library (haven)
df1<- read_dta("/projects/add_health/data/11613344/ICPSR_27021/DS0001/da27021p1.dta")
df1w <- read_dta("/projects/add_health/data/11613344/ICPSR_27021/DS0025/da27021p25.dta")
wv1 <- merge(df1, df1w, by="aid")
wv3<-read_dta("/projects/add_health/data/11613344/ICPSR_27021/DS0003/da27021p3.dta")
wv2 <- merge(wv1, wv3, by="aid")
wave4a <- read_dta("/projects/add_health/data/11613344/ICPSR_27021/DS0012/da27021p12.dta")
wave4wgt <- read_dta("/projects/add_health/data/11613344/ICPSR_27021/DS0028/da27021p28.dta")
wave4b <- read_dta("/projects/add_health/data/11613344/ICPSR_27021/DS0017/da27021p17.dta")
wave4 <- merge(wave4a, wave4b, by="aid")
wave4totalwgt <- merge(wave4, wave4wgt, by="aid")
addhealth <-merge(wave4totalwgt, wv2, by="aid")
summary(wave4wgt)
##      aid              psuscid              region          GSWGT4        
##  Length:15701       Length:15701       Min.   :1.000   Min.   :   26.55  
##  Class :character   Class :character   1st Qu.:2.000   1st Qu.:  409.15  
##  Mode  :character   Mode  :character   Median :3.000   Median : 1641.44  
##                                        Mean   :2.412   Mean   : 1969.89  
##                                        3rd Qu.:3.000   3rd Qu.: 2988.77  
##                                        Max.   :4.000   Max.   :16323.66  
##                                        NA's   :358     NA's   :6280      
##     GSWGT4_2       
##  Min.   :   20.57  
##  1st Qu.:  249.31  
##  Median : 1204.89  
##  Mean   : 1484.29  
##  3rd Qu.: 2238.11  
##  Max.   :18342.36  
##  NA's   :901
summary(addhealth$psuscid.x)
##    Length     Class      Mode 
##     11898 character character
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
library(questionr)
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
library(zoo)
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(foreign)
library(survey)
library(survival)
library(eha)
summary(wv1$H1SU2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   7.000   7.000   6.137   7.000   8.000
summary(addhealth$H4TO35)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    2.00    3.00   29.46   97.00   98.00
summary(addhealth$alcohol)
## Length  Class   Mode 
##      0   NULL   NULL

Complete Case

addhealth2<-addhealth%>%
  select(GSWGT4,region.x,psuscid.x,aid,iyear,BIO_SEX,H4ID5H,iyear,imonth,iday,H1FV6,H4DS18,H4SE1,H4SE2,IMONTH4,IYEAR4,H1SU1,H4OD1M, H4OD1Y, H1FS6, H1GI1M, H1GI1Y, H3OD1Y,H3OD1M, IYEAR3, IMONTH3, H3TO130, H1SU2, H3TO131, H4SE2, H4TO35, H1TO15)
addhealth2<-addhealth2%>%
 filter(complete.cases(.))

Suicidal Ideation

addhealth2$suicidewave1<-recode(addhealth2$H1SU1, recodes="0=0; 1=1; 6=NA; 8=NA; 9=NA")
  is.numeric(addhealth2$suicidewave1)                        
## [1] TRUE
table(addhealth2$suicidewave1)
## 
##    0    1 
## 6869 1222
addhealth2$suicidewave3<-recode(addhealth2$H3TO130, recodes="0=0; 1=1; 6=NA; 8=NA; 9=NA")
  is.numeric(addhealth2$suicidewave3)                        
## [1] TRUE
table(addhealth2$suicidewave3)
## 
##    0    1    7 
## 7565  381  100
addhealth2$alcohol<-recode(addhealth2$H4TO35, recodes="0=0; 1:6=1; else=NA")
is.numeric(addhealth2$alcohol) 
## [1] TRUE
table(addhealth2$alcohol)
## 
##    0    1 
##  757 5117

Age for Wave 1 and Wave 4

addhealth2$birthmonthw1 <- factor(ifelse(addhealth2$H1GI1M=="1",01, 
                                            ifelse(addhealth2$H1GI1M=="2", 02, 
                                            ifelse(addhealth2$H1GI1M=="3", 03,
                                                   ifelse(addhealth2$H1GI1M=="4", 04,
                                                          ifelse(addhealth2$H1GI1M=="5", 05,
                                                                 ifelse(addhealth2$H1GI1M=="6", 06,
                                                                        ifelse(addhealth2$H1GI1M=="7", 07,
                                                                               ifelse(addhealth2$H1GI1M=="8", 08,
                                                                                      ifelse(addhealth2$H1GI1M=="9r", 09,
                                                                                             ifelse(addhealth2$H1GI1M=="10", 10,
                                                                                                    ifelse(addhealth2$H1GI1M=="11", 11,
                                                                                                           ifelse(addhealth2$H1GI1M=="12",12,
                                                                                                                  ifelse(addhealth2$H1GI1M=="96", 6,NA))))))))))))))
addhealth2$birthyearw1 <- factor(ifelse(addhealth2$H1GI1Y=="74",1974,
                                             ifelse(addhealth2$H1GI1Y=="75",1975,
                                                           ifelse(addhealth2$H1GI1Y=="76",1976,
                                                                         ifelse(addhealth2$H1GI1Y=="77",1977,
                                                                                       ifelse(addhealth2$H1GI1Y=="78",1978,
                                                                                                     ifelse(addhealth2$H1GI1Y=="79",1979,
                                                                                                                   ifelse(addhealth2$H1GI1Y=="80",1980,
                                                                                                                                 ifelse(addhealth2$H1GI1Y=="81",1981,
                                                                                                                                               ifelse(addhealth2$H1GI1Y=="82",1982,
                                                                                                                                                             ifelse(addhealth2$H1GI1Y=="83",1983,1979)))))))))))
addhealth2$birthdatew1 <- as.yearmon(paste(addhealth2$birthyearw1, addhealth2$birthmonthw1), "%Y %m")
addhealth2$iyearfix <- Recode(addhealth2$iyear,recodes="'95'='1995'") 
addhealth2$interviewdatew1 <- as.yearmon(paste(addhealth2$iyearfix, addhealth2$imonth), "%Y %m")
addhealth2$age3<-(as.numeric(round(addhealth2$interviewdatew1 - addhealth2$birthdatew1)))
addhealth2$age<-Recode(addhealth2$age3, recode="12=12; 13=13; 14=14; 15=15; 16=16; 17=17; 18=18; 19=19; 20=20; else=NA")
table(addhealth2$age)
## 
##   12   13   14   15   16   17   18   19   20 
##   16  469  944 1135 1770 1578 1218  270   30
addhealth2$birthdatew3<-as.yearmon(paste(addhealth2$H3OD1Y,addhealth2$H3OD1M),"%Y %m")
addhealth2$interviewdatew3<-as.yearmon(paste(addhealth2$IYEAR3,addhealth2$IMONTH3 ),"%Y %m")
addhealth2$agew3<-(as.numeric(round(addhealth2$interviewdatew3 - addhealth2$birthdatew3)))
table(addhealth2$agew3)
## 
##   18   19   20   21   22   23   24   25   26   27 
##   11  251  867 1176 1755 1721 1685  538  127   14

Wave 4

addhealth2$month<- Recode(addhealth2$H4OD1M,recodes="1=1;2=2;3=3;4=4;5=5;6=6;7=7;8=8;9=9;10=10;11=11;12=12")
addhealth2$year <- Recode(addhealth2$H4OD1Y,recodes="1974=1974;1975=1975;1976=1976;1977=1977;1978=1978;1979=1979;1980=1980;1981=1981;1982=1982;1983=1983")
addhealth2$date <- as.yearmon(paste(addhealth2$year, addhealth2$month), "%Y %m")
addhealth2$intmon <- Recode(addhealth2$IMONTH4,recodes="1=1;2=2;3=3;4=4;5=5;6=6;7=7;8=8;9=9;10=10;11=11;12=12")

addhealth2$intyear <- Recode(addhealth2$IYEAR4,recodes="2007=2007;2008=2008;2009=2009")

addhealth2$intdate<-as.yearmon(paste(addhealth2$intyear,addhealth2$intmon),"%Y %m")
addhealth2$agewv4<-(as.numeric(round(addhealth2$intdate - addhealth2$date )))
table(addhealth2$agewv4)
## 
##   24   25   26   27   28   29   30   31   32   33   34 
##    4   34  605  934 1563 1655 2027  974  309   33    7
table(addhealth2$age)
## 
##   12   13   14   15   16   17   18   19   20 
##   16  469  944 1135 1770 1578 1218  270   30

variables for having no suicide thoughts and then having suicide thoughts

addhealth2$yessuicidethoughtW4<-Recode(addhealth2$H4SE1,recodes="0='no thoughts';1='yes thoughts';else=NA")
addhealth2$nosuicidethoughtW1<-Recode(addhealth2$H1SU1,recodes="0='no thoughts';1='yes thoughts';else=NA")

1. Event Variable

variables for having a no suicide thoughts to having suicide thoughts

addhealth2$suicideevent<-ifelse(addhealth2$nosuicidethoughtW1=='no thoughts' & addhealth2$yessuicidethoughtW4=='yes thoughts', 1, 0) 
table((addhealth2$suicideevent))
## 
##    0    1 
## 7685  419
summary(addhealth2$suicideevent)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##  0.0000  0.0000  0.0000  0.0517  0.0000  1.0000      41

2. Duration

addhealth2$suicideevent.age<-ifelse(addhealth2$suicideevent==1, (addhealth2$age+addhealth2$agewv4)/2,
                            addhealth2$agewv4)
summary((addhealth2$age+addhealth2$agewv4)/2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    18.0    21.5    22.5    22.5    23.5    26.5     715
addhealth2$depressed<-Recode(addhealth2$H1FS6, recodes="0=0; 1:3=1; 6=NA; 8=NA")
table(addhealth2$depressed)
## 
##    0    1 
## 4394 3739
addhealth2$alcoholwv1<-Recode(addhealth2$H1TO15, recodes="7=0; 1:6=1; else=NA")
table(addhealth2$alcoholwv1)
## 
##    0    1 
##  807 4091
summary(addhealth2$alcoholwv1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   0.000   1.000   1.000   0.835   1.000   1.000    3247

Outcome Variable: Suicide thoughts using ADD health data, Wave 1 and Wave 4

Event - having suicide thoughts and/or attempt Duration - from wave 1 to wave 4 Censoring - if someone is depressed and uses alcohol Predictors - biological sex, age

Using Proportional Hazards model because measuring Hazard not time.

addhealthmini<-subset(addhealth2, is.na(H1SU1)==F&is.na(H3TO130)==F&is.na(age)==F&is.na(agew3)==F&is.na(agewv4)==F&H1SU1!=1)
addhealth2$W1.suicide.attempt<-Recode(addhealth2$H1SU2, recodes="0='a.no'; 1:4='b.yes'; else=NA")
addhealth2$W3.suicide.thought<-ifelse(addhealth2$H3TO130==1& addhealth2$H1SU1==0, 1, ifelse(addhealth2$H4SE1==1& addhealth2$H3TO130==0, 1, 0))
addhealth2$transition.w1<-ifelse(addhealth2$W1.suicide.attempt=="a.no"&addhealth2$W3.suicide.thought==1, 1, 0)
table(addhealth2$W3.suicide.thought)
## 
##    0    1 
## 7370  775
addhealth2$W1.suicide.thought<-Recode(addhealth2$H1SU1, recodes="0='a.no'; 1:4='b.yes'; else=NA")
addhealth2$W3.suicide.thought<-ifelse(addhealth2$H3TO130==1& addhealth2$H1SU1==0, 1, ifelse(addhealth2$H4SE1==1& addhealth2$H3TO130==0, 1, 0))
addhealth2$transition.w1<-ifelse(addhealth2$W1.suicide.thought=="a.no"&addhealth2$W3.suicide.thought==1, 1, 0)
table(addhealth2$W3.suicide.thought)
## 
##    0    1 
## 7370  775
table(addhealth2$W3.suicide.thought)
## 
##    0    1 
## 7370  775
library(muhaz)
library (eha)
addhealthb<-addhealth2%>%
  select(age,agew3, agewv4, depressed, BIO_SEX, W3.suicide.thought, H1SU1, H3TO130, H4SE1, alcoholwv1, GSWGT4, region.x, psuscid.x )
#filter complete cases
addhealthb<-addhealthb%>%
 filter(complete.cases(.))
adlong<-reshape(data.frame(addhealthb), idvar = 'aid', varying=list(c('age', 'agew3'), c('agew3','agewv4')),
                v.names = c('age_enter', 'age_exit'), 
                times = 1:2, direction='long')

adlong<-adlong[order(adlong$aid, adlong$time),]
head(adlong)
##     depressed BIO_SEX W3.suicide.thought H1SU1 H3TO130 H4SE1 alcoholwv1
## 1.1         0       2                  0     0       0     0          1
## 1.2         0       2                  0     0       0     0          1
## 2.1         0       2                  0     0       0     0          1
## 2.2         0       2                  0     0       0     0          1
## 3.1         0       2                  0     0       0     0          1
## 3.2         0       2                  0     0       0     0          1
##       GSWGT4 region.x psuscid.x time age_enter age_exit aid
## 1.1 443.6169        3       044    1        14       20   1
## 1.2 443.6169        3       044    2        20       26   1
## 2.1 443.6169        3       044    1        14       20   2
## 2.2 443.6169        3       044    2        20       26   2
## 3.1 443.6169        3       044    1        14       20   3
## 3.2 443.6169        3       044    2        20       26   3
adlong$povtran <-NA

adlong$povtran[adlong$H1SU1==0&adlong$H3TO130==1&adlong$time==1]<-1
adlong$povtran[adlong$H3TO130==0&adlong$H4SE1==1&adlong$time==2]<-1
adlong$povtran[adlong$H1SU1==0&adlong$H3TO130==0&adlong$time==1]<-0
adlong$povtran[adlong$H3TO130==0&adlong$H4SE1==0&adlong$time==2]<-0
failed1<-which(is.na(adlong$povtran)==T)
adlong<-adlong[-failed1,]
adlong$age1r<-round(adlong$age_enter, 0)
adlong$age2r<-round(adlong$age_exit,0)
head(adlong, n=10)
##     depressed BIO_SEX W3.suicide.thought H1SU1 H3TO130 H4SE1 alcoholwv1
## 1.1         0       2                  0     0       0     0          1
## 1.2         0       2                  0     0       0     0          1
## 2.1         0       2                  0     0       0     0          1
## 2.2         0       2                  0     0       0     0          1
## 3.1         0       2                  0     0       0     0          1
## 3.2         0       2                  0     0       0     0          1
## 4.1         1       1                  0     0       0     0          1
## 4.2         1       1                  0     0       0     0          1
## 5.1         1       1                  0     0       0     0          1
## 5.2         1       1                  0     0       0     0          1
##        GSWGT4 region.x psuscid.x time age_enter age_exit aid povtran age1r
## 1.1  443.6169        3       044    1        14       20   1       0    14
## 1.2  443.6169        3       044    2        20       26   1       0    20
## 2.1  443.6169        3       044    1        14       20   2       0    14
## 2.2  443.6169        3       044    2        20       26   2       0    20
## 3.1  443.6169        3       044    1        14       20   3       0    14
## 3.2  443.6169        3       044    2        20       26   3       0    20
## 4.1 1845.0308        2       064    1        15       21   4       0    15
## 4.2 1845.0308        2       064    2        21       27   4       0    21
## 5.1 1845.0308        2       064    1        15       21   5       0    15
## 5.2 1845.0308        2       064    2        21       27   5       0    21
##     age2r
## 1.1    20
## 1.2    26
## 2.1    20
## 2.2    26
## 3.1    20
## 3.2    26
## 4.1    21
## 4.2    27
## 5.1    21
## 5.2    27
summary(addhealth$alcoholwv1)
## Length  Class   Mode 
##      0   NULL   NULL
library(survminer)
## Loading required package: ggplot2
## Loading required package: ggpubr

adlong <-adlong%>% filter(complete.cases(age_enter, age_exit, povtran, depressed, alcoholwv1, age, agew3, agewv4, BIO_SEX, W3.suicide.thought, H1SU1, H3TO130, H4SE1,GSWGT4,region.x,psuscid.x))

library(survey)

GSWGT4,region.x,psuscid.x

des2<-svydesign(ids=~psuscid.x,
                strata = ~region.x,
                weights=~GSWGT4,
                data=adlong,
                nest=T)
fitcox<-coxreg(Surv(time = age_enter, time2 = age_exit, event = povtran)~1+depressed+alcoholwv1,  data=adlong)
summary(fitcox)
## Call:
## coxreg(formula = Surv(time = age_enter, time2 = age_exit, event = povtran) ~ 
##     1 + depressed + alcoholwv1, data = adlong)
## 
## Covariate           Mean       Coef     Rel.Risk   S.E.    Wald p
## depressed           0.481     0.489     1.631     0.097     0.000 
## alcoholwv1          0.834     0.020     1.020     0.132     0.882 
## 
## Events                    457 
## Total time at risk         49490 
## Max. log. likelihood      -3523.6 
## LR test statistic         26.16 
## Degrees of freedom        2 
## Overall p-value           2.08926e-06
fitcox2<-coxreg(Surv(time = time,event = povtran)~age_enter-1,data = adlong)
summary(fitcox2)
## Call:
## coxreg(formula = Surv(time = time, event = povtran) ~ age_enter - 
##     1, data = adlong)
## 
## Covariate           Mean       Coef     Rel.Risk   S.E.    Wald p
## age_enter          20.755    -0.235     0.790     0.022     0.000 
## 
## Events                    457 
## Total time at risk         11793 
## Max. log. likelihood      -3813.1 
## LR test statistic         124.61 
## Degrees of freedom        1 
## Overall p-value           0
plot(survfit(fitcox2), ylim = c(.6,1), xlim = c(6,9), main="Survivorship function for Cox Regression-Suicide Thoughts")

plot(survfit(fitcox), ylim = c(.6,1), xlim = c(6,9), main="Survivorship function for Cox Regression-Suicide Thoughts")

Include all main effects in model

library(survey)
des2<-svydesign(ids=~psuscid.x,
                strata = ~region.x,
                weights=~GSWGT4,
                data=adlong,
                nest=T)
fit1b<-svycoxph(Surv(time=time,event=povtran)~BIO_SEX+depressed+alcoholwv1+W3.suicide.thought,design=des2)
## Warning in fitter(X, Y, istrat, offset, init, control, weights = weights, :
## Loglik converged before variable 4 ; coefficient may be infinite.
summary(fit1b)
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (130) clusters.
## svydesign(ids = ~psuscid.x, strata = ~region.x, weights = ~GSWGT4, 
##     data = adlong, nest = T)
## Call:
## svycoxph(formula = Surv(time = time, event = povtran) ~ BIO_SEX + 
##     depressed + alcoholwv1 + W3.suicide.thought, design = des2)
## 
##   n= 7668, number of events= 457 
## 
##                         coef exp(coef)  se(coef) robust se       z Pr(>|z|)    
## BIO_SEX            6.668e-02 1.069e+00 9.427e-02 1.095e-01   0.609    0.543    
## depressed          1.064e-01 1.112e+00 9.574e-02 9.481e-02   1.122    0.262    
## alcoholwv1         4.720e-02 1.048e+00 1.375e-01 1.019e-01   0.463    0.643    
## W3.suicide.thought 2.420e+01 3.226e+10 1.132e+03 7.749e-02 312.245   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                    exp(coef) exp(-coef) lower .95 upper .95
## BIO_SEX            1.069e+00  9.355e-01 8.625e-01 1.325e+00
## depressed          1.112e+00  8.991e-01 9.236e-01 1.339e+00
## alcoholwv1         1.048e+00  9.539e-01 8.585e-01 1.280e+00
## W3.suicide.thought 3.226e+10  3.100e-11 2.771e+10 3.755e+10
## 
## Concordance= 0.985  (se = 0.002 )
## Likelihood ratio test= NA  on 4 df,   p=NA
## Wald test            = 111624  on 4 df,   p=<2e-16
## Score (logrank) test = NA  on 4 df,   p=NA
## 
##   (Note: the likelihood ratio and score tests assume independence of
##      observations within a cluster, the Wald and robust score tests do not).
fit.interact1<-svycoxph(Surv(time=time,event=povtran)~BIO_SEX+depressed+alcoholwv1+W3.suicide.thought,
                        design=des2)
## Warning in fitter(X, Y, istrat, offset, init, control, weights = weights, :
## Loglik converged before variable 4 ; coefficient may be infinite.
summary(fit.interact1)
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (130) clusters.
## svydesign(ids = ~psuscid.x, strata = ~region.x, weights = ~GSWGT4, 
##     data = adlong, nest = T)
## Call:
## svycoxph(formula = Surv(time = time, event = povtran) ~ BIO_SEX + 
##     depressed + alcoholwv1 + W3.suicide.thought, design = des2)
## 
##   n= 7668, number of events= 457 
## 
##                         coef exp(coef)  se(coef) robust se       z Pr(>|z|)    
## BIO_SEX            6.668e-02 1.069e+00 9.427e-02 1.095e-01   0.609    0.543    
## depressed          1.064e-01 1.112e+00 9.574e-02 9.481e-02   1.122    0.262    
## alcoholwv1         4.720e-02 1.048e+00 1.375e-01 1.019e-01   0.463    0.643    
## W3.suicide.thought 2.420e+01 3.226e+10 1.132e+03 7.749e-02 312.245   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                    exp(coef) exp(-coef) lower .95 upper .95
## BIO_SEX            1.069e+00  9.355e-01 8.625e-01 1.325e+00
## depressed          1.112e+00  8.991e-01 9.236e-01 1.339e+00
## alcoholwv1         1.048e+00  9.539e-01 8.585e-01 1.280e+00
## W3.suicide.thought 3.226e+10  3.100e-11 2.771e+10 3.755e+10
## 
## Concordance= 0.985  (se = 0.002 )
## Likelihood ratio test= NA  on 4 df,   p=NA
## Wald test            = 111624  on 4 df,   p=<2e-16
## Score (logrank) test = NA  on 4 df,   p=NA
## 
##   (Note: the likelihood ratio and score tests assume independence of
##      observations within a cluster, the Wald and robust score tests do not).
#hazard for alcohol
fit.kaplan<-survfit(Surv(time = time , event=povtran)~alcoholwv1,data=adlong)
summary(fit.kaplan)
## Call: survfit(formula = Surv(time = time, event = povtran) ~ alcoholwv1, 
##     data = adlong)
## 
##                 alcoholwv1=0 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   1269      22    0.983 0.00366        0.976        0.990
##     2    660      46    0.914 0.01032        0.894        0.935
## 
##                 alcoholwv1=1 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   6399     115    0.982 0.00166        0.979        0.985
##     2   3465     274    0.904 0.00475        0.895        0.914
ggsurvplot(fit.kaplan,risk.table = T,fun="cumhaz",title="Cumulative Hazard Function for suicide thoughts  by alcohol usage")
## Warning: Vectorized input to `element_text()` is not officially supported.
## Results may be unexpected or may change in future versions of ggplot2.

#hazard for biological sex
fit.kaplan.biosex<-survfit(Surv(time = time , event=povtran)~BIO_SEX,data=adlong)
summary(fit.kaplan.biosex)
## Call: survfit(formula = Surv(time = time, event = povtran) ~ BIO_SEX, 
##     data = adlong)
## 
##                 BIO_SEX=1 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   2871      49    0.983 0.00242        0.978        0.988
##     2   1496     116    0.907 0.00715        0.893        0.921
## 
##                 BIO_SEX=2 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   4797      88    0.982 0.00194        0.978        0.985
##     2   2629     204    0.905 0.00542        0.895        0.916
ggsurvplot(fit.kaplan.biosex,risk.table = T,fun="cumhaz",title="Cumulative Hazard Function for suicide thoughts  by biological sex")
## Warning: Vectorized input to `element_text()` is not officially supported.
## Results may be unexpected or may change in future versions of ggplot2.

#hazard for depression
fit.kaplan.depressed<-survfit(Surv(time = time , event=povtran)~depressed,data=adlong)
summary(fit.kaplan.depressed)
## Call: survfit(formula = Surv(time = time, event = povtran) ~ depressed, 
##     data = adlong)
## 
##                 depressed=0 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   3984      51    0.987 0.00178        0.984        0.991
##     2   2053     123    0.928 0.00544        0.917        0.939
## 
##                 depressed=1 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     1   3684      86    0.977 0.00249        0.972        0.982
##     2   2072     197    0.884 0.00668        0.871        0.897
ggsurvplot(fit.kaplan.depressed,risk.table = T,fun="cumhaz",title="Cumulative Hazard Function for suicide thoughts  by depression")
## Warning: Vectorized input to `element_text()` is not officially supported.
## Results may be unexpected or may change in future versions of ggplot2.