OLUWADARE MARGARET
30TH SEPTEMBER, 2020
Dr. William H. Wolberg of the University of Wisconsin pioneered the
Wisconsin Breast Cancer Data in 1990. His goal of collecting the data was to identify
whether a tumor biopsy was malignant or benign. His team collected the samples
using Fine Needle Aspiration (FNA). Our aim here is to demonstrate the use of plotly in plotting this data set.
To do this we will access the Mass library and read in the data called biospy. The following till be carried out:
plotlyThe following library will be used and the biospy data set from the MASS library will be used.
library(MASS); library(corrplot); library(ggplot2); library(tidyverse);
library(plotly)
library(rgl); library(rglwidget)
data(biopsy)
We perform some cleaning by removing the id variable, renaming the varaible and ommiting na's.
bc <- biopsy[-1]
names(bc) <- c("age", "mnp", "ts", "inv", "ndc", "deM", "breast", "brtq", "irat", "class" )
bc = na.omit(bc)
str(bc)
'data.frame': 683 obs. of 10 variables:
$ age : int 5 5 3 6 4 8 1 2 2 4 ...
$ mnp : int 1 4 1 8 1 10 1 1 1 2 ...
$ ts : int 1 4 1 8 1 10 1 2 1 1 ...
$ inv : int 1 5 1 1 3 8 1 1 1 1 ...
$ ndc : int 2 7 2 3 2 7 2 2 2 2 ...
$ deM : int 1 10 2 4 1 10 10 1 1 1 ...
$ breast: int 3 3 3 3 3 9 3 3 1 2 ...
$ brtq : int 1 2 1 7 1 7 1 1 1 1 ...
$ irat : int 1 1 1 1 1 1 1 1 5 1 ...
$ class : Factor w/ 2 levels "benign","malignant": 1 1 1 1 1 2 1 1 1 1 ...
- attr(*, "na.action")= 'omit' Named int [1:16] 24 41 140 146 159 165 236 250 276 293 ...
..- attr(*, "names")= chr [1:16] "24" "41" "140" "146" ...
# Point colors
marker <- list(color = ~class, colorscale = c('#FFE1A1', '#683531'),
showscale = TRUE)
# Create the plot
p <- plot_ly(bc, x = ~age, y = ~mnp, z = ~brtq, marker = marker) %>%
add_markers() %>%
layout(
scene = list(xaxis = list(title = 'age'),
yaxis = list(title = 'menopause'),
zaxis = list(title = 'breast quarter'),
title = "Breast cancer Data")
)
p