I. Initialization Block

Initializing RStudio

If you execute the code block below, RStudio will prompt you to install Mosaic if needed.

library(mosaic)

II. Exercises

  1. Using the built-in R data frame ChickWeight which examines weight vs age of chicks on different diets, conduct an analysis of the variable weight. Include all relevant plots, and include titles and axis labels for your histogram and density plot.

Built-in R Datasets

R has dozens of built-in data frames like iris.
Type variable name only and execute code block.
Output shows headers, variable names and
observations. Search variable name in help tab
of bottom-right panel for details.

  1. Using the built-in R data frame InsectSprays which examines the number of insects in an area depending upon type of insecticide used, conduct an analysis of the variable count. Include all relevant plots, and include titles and axis labels for your histogram and density plot.

  2. Use the built-in R data frame cars which compares the numeric variables speed measured in miles per hours (mph) and stopping distance (variable is dist, measured in feet). The data is from the 1920’s, by the way. Create an xyplot for the two variables, and include axis labels on your plot.

  3. Using the built-in R data frame mtcars which includes miles per gallon and ten other variables for 32 different models in 1974, create an xyplot for miles per gallon (mpg variable) vs. displacement (disp variable) using a grouping variable of transmission type, automatic vs. manual (am).

  4. Using the built-in R data frame Dimes which compares the mass of a dime to the year in which is was minted, conduct an analysis of the variable mass. Include all relevant plots, and include titles and axis labels for your histogram and density plot.

III. Code Blocks

W = c( 28, 11, 18, 35, 36, 6, -38, 14, -19, 43, -14, -30, -16, -25, 0, 40, 16, -79, 3, 11)
favstats(W)
right = mean(W) + 2 * sd(W)
left = mean(W) - 2 * sd(W)
left
right
histogram(W)
histogram(W, width = 20, center = 10 , type = "count")
histogram(W,
     width = 10,
     center = 0,
     fit = "normal",
     main = "Histogram: Mandy's Winnings",
     xlab = "Dollars Won or Lost",
     ylab = "Sessions")
boxplot(W)
boxplot(W, horizontal = TRUE,
     main = "Boxplot: Mandy's Winnings",
     xlab = "Dollars Won or Lost")
densityplot(W)
boxplot(iris$Petal.Length, horizontal = TRUE)
stem(iris$Petal.Length)
faithful
xyplot(eruptions ~ waiting, data = faithful)
cor(eruptions ~ waiting, data = faithful)
favstats(~ waiting, data = faithful)
histogram(~ waiting, data = faithful)
boxplot(faithful, horizontal = TRUE)
densityplot(~ waiting, data = faithful)
favstats(~ eruptions, data = faithful)
histogram(~ eruptions, data = faithful)
densityplot(~ waiting, data = faithful)
Births78
xyplot(births ~ day_of_year, data=Births78)
xyplot(births ~ day_of_year, data = Births78, 
       groups = wday,
       main = "Births vs. Day of Year for 1978",
       xlab = "Day of Year",
       ylab = "Births"
       )
LS0tDQp0aXRsZTogIkV4cGxvcmF0b3J5IERhdGEgQW5hbHlzaXMiDQpzdWJ0aXRsZTogVU5HIE1BVEggMzM1MCAob25saW5lKQ0KYXV0aG9yOiBSb2JiIFNpbm4NCmRhdGU6IEp1bHkgMjAyMA0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SS4gSW5pdGlhbGl6YXRpb24gQmxvY2s8L3NwYW4+DQoNCjxkaXYgc3R5bGU9ImZsb2F0OmNlbnRlcjsgbWFyZ2luOiA4cHg7IGJvcmRlcjoycHggYmxhY2sgc29saWQ7IHBhZGRpbmc6IDBweCAxMHB4IDVweCI+DQojIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij5Jbml0aWFsaXppbmcgUlN0dWRpbzwvc3Bhbj4NCklmIHlvdSBleGVjdXRlIHRoZSBjb2RlIGJsb2NrIGJlbG93LCBSU3R1ZGlvIHdpbGwgcHJvbXB0IHlvdSB0byBpbnN0YWxsICoqTW9zYWljKiogaWYgbmVlZGVkLg0KYGBge3J9DQpsaWJyYXJ5KG1vc2FpYykNCmBgYA0KPC9kaXY+DQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SUkuIEV4ZXJjaXNlczwvc3Bhbj4NCg0KMS4gVXNpbmcgdGhlIGJ1aWx0LWluIFIgZGF0YSBmcmFtZSAqKkNoaWNrV2VpZ2h0Kiogd2hpY2ggZXhhbWluZXMgd2VpZ2h0IHZzIGFnZSBvZiBjaGlja3Mgb24gZGlmZmVyZW50IGRpZXRzLCBjb25kdWN0IGFuIGFuYWx5c2lzIG9mIHRoZSB2YXJpYWJsZSAqKndlaWdodCoqLiBJbmNsdWRlIGFsbCByZWxldmFudCBwbG90cywgYW5kIGluY2x1ZGUgdGl0bGVzIGFuZCBheGlzIGxhYmVscyBmb3IgeW91ciBoaXN0b2dyYW0gYW5kIGRlbnNpdHkgcGxvdC4NCg0KPGRpdiBzdHlsZT0iZmxvYXQ6cmlnaHQ7IG1hcmdpbjogOHB4OyBib3JkZXI6MnB4IGJsYWNrIHNvbGlkOyBwYWRkaW5nOiAwcHggMTBweCA1cHgiPg0KIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+QnVpbHQtaW4gUiBEYXRhc2V0czwvc3Bhbj4NClIgaGFzIGRvemVucyBvZiBidWlsdC1pbiBkYXRhIGZyYW1lcyBsaWtlICoqaXJpcyoqLjwvYnI+DQpUeXBlIHZhcmlhYmxlIG5hbWUgb25seSBhbmQgZXhlY3V0ZSBjb2RlIGJsb2NrLjwvYnI+DQpPdXRwdXQgc2hvd3MgaGVhZGVycywgdmFyaWFibGUgbmFtZXMgYW5kPC9icj4NCm9ic2VydmF0aW9ucy4gU2VhcmNoIHZhcmlhYmxlIG5hbWUgaW4gaGVscCB0YWI8L2JyPg0Kb2YgYm90dG9tLXJpZ2h0IHBhbmVsIGZvciBkZXRhaWxzLg0KPC9kaXY+DQoNCjIuIFVzaW5nIHRoZSBidWlsdC1pbiBSIGRhdGEgZnJhbWUgKipJbnNlY3RTcHJheXMqKiB3aGljaCBleGFtaW5lcyB0aGUgbnVtYmVyIG9mIGluc2VjdHMgaW4gYW4gYXJlYSBkZXBlbmRpbmcgdXBvbiB0eXBlIG9mIGluc2VjdGljaWRlIHVzZWQsIGNvbmR1Y3QgYW4gYW5hbHlzaXMgb2YgdGhlIHZhcmlhYmxlICoqY291bnQqKi4gSW5jbHVkZSBhbGwgcmVsZXZhbnQgcGxvdHMsIGFuZCBpbmNsdWRlIHRpdGxlcyBhbmQgYXhpcyBsYWJlbHMgZm9yIHlvdXIgaGlzdG9ncmFtIGFuZCBkZW5zaXR5IHBsb3QuDQoNCjMuIFVzZSB0aGUgYnVpbHQtaW4gUiBkYXRhIGZyYW1lICoqY2FycyoqIHdoaWNoIGNvbXBhcmVzIHRoZSBudW1lcmljIHZhcmlhYmxlcyAqKnNwZWVkKiogbWVhc3VyZWQgaW4gbWlsZXMgcGVyIGhvdXJzIChtcGgpIGFuZCBzdG9wcGluZyBkaXN0YW5jZSAodmFyaWFibGUgaXMgKipkaXN0KiosIG1lYXN1cmVkIGluIGZlZXQpLiBUaGUgZGF0YSBpcyBmcm9tIHRoZSAxOTIwJ3MsIGJ5IHRoZSB3YXkuIENyZWF0ZSBhbiAqKnh5cGxvdCoqIGZvciB0aGUgdHdvIHZhcmlhYmxlcywgYW5kIGluY2x1ZGUgYXhpcyBsYWJlbHMgb24geW91ciBwbG90Lg0KDQo0LiBVc2luZyB0aGUgYnVpbHQtaW4gUiBkYXRhIGZyYW1lICoqbXRjYXJzKiogd2hpY2ggaW5jbHVkZXMgbWlsZXMgcGVyIGdhbGxvbiBhbmQgdGVuIG90aGVyIHZhcmlhYmxlcyBmb3IgMzIgZGlmZmVyZW50IG1vZGVscyBpbiAxOTc0LCBjcmVhdGUgYW4gKip4eXBsb3QqKiBmb3IgbWlsZXMgcGVyIGdhbGxvbiAoKiptcGcqKiB2YXJpYWJsZSkgdnMuIGRpc3BsYWNlbWVudCAoKipkaXNwKiogdmFyaWFibGUpIHVzaW5nIGEgZ3JvdXBpbmcgdmFyaWFibGUgb2YgdHJhbnNtaXNzaW9uIHR5cGUsIGF1dG9tYXRpYyB2cy4gbWFudWFsICgqKmFtKiopLg0KDQo1LiBVc2luZyB0aGUgYnVpbHQtaW4gUiBkYXRhIGZyYW1lICoqRGltZXMqKiB3aGljaCBjb21wYXJlcyB0aGUgbWFzcyBvZiBhIGRpbWUgdG8gdGhlIHllYXIgaW4gd2hpY2ggaXMgd2FzIG1pbnRlZCwgY29uZHVjdCBhbiBhbmFseXNpcyBvZiB0aGUgdmFyaWFibGUgKiptYXNzKiouIEluY2x1ZGUgYWxsIHJlbGV2YW50IHBsb3RzLCBhbmQgaW5jbHVkZSB0aXRsZXMgYW5kIGF4aXMgbGFiZWxzIGZvciB5b3VyIGhpc3RvZ3JhbSBhbmQgZGVuc2l0eSBwbG90Lg0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPklJSS4gQ29kZSBCbG9ja3M8L3NwYW4+DQoNCmBgYHtyfQ0KVyA9IGMoIDI4LCAxMSwgMTgsIDM1LCAzNiwgNiwgLTM4LCAxNCwgLTE5LCA0MywgLTE0LCAtMzAsIC0xNiwgLTI1LCAwLCA0MCwgMTYsIC03OSwgMywgMTEpDQpgYGANCg0KYGBge3J9DQpmYXZzdGF0cyhXKQ0KYGBgDQoNCmBgYHtyfQ0KcmlnaHQgPSBtZWFuKFcpICsgMiAqIHNkKFcpDQpsZWZ0ID0gbWVhbihXKSAtIDIgKiBzZChXKQ0KbGVmdA0KcmlnaHQNCmBgYA0KDQoNCmBgYHtyfQ0KaGlzdG9ncmFtKFcpDQpgYGANCg0KYGBge3J9DQpoaXN0b2dyYW0oVywgd2lkdGggPSAyMCwgY2VudGVyID0gMTAgLCB0eXBlID0gImNvdW50IikNCmBgYA0KDQpgYGB7cn0NCmhpc3RvZ3JhbShXLA0KICAgICB3aWR0aCA9IDEwLA0KICAgICBjZW50ZXIgPSAwLA0KICAgICBmaXQgPSAibm9ybWFsIiwNCiAgICAgbWFpbiA9ICJIaXN0b2dyYW06IE1hbmR5J3MgV2lubmluZ3MiLA0KICAgICB4bGFiID0gIkRvbGxhcnMgV29uIG9yIExvc3QiLA0KICAgICB5bGFiID0gIlNlc3Npb25zIikNCmBgYA0KDQoNCmBgYHtyfQ0KYm94cGxvdChXKQ0KYGBgDQoNCmBgYHtyfQ0KYm94cGxvdChXLCBob3Jpem9udGFsID0gVFJVRSwNCiAgICAgbWFpbiA9ICJCb3hwbG90OiBNYW5keSdzIFdpbm5pbmdzIiwNCiAgICAgeGxhYiA9ICJEb2xsYXJzIFdvbiBvciBMb3N0IikNCmBgYA0KDQpgYGB7cn0NCmRlbnNpdHlwbG90KFcpDQpgYGANCg0KYGBge3J9DQpib3hwbG90KGlyaXMkUGV0YWwuTGVuZ3RoLCBob3Jpem9udGFsID0gVFJVRSkNCnN0ZW0oaXJpcyRQZXRhbC5MZW5ndGgpDQpgYGANCg0KYGBge3J9DQpmYWl0aGZ1bA0KYGBgDQoNCmBgYHtyfQ0KeHlwbG90KGVydXB0aW9ucyB+IHdhaXRpbmcsIGRhdGEgPSBmYWl0aGZ1bCkNCmBgYA0KDQpgYGB7cn0NCmNvcihlcnVwdGlvbnMgfiB3YWl0aW5nLCBkYXRhID0gZmFpdGhmdWwpDQpgYGANCg0KDQpgYGB7cn0NCmZhdnN0YXRzKH4gd2FpdGluZywgZGF0YSA9IGZhaXRoZnVsKQ0KYGBgDQoNCmBgYHtyfQ0KaGlzdG9ncmFtKH4gd2FpdGluZywgZGF0YSA9IGZhaXRoZnVsKQ0KYGBgDQoNCg0KYGBge3J9DQpib3hwbG90KGZhaXRoZnVsLCBob3Jpem9udGFsID0gVFJVRSkNCmBgYA0KDQpgYGB7cn0NCmRlbnNpdHlwbG90KH4gd2FpdGluZywgZGF0YSA9IGZhaXRoZnVsKQ0KYGBgDQoNCmBgYHtyfQ0KZmF2c3RhdHMofiBlcnVwdGlvbnMsIGRhdGEgPSBmYWl0aGZ1bCkNCmBgYA0KDQpgYGB7cn0NCmhpc3RvZ3JhbSh+IGVydXB0aW9ucywgZGF0YSA9IGZhaXRoZnVsKQ0KYGBgDQoNCmBgYHtyfQ0KZGVuc2l0eXBsb3QofiB3YWl0aW5nLCBkYXRhID0gZmFpdGhmdWwpDQpgYGANCg0KYGBge3J9DQpCaXJ0aHM3OA0KYGBgDQoNCmBgYHtyfQ0KeHlwbG90KGJpcnRocyB+IGRheV9vZl95ZWFyLCBkYXRhPUJpcnRoczc4KQ0KYGBgDQoNCmBgYHtyfQ0KeHlwbG90KGJpcnRocyB+IGRheV9vZl95ZWFyLCBkYXRhID0gQmlydGhzNzgsIA0KICAgICAgIGdyb3VwcyA9IHdkYXksDQogICAgICAgbWFpbiA9ICJCaXJ0aHMgdnMuIERheSBvZiBZZWFyIGZvciAxOTc4IiwNCiAgICAgICB4bGFiID0gIkRheSBvZiBZZWFyIiwNCiAgICAgICB5bGFiID0gIkJpcnRocyINCiAgICAgICApDQpgYGANCg0K