]]
## [1] 8
##
## [[16]]
## [1] 8.5
##
## [[17]]
## [1] 9
##
## [[18]]
## [1] 9.5
##
## [[19]]
## [1] 10
as.data.frame(a3)
Seorang peneliti merancang sebuah perancangan percobaan RAKL dengan 4 perlakuan dan 3 kelompok (anggaplah respon percobaan berupa baris bilangan). Bantulah peneliti tersebut untuk membuat raw data seperti output sebagai berikut!
Perl<-paste("P",rep(1:4,each=3),sep="")
Kel<-rep(1:3,4)
Resp<-seq(1,23,by=2)
data1<-data.frame(Perl,Kel,Resp)
Perl
## [1] "P1" "P1" "P1" "P2" "P2" "P2" "P3" "P3" "P3" "P4" "P4" "P4"
Kel
## [1] 1 2 3 1 2 3 1 2 3 1 2 3
Resp
## [1] 1 3 5 7 9 11 13 15 17 19 21 23
data1
Pada data1, buatlah peubah ‘baru1’ yang berisi nilai dari 12 sampai 1 secara berurutan
#menambah peubah baru/kolom pada data frame
data1$baru1<-12:1
data1
Dari data1 tersebut ambillah yang termasuk kelompok 1
#subsetting data
indeks1<-data1$Kel==1
indeks1
## [1] TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
data2<-data1[indeks1,]
data2
Dari data1 tersebut ambillah yang termasuk kelompok 1 atau perlakuan P2
#subsetting data
indeks2<-data1$Kel==1 | data1$Perl=="P2"
indeks2
## [1] TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
data3<-data1[indeks2,]
data3
Dari data1 tersebut ambillah amatan yang responnya berupa bilangan prima
#subsetting data
indeks3<-data1$Resp %in% c(2,3,5,7,11,13,17,19,23)
data4<-data1[indeks3,]
data4
Urutkan data1 tersebut berdasarkan kelompok secara ascending
#sorting data : order(…), sort(…), rev(…), unique(…)
indeks4<-order(data1$Kel)
data5<-data1[indeks4,]
data5
Urutkan data1 tersebut berdasarkan kelompok dan respon secara descending
#sorting data
indeks5<-order(data1$Kel,data1$Resp,decreasing=TRUE)
data6<-data1[indeks5,]
data6
Urutkan data1 tersebut berdasarkan kelompok secara ascending dan respon secara descending
#sorting data
indeks6<-order(data1$Resp,decreasing = TRUE) #berdasarkan respon, descending
data7<-data1[indeks6,]
indeks7<-order(data7$Kel) #berdasarkan kelompok, ascending
data8<-data7[indeks7,]
data8
#sorting data
data8$Resp
## [1] 19 13 7 1 21 15 9 3 23 17 11 5
sort(data8$Resp)
## [1] 1 3 5 7 9 11 13 15 17 19 21 23
rev(data8$Resp)
## [1] 5 11 17 23 3 9 15 21 1 7 13 19
order(data8$Resp)
## [1] 4 8 12 3 7 11 2 6 10 1 5 9
rank(data8$Resp)
## [1] 10 7 4 1 11 8 5 2 12 9 6 3
data8$Resp>10
## [1] TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE
which(data8$Resp>10)
## [1] 1 2 5 6 9 10 11
data8$Resp[data8$Resp>10]
## [1] 19 13 21 15 23 17 11
data8$Resp[which(data8$Resp>10)]
## [1] 19 13 21 15 23 17 11
Lakukanlah recoding pada data8 untuk variabel respon dengan kondisi jika respon<15 maka Code = 1, selainnya Code = 0
#recoding data
#dengan logical
data8$Code1<-0*(data8$Resp>=15)+1*(data8$Resp<15)
data8$Code1
## [1] 0 1 1 1 0 0 1 1 0 0 1 1
data8
#dengan fungsi ifelse
data8$Code2<-ifelse(data8$Resp<15,1,0)
data8$Code2
## [1] 0 1 1 1 0 0 1 1 0 0 1 1
data8
#dengan fungsi recode
library(car)
## Loading required package: carData
data8$Code3<-recode(data8$Resp,'1:14=1;else=0')
data8$Code3
## [1] 0 1 1 1 0 0 1 1 0 0 1 1
data8
Gabungkanlah data1 dengan tabel1 berdasarkan peubah pertamanya.
#Merging Data : rbind(…), cbind(…), atau lebih mudah dengan merge(…)
tabel1<-data.frame(Tr=c("P4","P2","P5"),k1=c(50,100,200))
tabel1
data9<-merge(data1, tabel1, by.x=1, by.y=1, all=FALSE)
data9
data10<-merge(data1, tabel1, by.x="Perl", by.y="Tr", all=TRUE)
data10
Ubahlah data1 menjadi data dengan setiap barisnya merupakan masing-masing perlakuan.
#reshaping data
#long to wide
data11<-reshape(data1[,-4],idvar="Perl",timevar = "Kel",direction="wide")
data11
#wide to long
data12<-reshape(data11,idvar="Perl",timevar="Kel",
direction="long")
data12
matrix(1:10,2,5,byrow= TRUE) #baris=2, kolom=5, diurut berdasarkan baris terlebih dahulu
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 2 3 4 5
## [2,] 6 7 8 9 10
matrix(1:10,2,5,byrow= FALSE) #baris=2, kolom=5, diurut berdasarkan kolom terlebih dahulu
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 3 5 7 9
## [2,] 2 4 6 8 10
#membuat matriks dengan elemen yang sama semua
matrix(data=0,3,4) #elemen 0 semua
## [,1] [,2] [,3] [,4]
## [1,] 0 0 0 0
## [2,] 0 0 0 0
## [3,] 0 0 0 0
matrix(data=25,2,3) #elemen 25 semua
## [,1] [,2] [,3]
## [1,] 25 25 25
## [2,] 25 25 25
A<-matrix(c(4,3,5,1,7,2),nrow=2,ncol=3)
A
## [,1] [,2] [,3]
## [1,] 4 5 7
## [2,] 3 1 2
is.matrix(A) #mengecek apakah A matrix atau bukan
## [1] TRUE
is.list(A) #mengecek apakah A list atau bukan
## [1] FALSE
exam_data = data.frame(
name = c('Anastasia', 'Joe', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew',
'Laura', 'Kevin', 'Jonas'),
score = c(12.5, 9, 16.5, 12, 9, 20, 14.5, 13.5, 8, 19),
attempts = c(1, 3, 2, 3, 2, 3, 1, 1, 2, 1),
qualify = c('yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes')
)
exam_data
#menambah kolom "country"
exam_data$country = c("USA","USA","USA","USA","USA","USA","USA","USA","USA","USA")
print(exam_data)
## name score attempts qualify country
## 1 Anastasia 12.5 1 yes USA
## 2 Joe 9.0 3 no USA
## 3 Katherine 16.5 2 yes USA
## 4 James 12.0 3 no USA
## 5 Emily 9.0 2 no USA
## 6 Michael 20.0 3 yes USA
## 7 Matthew 14.5 1 yes USA
## 8 Laura 13.5 1 no USA
## 9 Kevin 8.0 2 no USA
## 10 Jonas 19.0 1 yes USA
#mendrop kolom "name" dan "qualify"
exam_data1<-subset(exam_data, select=-c(name,qualify))
exam_data1
#mendrop baris 1,3,6
exam_data2<-exam_data[-c(1,3,6),]
exam_data2