#Overall Results Bottom Line up Front: The programs are on track but require some performance improvement as do all programs.
#####################Read and Pre-Clean the Data#######################
library(psych) #to describe
library(reticulate) #to use Python in R as well
mydata=read.csv("C:/Users/lfult/OneDrive - Texas State University/MHA BHA BSHS Honors/AUPHA Materials/2014_2019.csv")
#str(mydata)
#########################################################################
#Descriptive Statistics / Univariate Graphs / Crosstabs
Descriptive analysis is broken down by BHA (n=91), MHA (n=50), BHA/MHA (n=11). For those who earned both the BHA and MHA, their responses are included in all three categories for completeness.
#############################Descriptives 1##############################
describe(mydata[,3:17])
## vars n mean sd median trimmed mad min max range
## Last* 1 491 168.62 96.89 167 169.63 126.02 1 330 329
## TexasStateName* 2 490 21.51 35.87 1 13.98 0.00 1 111 110
## Address* 3 491 196.04 126.90 194 195.14 164.57 1 413 412
## City* 4 491 74.47 52.57 77 73.67 87.47 1 162 161
## State* 5 491 31.30 8.79 31 33.49 8.90 1 40 39
## Zip* 6 491 134.30 65.86 148 138.69 68.20 1 242 241
## Email* 7 491 183.85 111.79 186 183.49 146.78 1 378 377
## Business* 8 491 95.67 88.34 82 89.38 120.09 1 261 260
## Title* 9 491 87.81 87.22 64 79.69 93.40 1 259 258
## BusAddress* 10 491 71.40 79.73 36 61.44 51.89 1 244 243
## BusCity* 11 491 31.97 35.55 7 27.78 8.90 1 113 112
## BusState* 12 491 19.61 15.17 29 19.96 8.90 1 39 38
## BusZip* 13 491 50.45 51.19 36 45.81 51.89 1 156 155
## BusPhone* 14 491 46.29 63.23 1 35.23 0.00 1 200 199
## BusEmail* 15 491 59.74 73.58 10 48.82 13.34 1 226 225
## skew kurtosis se
## Last* -0.05 -1.20 4.37
## TexasStateName* 1.43 0.38 1.62
## Address* 0.04 -1.27 5.73
## City* 0.09 -1.53 2.37
## State* -2.26 4.55 0.40
## Zip* -0.52 -0.85 2.97
## Email* 0.01 -1.22 5.05
## Business* 0.35 -1.38 3.99
## Title* 0.48 -1.27 3.94
## BusAddress* 0.68 -1.01 3.60
## BusCity* 0.74 -0.99 1.60
## BusState* -0.30 -1.78 0.68
## BusZip* 0.43 -1.37 2.31
## BusPhone* 1.10 -0.26 2.85
## BusEmail* 0.88 -0.72 3.32
par(mfrow=c(1,1))
boxplot(mydata$Q32.MonthstoEmployment~mydata$Degree, horizontal=TRUE, col=c("red", "blue", "green", xlab="Months"), main="Time to Employment by Degree")
boxplot(mydata$Q33.AnnualSalary1000s~mydata$Degree, horizontal=TRUE, col=c("red","blue","green"), main="Salary in 1000's by Degree")
plot(mydata$Q33.AnnualSalary1000s~mydata$YearsSinceGrad, ylab="Salary in 1000's", xlab="Years Since Graduation", col="red", pch=20)
abline(lm(mydata$Q33.AnnualSalary1000s~mydata$YearsSinceGrad), col="black")
mygraph=function(x,lab){
ggplot(mydata, aes(x=x, group=Degree))+
geom_bar(aes(y = ..prop.., fill = factor(..x..)), stat="count") +
geom_text(aes( label = scales::percent(..prop..),
y= ..prop.. ), stat= "count", vjust=-.1)+
facet_wrap(~Degree)+
scale_y_continuous(labels = scales::percent)+
ylab("Percent")+
xlab(lab)+
theme(axis.text.x = element_text(angle = 90, hjust = 1))+
guides(fill=FALSE)
}
mygraph(mydata$Q26.Recommend, "Recommend?")
mygraph(mydata$Q16.1.Curriculum, "Curriculum")
mygraph(mydata$Q16.2.FacultyTeaching, "Faculty Teaching")
mygraph(mydata$Q16.3FieldPlacementExperience, "Field Placement Experience")
mygraph(mydata$Q16.4.SOHAFacilities, "SOHA Facilities")
mygraph(mydata$Q16.5.AlumniRelations, "Alumni Relations")
mygraph(mydata$Q18.1.Leadership, "Prepared me for Leadership")
mygraph(mydata$Q18.2.BusinessSkills, "Provided Business Skills")
mygraph(mydata$Q18.3.Professionalism, "Prepared me for Professionalism")
mygraph(mydata$Q18.4.KnowledgeofHCEnvironment, "Provided Knowledge of HC Environment")
mygraph(mydata$Q18.5.CRM, "Prepared for Communication & Relationship Mgt")
mygraph(mydata$Q19.PrepforMgtPosition, "Curriculum Prepared for Mgt Position")
mygraph(mydata$Q20.FieldExpPrepforMgt, "Field Experience Prepared for Mgt Position")
mygraph(mydata$Q22.1.FinMgt, "Course: Financial Mgt")
mygraph(mydata$Q22.2.PatMgtQI, "Course: Patient Mgt & QI")
mygraph(mydata$Q22.3.HIMCourse, "Course: HIM")
mygraph(mydata$Q22.4.HealthLaw, "Course: Health Law")
mygraph(mydata$Q22.5.EthicsOB, "Course: Ethics / OB")
mygraph(mydata$Q22.6.Marketing, "Course: Marketing")
mygraph(mydata$Q22.7.HRM,"HRM")
mygraph(mydata$Q22.8.HCCulture, "Health Care History & Culture")
mygraph(mydata$Q22.9.StratMgt, "Strategic Management")
#########################################################################