#Creating Kansas Map

## ── Attaching packages ───────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2     ✓ purrr   0.3.4
## ✓ tibble  3.0.3     ✓ dplyr   1.0.2
## ✓ tidyr   1.1.0     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.5.0
## ── Conflicts ──────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
## Google's Terms of Service: https://cloud.google.com/maps-platform/terms/.
## Please cite ggmap if you use it! See citation("ggmap") for details.
## 
## Attaching package: 'maps'
## The following object is masked from 'package:purrr':
## 
##     map
## Warning in f(...): True north is not meaningful without coord_sf()

#20 Minute Aggregate Graphs by Location

## `summarise()` regrouping output by 'horizon', 'location' (override with `.groups` argument)

#20 Minute Aggregate Graphs by Treatment

## `summarise()` regrouping output by 'horizon', 'Treatment' (override with `.groups` argument)

#20 (loc) ANOVA and TukeyHSD test for all the combinations for 20-minutes methods

aggregate_mean_loc <- function(select_variable, aggregate_size, aggregate_size_conversion){
  subset_data <- agg[, select_variable]
  subset_data_1 <- gather(subset_data, aggregate_size , value, - location, - horizon)
  subset_data_1$aggregate_size <- factor(subset_data_1$aggregate_size, 
                                       levels = aggregate_size)
  subset_data_1$aggregate_size <- plyr::mapvalues(subset_data_1$aggregate_size, 
                                                from=aggregate_size, 
                                                to=aggregate_size_conversion)
  return (subset_data_1)}

method_20_anova_loc <- aggregate_mean_loc(c("location", "horizon","20wsa2000", 
                                    "20wsa250", "20wsa53", "20wsa20"),
                                  c("20wsa2000", "20wsa250", "20wsa53", "20wsa20"),
                                  c("8mm-2mm","2mm-250um","250um-53um", "53-20um"))
for (j in 1:7){
  for (i in c("8mm-2mm","2mm-250um","250um-53um", "53-20um")){
    anova_one_way <- aov(value~location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
    print(paste("horizon:", j, " aggregate size: ", i))
    print(summary(anova_one_way))
    print(TukeyHSD(anova_one_way))}}
## [1] "horizon: 1  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## location     3   1301   433.8   2.834 0.0562 .
## Residuals   28   4286   153.1                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                         diff       lwr        upr     p adj
## Konza-Hays       -12.7518994 -29.64183  4.1380284 0.1905127
## Ottawa-Hays      -20.0494757 -40.73533  0.6363767 0.0600341
## Tribune 1-Hays   -11.7593682 -27.17769  3.6589559 0.1835273
## Ottawa-Konza      -7.2975763 -27.98343 13.3882761 0.7711218
## Tribune 1-Konza    0.9925312 -14.42579 16.4108553 0.9980236
## Tribune 1-Ottawa   8.2901075 -11.21270 27.7929162 0.6559707
## 
## [1] "horizon: 1  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     3   1722   573.8   7.796 0.000617 ***
## Residuals   28   2061    73.6                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                        diff        lwr       upr     p adj
## Konza-Hays        -4.555551 -16.267779  7.156677 0.7149365
## Ottawa-Hays        8.323142  -6.021349 22.667632 0.4035331
## Tribune 1-Hays   -13.215781 -23.907533 -2.524029 0.0110438
## Ottawa-Konza      12.878693  -1.465798 27.223184 0.0904063
## Tribune 1-Konza   -8.660230 -19.351982  2.031523 0.1447870
## Tribune 1-Ottawa -21.538922 -35.063038 -8.014807 0.0008949
## 
## [1] "horizon: 1  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value Pr(>F)
## location     3   1047   348.9    0.99  0.412
## Residuals   28   9863   352.3               
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                        diff       lwr      upr     p adj
## Konza-Hays         1.195110 -24.42709 26.81731 0.9992436
## Ottawa-Hays      -14.658008 -46.03866 16.72265 0.5857014
## Tribune 1-Hays     3.831521 -19.55824 27.22128 0.9696116
## Ottawa-Konza     -15.853118 -47.23377 15.52754 0.5222692
## Tribune 1-Konza    2.636411 -20.75335 26.02617 0.9896655
## Tribune 1-Ottawa  18.489529 -11.09644 48.07549 0.3394496
## 
## [1] "horizon: 1  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     3  244.2   81.42   12.59 2.17e-05 ***
## Residuals   28  181.1    6.47                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                      diff        lwr       upr     p adj
## Konza-Hays       -4.47375  -7.945826 -1.001674 0.0077364
## Ottawa-Hays       2.19000  -2.062407  6.442407 0.5061515
## Tribune 1-Hays   -5.03000  -8.199557 -1.860443 0.0009325
## Ottawa-Konza      6.66375   2.411343 10.916157 0.0010775
## Tribune 1-Konza  -0.55625  -3.725807  2.613307 0.9630773
## Tribune 1-Ottawa -7.22000 -11.229208 -3.210792 0.0001943
## 
## [1] "horizon: 2  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## location     3   1262   420.6    4.29  0.013 *
## Residuals   28   2745    98.0                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                        diff        lwr        upr     p adj
## Konza-Hays       -11.308215 -24.825253  2.2088219 0.1260516
## Ottawa-Hays      -19.407934 -35.962856 -2.8530120 0.0168745
## Tribune 1-Hays   -12.800682 -25.139993 -0.4613719 0.0398395
## Ottawa-Konza      -8.099719 -24.654641  8.4552034 0.5486587
## Tribune 1-Konza   -1.492467 -13.831777 10.8468435 0.9873056
## Tribune 1-Ottawa   6.607252  -9.000878 22.2153821 0.6588739
## 
## [1] "horizon: 2  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## location     3   3272  1090.7   6.925 0.00125 **
## Residuals   28   4410   157.5                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                         diff        lwr        upr     p adj
## Konza-Hays        -5.6625017 -22.795191  11.470188 0.8036434
## Ottawa-Hays       25.6004350   4.617262  46.583608 0.0122979
## Tribune 1-Hays    -5.7638369 -21.403771   9.876097 0.7471062
## Ottawa-Konza      31.2629366  10.279763  52.246110 0.0018798
## Tribune 1-Konza   -0.1013353 -15.741269  15.538599 0.9999980
## Tribune 1-Ottawa -31.3642719 -51.147398 -11.581146 0.0009431
## 
## [1] "horizon: 2  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value Pr(>F)
## location     3   2098   699.3   2.192  0.111
## Residuals   28   8933   319.0               
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                         diff       lwr       upr     p adj
## Konza-Hays        -2.5497909 -26.93348 21.833895 0.9917035
## Ottawa-Hays      -26.1888245 -56.05262  3.674970 0.1014587
## Tribune 1-Hays    -2.8805186 -25.13968 19.378640 0.9845527
## Ottawa-Konza     -23.6390336 -53.50283  6.224761 0.1590303
## Tribune 1-Konza   -0.3307277 -22.58989 21.928431 0.9999754
## Tribune 1-Ottawa  23.3083059  -4.84755 51.464162 0.1319897
## 
## [1] "horizon: 2  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     3 195.13   65.04    22.4 1.34e-07 ***
## Residuals   28  81.31    2.90                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                      diff       lwr        upr     p adj
## Konza-Hays       -5.82375 -8.150065 -3.4974353 0.0000012
## Ottawa-Hays      -3.89500 -6.744142 -1.0458580 0.0044899
## Tribune 1-Hays   -5.85000 -7.973625 -3.7263749 0.0000002
## Ottawa-Konza      1.92875 -0.920392  4.7778920 0.2729010
## Tribune 1-Konza  -0.02625 -2.149875  2.0973751 0.9999858
## Tribune 1-Ottawa -1.95500 -4.641197  0.7311969 0.2168418
## 
## [1] "horizon: 3  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value Pr(>F)
## location     3    752   250.8   1.989  0.138
## Residuals   28   3531   126.1               
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                        diff        lwr       upr     p adj
## Konza-Hays        -5.620143 -20.950910  9.710624 0.7501058
## Ottawa-Hays      -16.508928 -35.285206  2.267350 0.1001865
## Tribune 1-Hays    -7.397446 -21.392457  6.597566 0.4840937
## Ottawa-Konza     -10.888786 -29.665064  7.887492 0.4039977
## Tribune 1-Konza   -1.777303 -15.772314 12.217709 0.9853732
## Tribune 1-Ottawa   9.111483  -8.590962 26.813927 0.5066429
## 
## [1] "horizon: 3  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## location     3    598  199.32    3.85   0.02 *
## Residuals   28   1450   51.77                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                        diff        lwr         upr     p adj
## Konza-Hays         6.161301  -3.661587 15.98418843 0.3363223
## Ottawa-Hays        8.919366  -3.111165 20.94989749 0.2033646
## Tribune 1-Hays    -2.454989 -11.422018  6.51203923 0.8769446
## Ottawa-Konza       2.758065  -9.272466 14.78859688 0.9228609
## Tribune 1-Konza   -8.616290 -17.583319  0.35073862 0.0630483
## Tribune 1-Ottawa -11.374356 -22.716849 -0.03186167 0.0491629
## 
## [1] "horizon: 3  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value Pr(>F)
## location     3   1623   541.1   1.987  0.139
## Residuals   28   7625   272.3               
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                        diff       lwr       upr     p adj
## Konza-Hays       -16.356409 -38.88409  6.171275 0.2186087
## Ottawa-Hays      -19.830689 -47.42135  7.759976 0.2261623
## Tribune 1-Hays   -14.484861 -35.04973  6.080007 0.2415778
## Ottawa-Konza      -3.474281 -31.06495 24.116384 0.9857291
## Tribune 1-Konza    1.871548 -18.69332 22.436416 0.9944863
## Tribune 1-Ottawa   5.345829 -20.66690 31.358557 0.9427076
## 
## [1] "horizon: 3  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     3  316.3  105.42   9.348 0.000191 ***
## Residuals   28  315.8   11.28                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                       diff        lwr       upr     p adj
## Konza-Hays       -8.462500 -13.046831 -3.878169 0.0001393
## Ottawa-Hays      -4.351250  -9.965886  1.263386 0.1727630
## Tribune 1-Hays   -6.247083 -10.431986 -2.062181 0.0018416
## Ottawa-Konza      4.111250  -1.503386  9.725886 0.2123686
## Tribune 1-Konza   2.215417  -1.969486  6.400319 0.4827940
## Tribune 1-Ottawa -1.895833  -7.189363  3.397696 0.7630358
## 
## [1] "horizon: 4  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## location     3  808.4   269.5   2.615 0.0708 .
## Residuals   28 2884.7   103.0                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                        diff        lwr         upr     p adj
## Konza-Hays         6.519482  -7.336915 20.37587843 0.5800037
## Ottawa-Hays      -10.454866 -27.425417  6.51568485 0.3517030
## Tribune 1-Hays    -1.688083 -14.337185 10.96101885 0.9831127
## Ottawa-Konza     -16.974348 -33.944898 -0.00379689 0.0499329
## Tribune 1-Konza   -8.207565 -20.856666  4.44153711 0.3077163
## Tribune 1-Ottawa   8.766783  -7.233206 24.76677177 0.4532277
## 
## [1] "horizon: 4  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     3   3746    1249   10.68 7.51e-05 ***
## Residuals   28   3275     117                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                        diff         lwr        upr     p adj
## Konza-Hays         9.652655  -5.1116926  24.417004 0.3014301
## Ottawa-Hays       17.931911  -0.1506489  36.014470 0.0525581
## Tribune 1-Hays   -11.957613 -25.4355573   1.520331 0.0958929
## Ottawa-Konza       8.279255  -9.8033044  26.361815 0.6012021
## Tribune 1-Konza  -21.610269 -35.0882128  -8.132325 0.0008275
## Tribune 1-Ottawa -29.889524 -46.9379245 -12.841123 0.0002761
## 
## [1] "horizon: 4  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     3   4547  1515.7   8.734 0.000301 ***
## Residuals   28   4859   173.5                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                        diff        lwr           upr     p adj
## Konza-Hays       -33.205891 -51.189971 -15.221811023 0.0001389
## Ottawa-Hays      -22.020354 -44.046264   0.005555124 0.0500758
## Tribune 1-Hays   -15.303650 -31.720793   1.113493885 0.0744489
## Ottawa-Konza      11.185536 -10.840373  33.211445967 0.5179086
## Tribune 1-Konza   17.902241   1.485097  34.319384728 0.0286145
## Tribune 1-Ottawa   6.716705 -14.049522  27.482931281 0.8135632
## 
## [1] "horizon: 4  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     3  309.6  103.20    25.3 3.99e-08 ***
## Residuals   28  114.2    4.08                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                      diff         lwr        upr     p adj
## Konza-Hays       -8.03125 -10.7882339 -5.2742661 0.0000001
## Ottawa-Hays      -3.41375  -6.7903519 -0.0371481 0.0467926
## Tribune 1-Hays   -6.48875  -9.0055205 -3.9719795 0.0000007
## Ottawa-Konza      4.61750   1.2408981  7.9941019 0.0044767
## Tribune 1-Konza   1.54250  -0.9742705  4.0592705 0.3561364
## Tribune 1-Ottawa -3.07500  -6.2584908  0.1084908 0.0612153
## 
## [1] "horizon: 5  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## location     3  352.1  117.35   3.075 0.0438 *
## Residuals   28 1068.5   38.16                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                        diff        lwr        upr     p adj
## Konza-Hays         3.197370  -5.235720 11.6304613 0.7305215
## Ottawa-Hays       -8.093594 -18.421979  2.2347909 0.1654930
## Tribune 1-Hays    -1.526332  -9.224656  6.1719914 0.9481014
## Ottawa-Konza     -11.290964 -21.619349 -0.9625796 0.0281230
## Tribune 1-Konza   -4.723703 -12.422026  2.9746209 0.3551370
## Tribune 1-Ottawa   6.567262  -3.170433 16.3049564 0.2759395
## 
## [1] "horizon: 5  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     3   5423  1807.6   14.98 5.23e-06 ***
## Residuals   28   3378   120.6                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                        diff        lwr        upr     p adj
## Konza-Hays         7.540339  -7.454618  22.535297 0.5261125
## Ottawa-Hays        6.140531 -12.224467  24.505528 0.7981509
## Tribune 1-Hays   -22.029415 -35.717875  -8.340954 0.0007924
## Ottawa-Konza      -1.399809 -19.764806  16.965188 0.9967360
## Tribune 1-Konza  -29.569754 -43.258215 -15.881293 0.0000138
## Tribune 1-Ottawa -28.169945 -45.484631 -10.855260 0.0006970
## 
## [1] "horizon: 5  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     3   3881  1293.7   7.475 0.000797 ***
## Residuals   28   4846   173.1                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                        diff        lwr         upr     p adj
## Konza-Hays       -28.396335 -46.356501 -10.4361695 0.0009733
## Ottawa-Hays      -21.655408 -43.652029   0.3412123 0.0548559
## Tribune 1-Hays    -7.708099 -24.103412   8.6872145 0.5806119
## Ottawa-Konza       6.740927 -15.255694  28.7375475 0.8365525
## Tribune 1-Konza   20.688237   4.292923  37.0835496 0.0092784
## Tribune 1-Ottawa  13.947310  -6.791303  34.6859227 0.2782110
## 
## [1] "horizon: 5  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## location     3  309.1  103.04   3.558 0.0268 *
## Residuals   28  810.8   28.96                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                       diff        lwr       upr     p adj
## Konza-Hays       -8.631250 -15.977593 -1.284907 0.0165921
## Ottawa-Hays      -4.408750 -13.406146  4.588646 0.5474280
## Tribune 1-Hays   -3.117917  -9.824179  3.588346 0.5893512
## Ottawa-Konza      4.222500  -4.774896 13.219896 0.5820158
## Tribune 1-Konza   5.513333  -1.192929 12.219596 0.1359853
## Tribune 1-Ottawa  1.290833  -7.191993  9.773659 0.9753683
## 
## [1] "horizon: 6  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## location     3  588.3  196.09   4.509 0.0106 *
## Residuals   28 1217.7   43.49                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                          diff        lwr       upr     p adj
## Konza-Hays         0.06592548  -8.936884  9.068734 0.9999971
## Ottawa-Hays        8.00924649  -3.016898 19.035391 0.2182734
## Tribune 1-Hays    -5.53326524 -13.751668  2.685137 0.2773085
## Ottawa-Konza       7.94332102  -3.082823 18.969465 0.2244296
## Tribune 1-Konza   -5.59919071 -13.817593  2.619212 0.2677630
## Tribune 1-Ottawa -13.54251173 -23.938060 -3.146963 0.0070168
## 
## [1] "horizon: 6  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     3   7152  2383.8   14.97 5.25e-06 ***
## Residuals   28   4457   159.2                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                        diff        lwr       upr     p adj
## Konza-Hays        22.252171   5.028255  39.47609 0.0075562
## Ottawa-Hays       34.729856  13.634952  55.82476 0.0006048
## Tribune 1-Hays    -5.407359 -21.130572  10.31585 0.7842918
## Ottawa-Konza      12.477685  -8.617219  33.57259 0.3868301
## Tribune 1-Konza  -27.659530 -43.382743 -11.93632 0.0002642
## Tribune 1-Ottawa -40.137215 -60.025680 -20.24875 0.0000391
## 
## [1] "horizon: 6  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     3  13872    4624   26.24 2.76e-08 ***
## Residuals   28   4934     176                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                       diff       lwr        upr     p adj
## Konza-Hays       -42.82301 -60.94544 -24.700569 0.0000032
## Ottawa-Hays      -59.60772 -81.80308 -37.412353 0.0000003
## Tribune 1-Hays   -13.27018 -29.81363   3.273266 0.1507246
## Ottawa-Konza     -16.78471 -38.98007   5.410652 0.1893857
## Tribune 1-Konza   29.55283  13.00938  46.096272 0.0002162
## Tribune 1-Ottawa  46.33754  25.41155  67.263523 0.0000093
## 
## [1] "horizon: 6  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     3  378.7  126.23   15.38 4.19e-06 ***
## Residuals   28  229.8    8.21                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                    diff        lwr       upr     p adj
## Konza-Hays       -8.105 -12.016077 -4.193923 0.0000262
## Ottawa-Hays      -9.620 -14.410071 -4.829929 0.0000420
## Tribune 1-Hays   -6.660 -10.230308 -3.089692 0.0001207
## Ottawa-Konza     -1.515  -6.305071  3.275071 0.8234107
## Tribune 1-Konza   1.445  -2.125308  5.015308 0.6894539
## Tribune 1-Ottawa  2.960  -1.556123  7.476123 0.2993408
## 
## [1] "horizon: 7  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     2   6819    3409   46.03 2.35e-06 ***
## Residuals   12    889      74                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                   diff       lwr      upr     p adj
## Konza-Hays   -2.884963 -17.27610 11.50617 0.8559384
## Ottawa-Hays  46.302116  30.06672 62.53751 0.0000173
## Ottawa-Konza 49.187078  34.79594 63.57822 0.0000027
## 
## [1] "horizon: 7  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value Pr(>F)
## location     2   1149   574.3   1.889  0.194
## Residuals   12   3648   304.0               
## 1 observation deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                   diff        lwr      upr     p adj
## Konza-Hays   20.900028  -8.254743 50.05480 0.1775047
## Ottawa-Hays  16.834785 -16.056232 49.72580 0.3884811
## Ottawa-Konza -4.065243 -33.220013 25.08953 0.9270128
## 
## [1] "horizon: 7  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     2   9160    4580   36.45 7.98e-06 ***
## Residuals   12   1508     126                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                   diff       lwr       upr     p adj
## Konza-Hays   -32.18964 -50.93527 -13.44401 0.0016875
## Ottawa-Hays  -67.63942 -88.78734 -46.49150 0.0000054
## Ottawa-Konza -35.44978 -54.19541 -16.70415 0.0007742
## 
## [1] "horizon: 7  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     2  452.2  226.12    19.6 0.000166 ***
## Residuals   12  138.5   11.54                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_20_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                    diff       lwr        upr     p adj
## Konza-Hays    -9.426071 -15.10632 -3.7458250 0.0021980
## Ottawa-Hays  -14.777500 -21.18568 -8.3693178 0.0001351
## Ottawa-Konza  -5.351429 -11.03168  0.3288179 0.0654790

#20 (trt) ANOVA and TukeyHSD test for all the combinations for 20-minutes methods

aggregate_mean_trt <- function(select_variable, aggregate_size, aggregate_size_conversion){
  subset_data <- agg[, select_variable]
  subset_data_1 <- gather(subset_data, aggregate_size , value, - Treatment, - horizon)
  subset_data_1$aggregate_size <- factor(subset_data_1$aggregate_size, 
                                       levels = aggregate_size)
  subset_data_1$aggregate_size <- plyr::mapvalues(subset_data_1$aggregate_size, 
                                                from=aggregate_size, 
                                                to=aggregate_size_conversion)
  return (subset_data_1)}


method_20_anova <- aggregate_mean_trt(c("Treatment", "horizon","20wsa2000", 
                                    "20wsa250", "20wsa53", "20wsa20"),
                                  c("20wsa2000", "20wsa250", "20wsa53", "20wsa20"),
                                  c("8mm-2mm","2mm-250um","250um-53um", "53-20um"))
for (j in 1:7){
  for (i in c("8mm-2mm","2mm-250um","250um-53um", "53-20um")){
    anova_one_way <- aov(value~Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
    print(paste("horizon:", j, " aggregate size: ", i))
    print(summary(anova_one_way))
    print(TukeyHSD(anova_one_way))}}
## [1] "horizon: 1  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2   3621  1810.7   26.71 2.65e-07 ***
## Residuals   29   1966    67.8                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff       lwr      upr     p adj
## EA-AG  6.500537 -2.780679 15.78175 0.2114758
## NP-AG 23.949712 15.648341 32.25108 0.0000002
## NP-EA 17.449175  8.167960 26.73039 0.0001967
## 
## [1] "horizon: 1  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Treatment    2  681.5   340.8   3.187 0.0561 .
## Residuals   29 3101.0   106.9                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff        lwr       upr     p adj
## EA-AG -1.812328 -13.468699  9.844042 0.9221618
## NP-AG  8.696664  -1.729111 19.122439 0.1160977
## NP-EA 10.508992  -1.147378 22.165363 0.0834418
## 
## [1] "horizon: 1  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2   6250  3125.1   19.45 4.39e-06 ***
## Residuals   29   4660   160.7                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff        lwr       upr     p adj
## EA-AG   6.21554  -8.073402  20.50448 0.5372980
## NP-AG -25.95051 -38.730924 -13.17009 0.0000706
## NP-EA -32.16605 -46.454988 -17.87710 0.0000157
## 
## [1] "horizon: 1  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## Treatment    2  119.3   59.67   5.654 0.00844 **
## Residuals   29  306.0   10.55                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff       lwr        upr     p adj
## EA-AG -1.063333 -4.725215  2.5985486 0.7554161
## NP-AG -4.322500 -7.597787 -1.0472132 0.0077864
## NP-EA -3.259167 -6.921049  0.4027153 0.0884050
## 
## [1] "horizon: 2  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2   2818    1409   34.35 2.24e-08 ***
## Residuals   29   1189      41                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff       lwr       upr     p adj
## EA-AG  2.102042 -5.116609  9.320693 0.7542359
## NP-AG 20.150130 13.693572 26.606687 0.0000000
## NP-EA 18.048088 10.829437 25.266739 0.0000029
## 
## [1] "horizon: 2  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value Pr(>F)
## Treatment    2    489   244.7   0.987  0.385
## Residuals   29   7193   248.0               
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff       lwr       upr     p adj
## EA-AG -10.081275 -27.83393  7.671375 0.3528573
## NP-AG  -3.567849 -19.44630 12.310604 0.8447833
## NP-EA   6.513426 -11.23922 24.266077 0.6408508
## 
## [1] "horizon: 2  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2   4339  2169.3   9.401 0.000713 ***
## Residuals   29   6692   230.8                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff         lwr        upr     p adj
## EA-AG  17.85798   0.7344178  34.981535 0.0395974
## NP-AG -12.20594 -27.5217193   3.109833 0.1382314
## NP-EA -30.06392 -47.1874776 -12.940361 0.0004562
## 
## [1] "horizon: 2  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Treatment    2  65.26   32.63   4.481 0.0202 *
## Residuals   29 211.18    7.28                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff        lwr        upr     p adj
## EA-AG  3.1537500  0.1118929  6.1956071 0.0409486
## NP-AG -0.2666667 -2.9873864  2.4540530 0.9682515
## NP-EA -3.4204167 -6.4622738 -0.3785596 0.0250264
## 
## [1] "horizon: 3  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2   3719  1859.4   95.47 1.74e-13 ***
## Residuals   29    565    19.5                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff       lwr       upr     p adj
## EA-AG  1.700825 -3.273864  6.675514 0.6789277
## NP-AG 22.906298 18.456801 27.355795 0.0000000
## NP-EA 21.205473 16.230784 26.180162 0.0000000
## 
## [1] "horizon: 3  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2  793.9   397.0   9.182 0.000814 ***
## Residuals   29 1253.7    43.2                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff        lwr       upr     p adj
## EA-AG -10.456376 -17.867979 -3.044773 0.0043968
## NP-AG   1.807655  -4.821484  8.436794 0.7806286
## NP-EA  12.264031   4.852428 19.675634 0.0008969
## 
## [1] "horizon: 3  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2   5246    2623   19.01 5.31e-06 ***
## Residuals   29   4002     138                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff        lwr        upr     p adj
## EA-AG  15.39491   2.153184  28.636629 0.0200646
## NP-AG -17.24724 -29.090998  -5.403484 0.0032894
## NP-EA -32.64215 -45.883870 -19.400425 0.0000037
## 
## [1] "horizon: 3  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## Treatment    2  219.8  109.91   7.733 0.00203 **
## Residuals   29  412.2   14.21                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##          diff        lwr       upr     p adj
## EA-AG  5.7125   1.462752  9.962248 0.0066880
## NP-AG -0.6175  -4.418590  3.183590 0.9153566
## NP-EA -6.3300 -10.579748 -2.080252 0.0026545
## 
## [1] "horizon: 4  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value  Pr(>F)    
## Treatment    2   2595  1297.5   34.27 2.3e-08 ***
## Residuals   29   1098    37.9                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff       lwr      upr     p adj
## EA-AG  1.686342 -5.249866  8.62255 0.8209832
## NP-AG 19.226607 13.022674 25.43054 0.0000001
## NP-EA 17.540266 10.604058 24.47647 0.0000024
## 
## [1] "horizon: 4  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value Pr(>F)
## Treatment    2    348   174.2   0.757  0.478
## Residuals   29   6673   230.1               
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff       lwr       upr     p adj
## EA-AG -8.397966 -25.49752  8.701585 0.4552859
## NP-AG -4.500802 -19.79511 10.793501 0.7497695
## NP-EA  3.897164 -13.20239 20.996714 0.8407164
## 
## [1] "horizon: 4  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Treatment    2   1679   839.7   3.152 0.0577 .
## Residuals   29   7727   266.4                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff        lwr        upr     p adj
## EA-AG  10.479941  -7.920025 28.8799066 0.3507592
## NP-AG  -8.202835 -24.660265  8.2545942 0.4449924
## NP-EA -18.682776 -37.082742 -0.2828106 0.0460211
## 
## [1] "horizon: 4  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Treatment    2   84.6   42.31   3.618 0.0396 *
## Residuals   29  339.2   11.70                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##           diff        lwr         upr     p adj
## EA-AG  3.53125 -0.3238005  7.38630047 0.0775688
## NP-AG -0.40500 -3.8530620  3.04306196 0.9547470
## NP-EA -3.93625 -7.7913005 -0.08119953 0.0446205
## 
## [1] "horizon: 5  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2  829.9   415.0   20.38 2.97e-06 ***
## Residuals   29  590.6    20.4                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff       lwr       upr     p adj
## EA-AG  2.458852 -2.628270  7.545974 0.4663475
## NP-AG 11.317272  6.767211 15.867332 0.0000032
## NP-EA  8.858420  3.771298 13.945541 0.0005024
## 
## [1] "horizon: 5  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value Pr(>F)
## Treatment    2    709   354.3    1.27  0.296
## Residuals   29   8092   279.0               
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff        lwr       upr     p adj
## EA-AG -9.717918 -28.547894  9.112057 0.4205451
## NP-AG  1.947681 -14.894361 18.789723 0.9561002
## NP-EA 11.665599  -7.164376 30.495575 0.2920624
## 
## [1] "horizon: 5  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value Pr(>F)
## Treatment    2   1228   614.1   2.375  0.111
## Residuals   29   7499   258.6               
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff       lwr       upr     p adj
## EA-AG  11.894953  -6.23213 30.022037 0.2532799
## NP-AG  -3.797416 -20.01077 12.415940 0.8326308
## NP-EA -15.692369 -33.81945  2.434714 0.0996956
## 
## [1] "horizon: 5  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2  472.7  236.35   10.59 0.000352 ***
## Residuals   29  647.3   22.32                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##              diff        lwr       upr     p adj
## EA-AG  8.90916667   3.583777 14.234556 0.0007942
## NP-AG  0.06666667  -4.696507  4.829840 0.9993415
## NP-EA -8.84250000 -14.167889 -3.517111 0.0008633
## 
## [1] "horizon: 6  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value Pr(>F)
## Treatment    2  250.2  125.09   2.332  0.115
## Residuals   29 1555.8   53.65               
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff        lwr       upr     p adj
## EA-AG -4.339840 -12.596259  3.916578 0.4076048
## NP-AG  2.879720  -4.505045 10.264486 0.6055966
## NP-EA  7.219561  -1.036858 15.475979 0.0955130
## 
## [1] "horizon: 6  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## Treatment    2   3474  1736.8   6.191 0.00577 **
## Residuals   29   8135   280.5                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff         lwr       upr     p adj
## EA-AG -26.792994 -45.6727712 -7.913217 0.0041700
## NP-AG  -8.790734 -25.6773197  8.095852 0.4144368
## NP-EA  18.002260  -0.8775165 36.882037 0.0639460
## 
## [1] "horizon: 6  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2   8629    4315    12.3 0.000136 ***
## Residuals   29  10176     351                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff        lwr       upr     p adj
## EA-AG  41.463829  20.347735  62.57992 0.0001114
## NP-AG   9.495237  -9.391571  28.38205 0.4389583
## NP-EA -31.968592 -53.084686 -10.85250 0.0022653
## 
## [1] "horizon: 6  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Treatment    2  127.2    63.6   3.832 0.0334 *
## Residuals   29  481.3    16.6                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff        lwr      upr     p adj
## EA-AG  5.107083  0.5148253 9.699341 0.0268585
## NP-AG  2.560833 -1.5466072 6.668274 0.2877193
## NP-EA -2.546250 -7.1385081 2.046008 0.3697701
## 
## [1] "horizon: 7  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value Pr(>F)
## Treatment    2   2051  1025.3   2.175  0.156
## Residuals   12   5657   471.4               
## 1 observation deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff       lwr      upr     p adj
## EA-AG -21.886480 -57.35695 13.58399 0.2650341
## NP-AG -25.245852 -64.45994 13.96823 0.2388053
## NP-EA  -3.359372 -47.59882 40.88008 0.9776705
## 
## [1] "horizon: 7  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## Treatment    2   2994  1496.8   9.963 0.00282 **
## Residuals   12   1803   150.2                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff       lwr       upr     p adj
## EA-AG -27.442525 -47.46727 -7.417785 0.0085407
## NP-AG -29.409482 -51.54767 -7.271299 0.0104375
## NP-EA  -1.966957 -26.94220 23.008283 0.9760051
## 
## [1] "horizon: 7  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2   9303    4651   40.89 4.39e-06 ***
## Residuals   12   1365     114                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff       lwr       upr     p adj
## EA-AG  55.75393  38.32857 73.179293 0.0000054
## NP-AG  39.13602  19.87156 58.400479 0.0004210
## NP-EA -16.61791 -38.35116  5.115329 0.1449902
## 
## [1] "horizon: 7  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2  565.9  282.94   136.7 5.52e-09 ***
## Residuals   12   24.8    2.07                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_20_anova, horizon == j & aggregate_size == i))
## 
## $Treatment
##           diff       lwr       upr     p adj
## EA-AG 13.89375 11.543461 16.244039 0.0000000
## NP-AG  9.24625  6.647908 11.844592 0.0000017
## NP-EA -4.64750 -7.578825 -1.716175 0.0030957

5 minute aggregate graphs by location

## `summarise()` regrouping output by 'horizon', 'location' (override with `.groups` argument)

5 minute aggregate graphs by treatment

## `summarise()` regrouping output by 'horizon', 'Treatment' (override with `.groups` argument)

#5 (loc) ANOVA and TukeyHSD test for all the combinations for 5-minutes methods

aggregate_mean_5_loc <- function(select_variable, aggregate_size, aggregate_size_conversion){
  subset_data <- agg[, select_variable]
  subset_data_1 <- gather(subset_data, aggregate_size , value, - location, - horizon)
  subset_data_1$aggregate_size <- factor(subset_data_1$aggregate_size, 
                                       levels = aggregate_size)
  subset_data_1$aggregate_size <- plyr::mapvalues(subset_data_1$aggregate_size, 
                                                from=aggregate_size, 
                                                to=aggregate_size_conversion)
  return (subset_data_1)}


#ANOVA and TukeyHSD test for all the combinations for 5-minutes methods
method_5_anova_loc <- aggregate_mean_5_loc(c("location", "horizon","5wsa2000", 
                                   "5wsa250", "5wsa53", "5wsa20"),
                                 c("5wsa2000", "5wsa250", "5wsa53", "5wsa20"),
                                 c("8mm-2mm","2mm-250um","250um-53um", "53-20um"))
for (j in 1:4){
  for (i in c("8mm-2mm","2mm-250um","250um-53um", "53-20um")){
    anova_one_way <- aov(value~location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
    print(paste("horizon:", j, " aggregate size: ", i))
    print(summary(anova_one_way))
    print(TukeyHSD(anova_one_way))}}
## [1] "horizon: 1  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     2   3497  1748.5   19.53 7.79e-06 ***
## Residuals   25   2238    89.5                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                       diff       lwr        upr     p adj
## Konza-Hays      -20.837308 -32.62029  -9.054325 0.0004951
## Tribune 1-Hays  -26.440519 -37.19686 -15.684177 0.0000062
## Tribune 1-Konza  -5.603211 -16.35955   5.153132 0.4096972
## 
## [1] "horizon: 1  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## location     2  985.1   492.6   4.684 0.0187 *
## Residuals   25 2629.3   105.2                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                       diff        lwr       upr     p adj
## Konza-Hays        6.573199  -6.198902 19.345299 0.4182060
## Tribune 1-Hays   -7.597493 -19.256772  4.061786 0.2547961
## Tribune 1-Konza -14.170691 -25.829970 -2.511413 0.0150725
## 
## [1] "horizon: 1  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value Pr(>F)
## location     2    255   127.7   0.435  0.652
## Residuals   25   7334   293.4               
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                     diff       lwr      upr     p adj
## Konza-Hays      3.496508 -17.83510 24.82812 0.9125334
## Tribune 1-Hays  7.235451 -12.23755 26.70846 0.6295862
## Tribune 1-Konza 3.738943 -15.73406 23.21195 0.8821366
## 
## [1] "horizon: 1  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## location     2  429.1  214.57   6.859 0.00422 **
## Residuals   25  782.1   31.28                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                       diff        lwr        upr     p adj
## Konza-Hays      -10.010523 -16.976428 -3.0446182 0.0039867
## Tribune 1-Hays   -7.036667 -13.395639 -0.6776947 0.0280183
## Tribune 1-Konza   2.973856  -3.385116  9.3328283 0.4845412
## 
## [1] "horizon: 2  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## location     2   2563  1281.5    7.42 0.00295 **
## Residuals   25   4318   172.7                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                       diff       lwr       upr     p adj
## Konza-Hays      -13.263304 -29.63034  3.103734 0.1285425
## Tribune 1-Hays  -23.098066 -38.03906 -8.157073 0.0020268
## Tribune 1-Konza  -9.834762 -24.77576  5.106231 0.2481883
## 
## [1] "horizon: 2  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     2   2136    1068   9.541 0.000834 ***
## Residuals   25   2799     112                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                      diff        lwr       upr     p adj
## Konza-Hays        4.97768  -8.199663 18.155023 0.6200864
## Tribune 1-Hays  -14.74685 -26.776068 -2.717641 0.0141770
## Tribune 1-Konza -19.72453 -31.753748 -7.695322 0.0011227
## 
## [1] "horizon: 2  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## location     2   1377   688.3   2.557 0.0976 .
## Residuals   25   6730   269.2                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                       diff       lwr       upr     p adj
## Konza-Hays      -11.685566 -32.11933  8.748202 0.3439830
## Tribune 1-Hays    5.162007 -13.49139 23.815400 0.7718435
## Tribune 1-Konza  16.847573  -1.80582 35.500966 0.0822182
## 
## [1] "horizon: 2  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     2 275.89  137.95   49.99 1.84e-09 ***
## Residuals   25  68.99    2.76                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                      diff        lwr       upr    p adj
## Konza-Hays      -8.301250 -10.370119 -6.232381 0.00e+00
## Tribune 1-Hays  -3.959167  -5.847777 -2.070556 6.07e-05
## Tribune 1-Konza  4.342083   2.453473  6.230694 1.68e-05
## 
## [1] "horizon: 3  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## location     2   1058   528.9   3.307 0.0532 .
## Residuals   25   3998   159.9                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                       diff       lwr        upr     p adj
## Konza-Hays       -8.482561 -24.23238  7.2672585 0.3862080
## Tribune 1-Hays  -14.837296 -29.21485 -0.4597443 0.0421606
## Tribune 1-Konza  -6.354736 -20.73229  8.0228165 0.5223906
## 
## [1] "horizon: 3  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## location     2   2520  1260.1   7.418 0.00296 **
## Residuals   25   4247   169.9                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                       diff        lwr        upr     p adj
## Konza-Hays        6.410293  -9.821489 22.6420753 0.5937212
## Tribune 1-Hays  -15.330141 -30.147662 -0.5126187 0.0415705
## Tribune 1-Konza -21.740434 -36.557956 -6.9229120 0.0033099
## 
## [1] "horizon: 3  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## location     2   1268   634.2   3.255 0.0554 .
## Residuals   25   4872   194.9                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                       diff         lwr       upr     p adj
## Konza-Hays      -11.426191 -28.8117014  5.959319 0.2491947
## Tribune 1-Hays    4.718618 -11.1521085 20.589345 0.7419968
## Tribune 1-Konza  16.144810   0.2740826 32.015536 0.0456171
## 
## [1] "horizon: 3  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value  Pr(>F)    
## location     2 237.28  118.64   69.03 6.6e-11 ***
## Residuals   25  42.96    1.72                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                      diff       lwr       upr    p adj
## Konza-Hays      -7.657500 -9.290168 -6.024832 0.00e+00
## Tribune 1-Hays  -4.459583 -5.949998 -2.969168 2.00e-07
## Tribune 1-Konza  3.197917  1.707502  4.688332 4.43e-05
## 
## [1] "horizon: 4  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## location     2    847   423.6   3.321 0.0526 .
## Residuals   25   3188   127.5                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                       diff        lwr        upr     p adj
## Konza-Hays        9.068068  -4.996731 23.1328674 0.2618106
## Tribune 1-Hays   -4.159653 -16.998999  8.6796936 0.7022484
## Tribune 1-Konza -13.227721 -26.067067 -0.3883746 0.0425540
## 
## [1] "horizon: 4  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## location     2  520.8  260.38   3.012 0.0673 .
## Residuals   25 2161.0   86.44                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                     diff        lwr        upr     p adj
## Konza-Hays       3.05121  -8.527848 14.6302674 0.7905186
## Tribune 1-Hays  -6.87156 -17.441745  3.6986248 0.2563495
## Tribune 1-Konza -9.92277 -20.492955  0.6474149 0.0687285
## 
## [1] "horizon: 4  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     2   2385  1192.4   9.961 0.000659 ***
## Residuals   25   2993   119.7                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                      diff          lwr         upr     p adj
## Konza-Hays      -24.41496 -38.04140000 -10.7885205 0.0004266
## Tribune 1-Hays  -11.96074 -24.39992127   0.4784402 0.0611397
## Tribune 1-Konza  12.45422   0.01503898  24.8934004 0.0496813
## 
## [1] "horizon: 4  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## location     2  353.0  176.48     173 2.27e-15 ***
## Residuals   25   25.5    1.02                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ location, data = filter(method_5_anova_loc, horizon == j & aggregate_size == i))
## 
## $location
##                      diff         lwr       upr     p adj
## Konza-Hays      -8.523750 -9.78156876 -7.265931 0.0000000
## Tribune 1-Hays  -7.277083 -8.42530951 -6.128857 0.0000000
## Tribune 1-Konza  1.246667  0.09844049  2.394893 0.0314521

#5 (trt) ANOVA and TukeyHSD test for all the combinations for 20-minutes methods

aggregate_mean_5_trt <- function(select_variable, aggregate_size, aggregate_size_conversion){
  subset_data <- agg[, select_variable]
  subset_data_1 <- gather(subset_data, aggregate_size , value, - Treatment, - horizon)
  subset_data_1$aggregate_size <- factor(subset_data_1$aggregate_size, 
                                       levels = aggregate_size)
  subset_data_1$aggregate_size <- plyr::mapvalues(subset_data_1$aggregate_size, 
                                                from=aggregate_size, 
                                                to=aggregate_size_conversion)
  return (subset_data_1)}


#ANOVA and TukeyHSD test for all the combinations for 5-minutes methods
method_5_anova_trt <- aggregate_mean_5_trt(c("Treatment", "horizon","5wsa2000", 
                                   "5wsa250", "5wsa53", "5wsa20"),
                                 c("5wsa2000", "5wsa250", "5wsa53", "5wsa20"),
                                 c("8mm-2mm","2mm-250um","250um-53um", "53-20um"))
for (j in 1:4){
  for (i in c("8mm-2mm","2mm-250um","250um-53um", "53-20um")){
    anova_one_way <- aov(value~Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
    print(paste("horizon:", j, " aggregate size: ", i))
    print(summary(anova_one_way))
    print(TukeyHSD(anova_one_way))}}
## [1] "horizon: 1  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## Treatment    2   2193  1096.6   7.741 0.00242 **
## Residuals   25   3542   141.7                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##           diff       lwr      upr     p adj
## EA-AG 13.30569 -1.517590 28.12896 0.0845261
## NP-AG 21.36910  7.837358 34.90083 0.0016451
## NP-EA  8.06341 -5.468327 21.59515 0.3153047
## 
## [1] "horizon: 1  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## Treatment    2   1173   586.6   6.007 0.00741 **
## Residuals   25   2441    97.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff       lwr      upr     p adj
## EA-AG  8.816303 -3.490631 21.12324 0.1953121
## NP-AG 15.621890  4.387248 26.85653 0.0053032
## NP-EA  6.805587 -4.429055 18.04023 0.3039559
## 
## [1] "horizon: 1  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2   5599  2799.6   35.16 5.42e-08 ***
## Residuals   25   1990    79.6                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff       lwr        upr     p adj
## EA-AG -14.56436 -25.67689  -3.451826 0.0085936
## NP-AG -33.60375 -43.74806 -23.459441 0.0000000
## NP-EA -19.03939 -29.18370  -8.895083 0.0002474
## 
## [1] "horizon: 1  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value Pr(>F)
## Treatment    2  184.1   92.05    2.24  0.127
## Residuals   25 1027.1   41.09               
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff        lwr       upr     p adj
## EA-AG  5.4900000  -2.492887 13.472887 0.2202123
## NP-AG -0.2990987  -7.586444  6.988246 0.9942558
## NP-EA -5.7890987 -13.076444  1.498246 0.1383580
## 
## [1] "horizon: 2  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2   3048  1524.2   9.944 0.000665 ***
## Residuals   25   3832   153.3                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff        lwr      upr     p adj
## EA-AG  1.462911 -13.956415 16.88224 0.9697201
## NP-AG 21.786625   7.710771 35.86248 0.0020034
## NP-EA 20.323714   6.247860 34.39957 0.0038232
## 
## [1] "horizon: 2  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Treatment    2    851   425.3   2.603  0.094 .
## Residuals   25   4084   163.4                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff       lwr      upr     p adj
## EA-AG -0.9942103 -16.91295 14.92453 0.9867538
## NP-AG 10.6140179  -3.91774 25.14578 0.1839199
## NP-EA 11.6082282  -2.92353 26.13999 0.1355850
## 
## [1] "horizon: 2  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2   5546  2773.0   27.07 5.54e-07 ***
## Residuals   25   2561   102.4                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff        lwr       upr     p adj
## EA-AG   8.836456  -3.767556  21.44047 0.2083212
## NP-AG -23.208687 -34.714522 -11.70285 0.0001007
## NP-EA -32.045143 -43.550978 -20.53931 0.0000008
## 
## [1] "horizon: 2  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Treatment    2  88.92   44.46   4.342 0.0241 *
## Residuals   25 255.97   10.24                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff        lwr        upr     p adj
## EA-AG  4.1112500  0.1261753  8.0963247 0.0422320
## NP-AG  0.2929167 -3.3449421  3.9307755 0.9780887
## NP-EA -3.8183333 -7.4561921 -0.1804745 0.0383294
## 
## [1] "horizon: 3  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2   3018  1508.9   18.51 1.17e-05 ***
## Residuals   25   2038    81.5                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff       lwr      upr     p adj
## EA-AG  1.592593 -9.652576 12.83776 0.9338855
## NP-AG 21.739133 11.473745 32.00452 0.0000530
## NP-EA 20.146540  9.881152 30.41193 0.0001429
## 
## [1] "horizon: 3  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value Pr(>F)
## Treatment    2    512   256.1   1.023  0.374
## Residuals   25   6255   250.2               
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##            diff       lwr       upr     p adj
## EA-AG  2.946630 -16.75254 22.645797 0.9265598
## NP-AG -6.870316 -24.85311 11.112481 0.6134740
## NP-EA -9.816946 -27.79974  8.165852 0.3766800
## 
## [1] "horizon: 3  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value Pr(>F)   
## Treatment    2   2225  1112.7   7.106 0.0036 **
## Residuals   25   3915   156.6                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff       lwr       upr     p adj
## EA-AG   1.769878 -13.81479 17.354543 0.9569254
## NP-AG -17.079298 -31.30609 -2.852510 0.0164322
## NP-EA -18.849176 -33.07596 -4.622388 0.0078885
## 
## [1] "horizon: 3  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Treatment    2  71.76   35.88   4.303 0.0248 *
## Residuals   25 208.48    8.34                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff        lwr       upr     p adj
## EA-AG  3.9575000  0.3610273 7.5539727 0.0290002
## NP-AG  0.8258333 -2.4572820 4.1089487 0.8070349
## NP-EA -3.1316667 -6.4147820 0.1514487 0.0636064
## 
## [1] "horizon: 4  aggregate size:  8mm-2mm"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment    2   2422  1210.9   18.76 1.06e-05 ***
## Residuals   25   1614    64.6                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff       lwr      upr     p adj
## EA-AG  0.5042713 -9.502054 10.51060 0.9913538
## NP-AG 19.0411966  9.906713 28.17568 0.0000655
## NP-EA 18.5369254  9.402442 27.67141 0.0000932
## 
## [1] "horizon: 4  aggregate size:  2mm-250um"
##             Df Sum Sq Mean Sq F value Pr(>F)   
## Treatment    2  827.9   413.9   5.582 0.0099 **
## Residuals   25 1853.9    74.2                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff       lwr       upr     p adj
## EA-AG  -9.676279 -20.40103  1.048468 0.0826089
## NP-AG -12.969167 -22.75948 -3.178857 0.0078986
## NP-EA  -3.292888 -13.08320  6.497422 0.6835137
## 
## [1] "horizon: 4  aggregate size:  250um-53um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Treatment    2   1050   524.9   3.032 0.0662 .
## Residuals   25   4328   173.1                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##             diff        lwr        upr     p adj
## EA-AG  10.272730  -6.113579 26.6590388 0.2805683
## NP-AG  -4.430402 -19.388987 10.5281825 0.7436685
## NP-EA -14.703132 -29.661717  0.2554525 0.0547009
## 
## [1] "horizon: 4  aggregate size:  53-20um"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Treatment    2  71.03   35.51   2.888 0.0744 .
## Residuals   25 307.43   12.30                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = value ~ Treatment, data = filter(method_5_anova_trt, horizon == j & aggregate_size == i))
## 
## $Treatment
##          diff        lwr      upr     p adj
## EA-AG  4.2125 -0.1548464 8.579846 0.0601956
## NP-AG  2.1900 -1.7968235 6.176824 0.3723002
## NP-EA -2.0225 -6.0093235 1.964324 0.4283011

#MWD 20 & 5 by location

mean_se_fx_mwd_loc <- function(select_variable, aggregate_size, aggregate_size_conversion){
  subset_data <- agg[, select_variable]
  subset_data_1 <- gather(subset_data, aggregate_size , value, - location, - horizon)
  subset_data_1$aggregate_size <- factor(subset_data_1$aggregate_size, 
                                         levels = aggregate_size)
  subset_data_1$aggregate_size <- plyr::mapvalues(subset_data_1$aggregate_size, 
                                                  from=aggregate_size, 
                                                  to=aggregate_size_conversion)
  se <- function(x, na.rm=TRUE) {
    if (na.rm) x <- na.omit(x)
    sqrt(var(x)/length(x))
  }
  subset_data_2 <- subset_data_1 %>% group_by(horizon, location, aggregate_size) %>%
    summarize(mean_data = mean(value, na.rm = TRUE),
              standard_error = se(value))
   #Reposition location labels
  subset_data_2$location <- factor(subset_data_2$location, levels = c("Tribune 1", "Hays", "Konza", "Ottawa")) 
  return(subset_data_2)
}

#the color palette for the locations
colsloc <- c( "Tribune 1" = "red", "Hays" = "yellow", "Konza" = "green", "Ottawa" = "deepskyblue")

method_mwd_loc <- mean_se_fx_mwd_loc(c("location", "horizon","20mwd", "5mwd"),
                        c("20mwd", "5mwd"),
                        c("20", "5"))
## `summarise()` regrouping output by 'horizon', 'location' (override with `.groups` argument)
ggplot(data=method_mwd_loc, aes(x=aggregate_size, y=mean_data, fill = location)) + 
  geom_bar(position=position_dodge(), stat="identity", colour = "black") +
  geom_errorbar(aes(ymin=mean_data-standard_error, ymax=mean_data+standard_error),
                width=.2,                    # Width of the error bars
                position=position_dodge(.9)) + ylab("Mean value") + 
  scale_y_continuous(limits=c(0,3)) +  facet_wrap(~horizon, scales='free')  + 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_line(colour = "black"),
        legend.position="top",
        panel.border = element_rect(colour = "black", fill=NA, size=0.5),
        strip.background=element_rect(size=0.5, colour = "black"),
        axis.text.x=element_text(colour="black")) + xlab("Method") + 
        ylab("Mean Weight Diameter (mm)") + scale_fill_manual(values = colsloc)
## Warning: Removed 16 rows containing missing values (geom_bar).

#MWD 20 & 5 by treatment

mean_se_fx_mwd_trt <- function(select_variable, aggregate_size, aggregate_size_conversion){
  subset_data <- agg[, select_variable]
  subset_data_1 <- gather(subset_data, aggregate_size , value, - Treatment, - horizon)
  subset_data_1$aggregate_size <- factor(subset_data_1$aggregate_size, 
                                         levels = aggregate_size)
  subset_data_1$aggregate_size <- plyr::mapvalues(subset_data_1$aggregate_size, 
                                                  from=aggregate_size, 
                                                  to=aggregate_size_conversion)
  se <- function(x, na.rm=TRUE) {
    if (na.rm) x <- na.omit(x)
    sqrt(var(x)/length(x))
  }
  subset_data_2 <- subset_data_1 %>% group_by(horizon, Treatment, aggregate_size) %>%
    summarize(mean_data = mean(value, na.rm = TRUE),
              standard_error = se(value))
  return(subset_data_2)
}

#the color palette for the Treatments
colstrt <- c( "AG" = "red", "EA" = "deepskyblue", "NP" = "green")

method_mwd_trt <- mean_se_fx_mwd_trt(c("Treatment", "horizon","20mwd", "5mwd"),
                        c("20mwd", "5mwd"),
                        c("20", "5"))
## `summarise()` regrouping output by 'horizon', 'Treatment' (override with `.groups` argument)
ggplot(data=method_mwd_trt, aes(x=aggregate_size, y=mean_data, fill = Treatment)) + 
  geom_bar(position=position_dodge(), stat="identity", colour = "black") +
  geom_errorbar(aes(ymin=mean_data-standard_error, ymax=mean_data+standard_error),
                width=.2,                    # Width of the error bars
                position=position_dodge(.9)) + ylab("Mean value") + 
  scale_y_continuous(limits=c(0,3)) +  facet_wrap(~horizon, scales='free')  + 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_line(colour = "black"),
        legend.position="top",
        panel.border = element_rect(colour = "black", fill=NA, size=0.5),
        strip.background=element_rect(size=0.5, colour = "black"),
        axis.text.x=element_text(colour="black")) + xlab("Method") + 
        ylab("Mean Weight Diameter (mm)") + scale_fill_manual(values = colstrt)
## Warning: Removed 9 rows containing missing values (geom_bar).

#NRCS graphs by location

## `summarise()` regrouping output by 'horizon', 'location' (override with `.groups` argument)

#NRCS graphs by treatment

## `summarise()` regrouping output by 'horizon', 'Treatment' (override with `.groups` argument)

#Density plots to see normal distribution #Pearson Correlation and Coefficient of Determination

library(tidyverse)
library(readxl)
soil <- read_excel("aggdataset.xlsx")
library(janitor)
## 
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
soil <- soil %>% 
  clean_names()


#density plot of the aggregates (test for normal distribution)
ggplot(soil, aes(x20mwd))+
  geom_density()
## Warning: Removed 1 rows containing non-finite values (stat_density).

ggplot(soil, aes(x5mwd))+
  geom_density()
## Warning: Removed 96 rows containing non-finite values (stat_density).

ggplot(soil, aes(nrc_sagg))+
  geom_density()
## Warning: Removed 6 rows containing non-finite values (stat_density).

#Run a pearson correlation test on 20 minute mean weight diameter and NRCS % agg
cor.test(soil$x20mwd, soil$nrc_sagg)
## 
##  Pearson's product-moment correlation
## 
## data:  soil$x20mwd and soil$nrc_sagg
## t = 18.339, df = 200, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7340919 0.8382981
## sample estimates:
##      cor 
## 0.791891
#coefficient of determination (r^2)
tline<-lm(soil$nrc_sagg ~ soil$x20mwd)
summary(tline)$r.squared
## [1] 0.6270914
#Run a pearson correlation test on 5 minute mean weight diameter and NRCS % agg
cor.test(soil$x5mwd, soil$nrc_sagg)
## 
##  Pearson's product-moment correlation
## 
## data:  soil$x5mwd and soil$nrc_sagg
## t = 12.56, df = 107, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6829747 0.8382936
## sample estimates:
##       cor 
## 0.7719101
#coefficient of determination (r^2)
tline<-lm(soil$nrc_sagg ~ soil$x5mwd)
summary(tline)$r.squared
## [1] 0.5958453
#Run a pearson correlation test on 20 minute mean weight diameter and 5 minute mean weight diameter
cor.test(soil$x20mwd, soil$x5mwd)
## 
##  Pearson's product-moment correlation
## 
## data:  soil$x20mwd and soil$x5mwd
## t = 11.953, df = 110, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6578642 0.8225009
## sample estimates:
##      cor 
## 0.751664
#coefficient of determination (r^2)
tline<-lm(soil$x5mwd ~ soil$x20mwd)
summary(tline)$r.squared
## [1] 0.5649987

20mwd and NRCS Scatter plots

library(ggplot2)
library(readxl)
install.packages("janitor")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/4.0'
## (as 'lib' is unspecified)
library(janitor)
soil <- read_excel("aggdataset.xlsx")
soil <- soil %>% 
  clean_names()


#20 minute Mean Weight Diameter vs NRCS Hand Method

soil %>%
ggplot(aes(x=x20mwd, y= nrc_sagg))+
  geom_point(size=.5)+
  labs(x="20 minute method", 
       y="NRCS hand method",
       title="Correlation between 20 minute Mean Weight Diameter vs NRCS Hand Method") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 6 rows containing non-finite values (stat_smooth).
## Warning: Removed 6 rows containing missing values (geom_point).

#One graph by location

soil %>%
ggplot(aes(x=x20mwd, y= nrc_sagg, color=location, shape=location))+
  geom_point(size=1)+
  labs(x="20 minute method", 
       y="NRCS hand method",
       title="Correlation between 20 minute Mean Weight Diameter vs NRCS Hand Method") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 6 rows containing non-finite values (stat_smooth).

## Warning: Removed 6 rows containing missing values (geom_point).

#group by location

soil %>%
ggplot(aes(x=x20mwd, y= nrc_sagg))+
  facet_wrap(~location)+
  labs(x="20 minute method", 
       y="NRCS hand method",
       title="Correlation between 20 minute Mean Weight Diameter vs NRCS Hand Method") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE, color= "black") +
 geom_point(size=.5)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 6 rows containing non-finite values (stat_smooth).

## Warning: Removed 6 rows containing missing values (geom_point).

#one graph group by treatment

soil %>%
ggplot(aes(x=x20mwd, y= nrc_sagg, color=treatment, shape=treatment))+
  geom_point(size=1)+
  labs(x="20 minute method", 
       y="NRCS hand method",
       title="Correlation between 20 minute Mean Weight Diameter vs NRCS Hand Method") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 6 rows containing non-finite values (stat_smooth).

## Warning: Removed 6 rows containing missing values (geom_point).

#group by treatment

soil %>%
ggplot(aes(x=x20mwd, y= nrc_sagg))+
  facet_wrap(~treatment)+
  labs(x="20 minute method", 
       y="NRCS hand method",
       title="Correlation between 20 minute Mean Weight Diameter vs NRCS Hand Method") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE, color= "black") +
 geom_point(size=.5)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 6 rows containing non-finite values (stat_smooth).

## Warning: Removed 6 rows containing missing values (geom_point).

#group by horizon

soil %>%
ggplot(aes(x=x20mwd, y= nrc_sagg))+
  facet_wrap(~horizon)+
  labs(x="20 minute method", 
       y="NRCS hand method",
       title="Correlation between 20 minute Mean Weight Diameter vs NRCS Hand Method") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE, color= "black") +
 geom_point(size=.5)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 6 rows containing non-finite values (stat_smooth).

## Warning: Removed 6 rows containing missing values (geom_point).

20mwd and 5mwd Scatter plots

#remove Ottawa dataset since 5MWD isnt available

soil <- soil %>%
  filter(location!="Ottawa") %>%
  filter(horizon!= c("5", "6", "7"))


#20 minute Mean Weight Diameter vs 5 minute Method

soil %>%
ggplot(aes(x=x20mwd, y= x5mwd))+
  geom_point(size=.5)+
  labs(x="20 minute method", 
       y="5 minute method",
       title="Correlation between 20 minute Mean Weight Diameter vs 5 minute MWD") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 48 rows containing non-finite values (stat_smooth).
## Warning: Removed 48 rows containing missing values (geom_point).

#One graph by location

soil %>%
ggplot(aes(x=x20mwd, y= x5mwd, color=location, shape=location))+
  geom_point(size=1)+
  labs(x="20 minute method", 
       y="5 minute method",
       title="Correlation between 20 minute Mean Weight Diameter vs 5 minute MWD") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 48 rows containing non-finite values (stat_smooth).

## Warning: Removed 48 rows containing missing values (geom_point).

#group by location

soil %>%
ggplot(aes(x=x20mwd, y= x5mwd))+
  facet_wrap(~location)+
  labs(x="20 minute method", 
       y="5 minute method",
       title="Correlation between 20 minute Mean Weight Diameter vs 5 minute MWD") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE, color= "black") +
 geom_point(size=.5)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 48 rows containing non-finite values (stat_smooth).

## Warning: Removed 48 rows containing missing values (geom_point).

#one graph group by treatment

soil %>%
ggplot(aes(x=x20mwd, y= x5mwd, color=treatment, shape=treatment))+
  geom_point(size=1)+
  labs(x="20 minute method", 
       y="5 minute method",
       title="Correlation between 20 minute Mean Weight Diameter vs 5 minute MWD") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 48 rows containing non-finite values (stat_smooth).

## Warning: Removed 48 rows containing missing values (geom_point).

#group by treatment

soil %>%
ggplot(aes(x=x20mwd, y= x5mwd))+
  facet_wrap(~treatment)+
  labs(x="20 minute method", 
       y="5 minute method",
       title="Correlation between 20 minute Mean Weight Diameter vs 5 minute MWD") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE, color= "black") +
 geom_point(size=.5)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 48 rows containing non-finite values (stat_smooth).

## Warning: Removed 48 rows containing missing values (geom_point).

#group by horizon

soil %>%
ggplot(aes(x=x20mwd, y= x5mwd))+
  facet_wrap(~horizon)+
  labs(x="20 minute method", 
       y="5 minute method",
       title="Correlation between 20 minute Mean Weight Diameter vs 5 minute MWD") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE, color= "black") +
 geom_point(size=.5)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 48 rows containing non-finite values (stat_smooth).

## Warning: Removed 48 rows containing missing values (geom_point).

5mwd and NRCS method Scatter plots

#5 minute Mean Weight Diameter vs NRCS Hand Method

soil %>%
ggplot(aes(x=x5mwd, y= nrc_sagg))+
  geom_point(size=.5)+
  labs(x="5 minute method", 
       y="NRCS hand method",
       title="Correlation between 5 minute Mean Weight Diameter vs NRCS Hand Method") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 51 rows containing non-finite values (stat_smooth).
## Warning: Removed 51 rows containing missing values (geom_point).

#One graph by location

soil %>%
ggplot(aes(x=x5mwd, y= nrc_sagg, color=location, shape=location))+
  geom_point(size=1)+
  labs(x="5 minute method", 
       y="NRCS hand method",
       title="Correlation between 5 minute Mean Weight Diameter vs NRCS Hand Method") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 51 rows containing non-finite values (stat_smooth).

## Warning: Removed 51 rows containing missing values (geom_point).

#group by location

soil %>%
ggplot(aes(x=x5mwd, y= nrc_sagg))+
  facet_wrap(~location)+
  labs(x="5 minute method", 
       y="NRCS hand method",
       title="Correlation between 5 minute Mean Weight Diameter vs NRCS Hand Method") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE, color= "black") +
 geom_point(size=.5)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 51 rows containing non-finite values (stat_smooth).

## Warning: Removed 51 rows containing missing values (geom_point).

#one graph group by treatment

soil %>%
ggplot(aes(x=x5mwd, y= nrc_sagg, color=treatment, shape=treatment))+
  geom_point(size=1)+
  labs(x="5 minute method", 
       y="NRCS hand method",
       title="Correlation between 5 minute Mean Weight Diameter vs NRCS Hand Method") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 51 rows containing non-finite values (stat_smooth).

## Warning: Removed 51 rows containing missing values (geom_point).

#group by treatment

soil %>%
ggplot(aes(x=x5mwd, y= nrc_sagg))+
  facet_wrap(~treatment)+
  labs(x="5 minute method", 
       y="NRCS hand method",
       title="Correlation between 5 minute Mean Weight Diameter vs NRCS Hand Method") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE, color= "black") +
 geom_point(size=.5)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 51 rows containing non-finite values (stat_smooth).

## Warning: Removed 51 rows containing missing values (geom_point).

#group by horizon

soil %>%
ggplot(aes(x=x5mwd, y= nrc_sagg))+
  facet_wrap(~horizon)+
  labs(x="5 minute method", 
       y="NRCS hand method",
       title="Correlation between 5 minute Mean Weight Diameter vs NRCS Hand Method") +
  theme_classic()+
  geom_smooth(method="lm", se=FALSE, color= "black") +
 geom_point(size=.5)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 51 rows containing non-finite values (stat_smooth).

## Warning: Removed 51 rows containing missing values (geom_point).

#Bland-Altman plots

library(BlandAltmanLeh)

nrcs <-as.numeric(soil$nrc_sagg, na.rm=FALSE)
n20mwd <- as.numeric(soil$x20mwd, na.rm=FALSE)
n5mwd <- as.numeric(soil$x5mwd, na.rm=FALSE)

#Bland-Altman Plots for 20 minute Mean Weight Diameter vs NRCS Hand Method

soil %>%
ggplot(aes(x=((x20mwd+nrc_sagg)/2), y= (x20mwd-nrc_sagg)))+
  geom_point(size=.5)+
  labs(x="20 minute method", 
       y="NRCS hand method",
       title="Bland-Altman Plots for 20 minute Mean Weight Diameter vs NRCS Hand Method") +
  theme_classic()
## Warning: Removed 4 rows containing missing values (geom_point).

bland.altman.plot(n20mwd, nrcs, xlab="Means", ylab="Differences", na.rm=FALSE)
## Warning in plot.window(...): "na.rm" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "na.rm" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "na.rm" is not a
## graphical parameter

## Warning in axis(side = side, at = at, labels = labels, ...): "na.rm" is not a
## graphical parameter
## Warning in box(...): "na.rm" is not a graphical parameter
## Warning in title(...): "na.rm" is not a graphical parameter

## NULL
#Bland-Altman Plots for 20 minute Mean Weight Diameter vs 5 minute Method

soil %>%
ggplot(aes(x=((x20mwd+x5mwd)/2), y= (x20mwd-x5mwd)))+
  geom_point(size=.5)+
  labs(x="Means", 
       y="Differences",
       title="Bland-Altman Plots for 20 minute Mean Weight Diameter vs 5 minute Method") +
  theme_classic()
## Warning: Removed 48 rows containing missing values (geom_point).

bland.altman.plot(n20mwd, n5mwd, xlab="Means", ylab="Differences")

## NULL

Correlation Matrices

library(corrplot)

cordatapoints <- soil %>% dplyr::select(-sample_name, -location, -treatment, -startd, -endd, -horizon, -depth, -replication, -x20wsa2000, -x20wsa250, -x20wsa53, -x20wsa20, -x5wsa2000, -x5wsa250, -x5wsa53, -x5wsa20)

cless<-na.omit(cordatapoints) cless cless1 <- cor(cless, method = “pearson”) cless1 colnames(cless1) <- c(“20 minute”, “5 minute”, “NRCS”) rownames(cless1) <- c(“20 minute”, “5 minute”, “NRCS”)

corrplot(cless1, method = “square”, tl.col = “black”, type = “lower”, tl.srt = 45, tl.cex = 0.7)

library(corrr) network_plot(cless1, min_cor=0.2, colors = c(“red”, “green”))

library(ggcorrplot) ggcorrplot(cless1, p.mat = cor_pmat(c1), hc.order=TRUE, type=‘lower’, colors = c(“red”, “green”, “blue”)) library(PerformanceAnalytics) chart.Correlation(cless1, histogram=TRUE)

```