Loading packages

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.2
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2     ✓ purrr   0.3.4
## ✓ tibble  3.0.4     ✓ dplyr   1.0.2
## ✓ tidyr   1.1.2     ✓ stringr 1.4.0
## ✓ readr   1.4.0     ✓ forcats 0.5.0
## Warning: package 'tibble' was built under R version 4.0.2
## Warning: package 'tidyr' was built under R version 4.0.2
## Warning: package 'readr' was built under R version 4.0.2
## Warning: package 'dplyr' was built under R version 4.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(haven)
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 4.0.2
## Loading required package: lattice
## Loading required package: survival
## Warning: package 'survival' was built under R version 4.0.2
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(lavaan)
## This is lavaan 0.6-7
## lavaan is BETA software! Please report any bugs.
library(MplusAutomation)
## Version:  0.8
## We work hard to write this free software. Please help us get credit by citing: 
## 
## Hallquist, M. N. & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural Equation Modeling, 25, 621-638. doi: 10.1080/10705511.2017.1402334.
## 
## -- see citation("MplusAutomation").
library(psych)
## Warning: package 'psych' was built under R version 4.0.2
## 
## Attaching package: 'psych'
## The following object is masked from 'package:lavaan':
## 
##     cor2cov
## The following object is masked from 'package:Hmisc':
## 
##     describe
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(jmRtools)
library(asherR)
library(robumeta)
## Warning: package 'robumeta' was built under R version 4.0.2

Loading data

MTH_132_124_pre_survey <- read_sav("/Volumes/educ/CEPSE/Projects/SchmidtLab/Beymer_Projects/Beymer_Dissertation/Dissertation_Data/MTH_132_124/MTH_132_124_pre_survey_3_27_19.sav")
MTH_132_124_EOC <- read_sav("/Volumes/educ/CEPSE/Projects/SchmidtLab/Beymer_Projects/Beymer_Dissertation/Dissertation_Data/MTH_132_124//MTH_132_124_EOC_3_27_19.sav")
MTH_132_124_post_survey <- read_sav("/Volumes/educ/CEPSE/Projects/SchmidtLab/Beymer_Projects/Beymer_Dissertation/Dissertation_Data/MTH_132_124/MTH_132_124_post_Survey_3_27_19.sav")
MTH_132_124_demographics <- read_sav("/Volumes/educ/CEPSE/Projects/SchmidtLab/Beymer_Projects/Beymer_Dissertation/Dissertation_Data/MTH_132_124/MTH_132_124_demographics_grades_3_27_19.sav")
MTH_132_124_achievement <- read_sav("/Volumes/educ/CEPSE/Projects/SchmidtLab/Beymer_Projects/Beymer_Dissertation/Dissertation_Data/MTH_132_124/MTH_132_124_achievement_3_27_19.sav")
MTH_132_124_grades <- read_sav("/Volumes/educ/CEPSE/Projects/SchmidtLab/Beymer_Projects/Beymer_Dissertation/Dissertation_Data/MTH_132_124/MTH_132_124_course_grades_3_27_19.sav")

MTH_132_124_pre_survey[MTH_132_124_pre_survey$stud_id == "132_728", "participate_eoc"] <- 1

Variable Creation

MTH_132_124_demographics$urm <- ifelse(MTH_132_124_demographics$black == 1 | MTH_132_124_demographics$hispanic == 1, 1 ,0)

MTH_132_124_pre_survey$hs_prep <- composite_mean_maker(MTH_132_124_pre_survey, pre_hs_prep_1, pre_hs_prep_2, pre_hs_prep_3, pre_hs_prep_4,  pre_hs_prep_5)
MTH_132_124_demographics$credits_more_than_15 <- ifelse(MTH_132_124_demographics$Msu_Lt_Atmpt_Hours >= 15, 1, 0)

#Grand mean centering
MTH_132_124_pre_survey$pre_val_overall_z <- scale(MTH_132_124_pre_survey$pre_val_overall) %>% as.numeric()
MTH_132_124_pre_survey$pre_exp_overall_z <- scale(MTH_132_124_pre_survey$pre_exp_overall) %>% as.numeric()
MTH_132_124_pre_survey$hs_prep_z <- scale(MTH_132_124_pre_survey$hs_prep) %>% as.numeric()
MTH_132_124_pre_survey$pre_hours_work_z <- scale(MTH_132_124_pre_survey$pre_hours_work) %>% as.numeric()
MTH_132_124_pre_survey$pre_hours_math_prep_z <- scale(MTH_132_124_pre_survey$pre_hours_math_prep) %>% as.numeric()
MTH_132_124_pre_survey$pre_stem_int_z <- scale(MTH_132_124_pre_survey$pre_stem_int) %>% as.numeric()
MTH_132_124_demographics$Msu_Lt_Atmpt_Hours_z <- scale(MTH_132_124_demographics$Msu_Lt_Atmpt_Hours) %>% as.numeric()
MTH_132_124_achievement$Best_MPS_z <- scale(MTH_132_124_achievement$Best_MPS) %>% as.numeric()
MTH_132_124_pre_survey$pre_cost_te_overall_z <- scale(MTH_132_124_pre_survey$pre_cost_te_overall) %>% as.numeric()
MTH_132_124_pre_survey$pre_cost_oe_overall_z <- scale(MTH_132_124_pre_survey$pre_cost_oe_overall) %>% as.numeric()
MTH_132_124_pre_survey$pre_cost_lv_overall_z <- scale(MTH_132_124_pre_survey$pre_cost_lv_overall) %>% as.numeric()
MTH_132_124_pre_survey$pre_cost_em_overall_z <- scale(MTH_132_124_pre_survey$pre_cost_em_overall) %>% as.numeric()

New data set for graph

Graphs <- c("stud_id", "week", "eoc_cost_te")
Graph<-MTH_132_124_EOC[Graphs]

Joining Data Long

MTH_132_124_all <- left_join(MTH_132_124_EOC, MTH_132_124_pre_survey, by = "stud_id")
MTH_132_124_all <- left_join(MTH_132_124_all, MTH_132_124_post_survey, by = "stud_id")
MTH_132_124_all <- left_join (MTH_132_124_all, MTH_132_124_demographics, by = "stud_id")
MTH_132_124_all <- left_join (MTH_132_124_all, MTH_132_124_achievement, by = "stud_id")
MTH_132_124_all <- left_join (MTH_132_124_all, MTH_132_124_grades, by = "stud_id")

Joining pre, post, demo, and achievement

MTH_132_124_pre_post <- left_join(MTH_132_124_pre_survey, MTH_132_124_post_survey, by = "stud_id")
MTH_132_124_pre_post <- left_join(MTH_132_124_pre_post, MTH_132_124_demographics, by = "stud_id")
MTH_132_124_pre_post <- left_join(MTH_132_124_pre_post, MTH_132_124_achievement, by = "stud_id")

Converting to wide format

MTH_132_124_EOC_wide <- pivot_wider(MTH_132_124_EOC,
                  id_cols = c(stud_id),
                  names_from = week,
                  values_from = c(eoc_activity, eoc_comp, eoc_val, eoc_con,
                                  eoc_int, eoc_future_goals, eoc_conc, 
                                  eoc_hard_work, eoc_enjoy, eoc_happy, 
                                  eoc_confused, eoc_bored, eoc_excited, 
                                  eoc_angry, eoc_anxious, eoc_frustrated,
                                  eoc_cost_te, eoc_cost_oe, eoc_cost_lv, 
                                  eoc_cost_em, eoc_cost_psy, eoc_group, 
                                  eoc_coop, eoc_compete))

Joining Data Long

# MTH_132_124_all_wide <- left_join(MTH_132_124_pre_survey, MTH_132_124_EOC_wide, by = "stud_id")
# MTH_132_124_all_wide <- left_join(MTH_132_124_all_wide, MTH_132_124_post_survey, by = "stud_id")
# MTH_132_124_all_wide <- left_join (MTH_132_124_all_wide, MTH_132_124_demographics, by = "stud_id")
# MTH_132_124_all_wide <- left_join (MTH_132_124_all_wide, MTH_132_124_achievement, by = "stud_id")
# MTH_132_124_all_wide <- left_join (MTH_132_124_all_wide, MTH_132_124_grades, by = "stud_id")

MTH_132_124_all_wide <- left_join(MTH_132_124_EOC_wide, MTH_132_124_pre_survey, by = "stud_id")
MTH_132_124_all_wide <- left_join(MTH_132_124_all_wide, MTH_132_124_post_survey, by = "stud_id")
MTH_132_124_all_wide <- left_join (MTH_132_124_all_wide, MTH_132_124_demographics, by = "stud_id")
MTH_132_124_all_wide <- left_join (MTH_132_124_all_wide, MTH_132_124_achievement, by = "stud_id")
MTH_132_124_all_wide <- left_join (MTH_132_124_all_wide, MTH_132_124_grades, by = "stud_id")

Descriptive Stuff

MTH_132_124_EOC %>% group_by(stud_id) %>% summarise(count=n())
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 429 x 2
##    stud_id count
##    <chr>   <int>
##  1 124_1       6
##  2 124_10      4
##  3 124_100     6
##  4 124_101     7
##  5 124_102     6
##  6 124_103     2
##  7 124_104     9
##  8 124_105     1
##  9 124_106     5
## 10 124_108     1
## # … with 419 more rows

variable creation

MTH_132_124_all_wide$Credits_by_two <- ntile(MTH_132_124_all_wide$Msu_Lt_Atmpt_Hours, 2)

#table(MTH_132_124_all_wide$Credits_by_two, MTH_132_124_all_wide$Msu_Lt_Atmpt_Hours)

MTH_132_124_all_wide$credits_more_than_15 <- ifelse(MTH_132_124_all_wide$Msu_Lt_Atmpt_Hours >= 15, 1, 0)

#table(MTH_132_124_all_wide$credits_more_than_15)

MTH_132_124_all_wide$hs_prep <- composite_mean_maker(MTH_132_124_all_wide, pre_hs_prep_1, pre_hs_prep_2, pre_hs_prep_3, pre_hs_prep_4,  pre_hs_prep_5)

# library(psy)
# hs_prep_reliability <- select(MTH_132_124_pre_survey, pre_hs_prep_1, pre_hs_prep_2, pre_hs_prep_3, pre_hs_prep_4,  pre_hs_prep_5)
# cronbach(hs_prep_reliability)

Centering variables for multilevel analysis

#Group mean centering
MTH_132_124_all$eoc_future_goals_gmc <- group.center(MTH_132_124_all$eoc_future_goals, MTH_132_124_all$stud_id)

Centering for linear models

MTH_132_124_all_wide$pre_val_overall_z <- scale(MTH_132_124_all_wide$pre_val_overall) %>% as.numeric()
MTH_132_124_all_wide$pre_exp_overall_z <- scale(MTH_132_124_all_wide$pre_exp_overall) %>% as.numeric()
MTH_132_124_all_wide$hs_prep_z <- scale(MTH_132_124_all_wide$hs_prep) %>% as.numeric()
MTH_132_124_all_wide$pre_hours_work_z <- scale(MTH_132_124_all_wide$pre_hours_work) %>% as.numeric()
MTH_132_124_all_wide$pre_hours_math_prep_z <- scale(MTH_132_124_all_wide$pre_hours_math_prep) %>% as.numeric()
MTH_132_124_all_wide$pre_stem_int_z <- scale(MTH_132_124_all_wide$pre_stem_int) %>% as.numeric()
MTH_132_124_all_wide$Msu_Lt_Atmpt_Hours_z <- scale(MTH_132_124_all_wide$Msu_Lt_Atmpt_Hours) %>% as.numeric()
MTH_132_124_all_wide$Best_MPS_z <- scale(MTH_132_124_all_wide$Best_MPS) %>% as.numeric()

Joining data for demographics

MTH_132_124_APS_demo <- left_join(MTH_132_124_EOC, MTH_132_124_demographics, by = "stud_id")

Sample Demographics Race, Gender, Class

MTH_132_124_set<-distinct(MTH_132_124_APS_demo, stud_id, gender, ethnicity)
table(MTH_132_124_set$gender)
## 
##   F   M 
## 160 269
table(MTH_132_124_set$ethnicity)
## 
##                      Asian (non-Hispanic) 
##                                        27 
## Black or African American  (non-Hispanic) 
##                                        20 
##                        Hispanic Ethnicity 
##                                        20 
##                             International 
##                                        85 
##                              Not Reported 
##                                         1 
##          Two or more races (non-Hispanic) 
##                                         9 
##                      White (non-Hispanic) 
##                                       267
table(MTH_132_124_set$stud_id)
## 
##   124_1  124_10 124_100 124_101 124_102 124_103 124_104 124_105 124_106 124_108 
##       1       1       1       1       1       1       1       1       1       1 
## 124_109  124_11 124_110 124_111 124_113 124_114 124_118 124_119  124_12 124_121 
##       1       1       1       1       1       1       1       1       1       1 
## 124_123 124_126 124_128  124_13 124_130 124_131 124_132 124_133 124_134 124_135 
##       1       1       1       1       1       1       1       1       1       1 
## 124_136 124_137 124_139  124_14 124_140 124_141 124_142 124_144 124_145 124_147 
##       1       1       1       1       1       1       1       1       1       1 
## 124_149 124_151 124_153 124_155 124_156 124_157 124_159  124_16 124_160 124_161 
##       1       1       1       1       1       1       1       1       1       1 
## 124_162 124_163 124_166 124_167 124_169  124_17 124_171 124_172 124_173 124_175 
##       1       1       1       1       1       1       1       1       1       1 
## 124_176 124_178  124_18 124_181 124_183 124_184 124_187 124_188 124_189 124_191 
##       1       1       1       1       1       1       1       1       1       1 
## 124_192 124_193 124_197 124_198 124_199   124_2  124_20 124_202 124_205 124_206 
##       1       1       1       1       1       1       1       1       1       1 
## 124_210 124_212 124_215 124_216 124_217 124_218 124_219  124_22 124_221 124_224 
##       1       1       1       1       1       1       1       1       1       1 
## 124_226 124_227 124_228 124_230 124_231 124_232 124_233 124_235 124_236 124_237 
##       1       1       1       1       1       1       1       1       1       1 
## 124_238 124_239  124_24 124_240  124_27  124_28   124_3  124_30  124_31  124_32 
##       1       1       1       1       1       1       1       1       1       1 
##  124_36  124_37  124_38   124_4  124_40  124_44  124_46  124_47  124_48   124_5 
##       1       1       1       1       1       1       1       1       1       1 
##  124_50  124_51  124_52  124_53  124_55  124_56  124_57  124_58   124_6  124_60 
##       1       1       1       1       1       1       1       1       1       1 
##  124_61  124_63  124_65  124_66  124_67  124_68  124_69  124_70  124_73  124_74 
##       1       1       1       1       1       1       1       1       1       1 
##  124_76  124_78  124_80  124_81  124_83  124_84  124_85  124_87  124_88   124_9 
##       1       1       1       1       1       1       1       1       1       1 
##  124_90  124_92  124_93  124_94  124_97  124_99  132_10 132_100 132_103 132_104 
##       1       1       1       1       1       1       1       1       1       1 
## 132_108 132_112 132_113 132_117 132_118 132_122 132_123 132_126 132_128  132_13 
##       1       1       1       1       1       1       1       1       1       1 
## 132_130 132_133 132_136 132_139 132_141 132_143 132_144 132_152 132_153 132_154 
##       1       1       1       1       1       1       1       1       1       1 
## 132_155 132_157  132_16 132_161 132_163 132_166 132_169 132_174 132_175 132_176 
##       1       1       1       1       1       1       1       1       1       1 
## 132_178 132_179  132_18 132_181 132_182 132_184 132_186 132_189 132_190 132_196 
##       1       1       1       1       1       1       1       1       1       1 
## 132_197   132_2  132_20 132_201 132_204 132_208 132_210 132_211 132_213 132_214 
##       1       1       1       1       1       1       1       1       1       1 
## 132_217  132_22 132_224 132_226 132_234 132_239  132_24 132_241 132_242 132_243 
##       1       1       1       1       1       1       1       1       1       1 
## 132_249  132_25 132_250 132_256 132_259 132_263 132_266 132_269  132_27 132_273 
##       1       1       1       1       1       1       1       1       1       1 
## 132_276 132_279 132_283 132_286 132_287 132_291 132_293 132_299 132_305 132_307 
##       1       1       1       1       1       1       1       1       1       1 
## 132_312 132_313 132_316 132_318 132_324 132_325 132_329 132_331 132_333 132_334 
##       1       1       1       1       1       1       1       1       1       1 
## 132_336  132_34  132_35 132_350 132_353 132_355 132_356 132_360 132_365  132_37 
##       1       1       1       1       1       1       1       1       1       1 
## 132_372 132_375 132_377 132_378  132_38 132_381 132_384 132_387  132_39 132_390 
##       1       1       1       1       1       1       1       1       1       1 
## 132_391 132_394 132_396 132_399   132_4 132_404  132_41 132_411 132_416 132_420 
##       1       1       1       1       1       1       1       1       1       1 
## 132_421 132_423 132_425 132_427 132_428  132_43 132_431 132_434 132_436 132_438 
##       1       1       1       1       1       1       1       1       1       1 
## 132_440 132_441 132_443 132_444 132_447 132_459  132_46 132_460 132_462 132_463 
##       1       1       1       1       1       1       1       1       1       1 
## 132_465 132_466 132_467 132_469 132_471 132_478 132_480 132_482 132_488  132_49 
##       1       1       1       1       1       1       1       1       1       1 
## 132_493 132_495 132_500 132_502 132_504 132_507  132_51 132_513 132_515 132_517 
##       1       1       1       1       1       1       1       1       1       1 
## 132_518 132_520 132_523 132_524 132_526 132_527  132_53 132_530 132_533 132_534 
##       1       1       1       1       1       1       1       1       1       1 
## 132_535 132_536 132_543 132_546 132_548 132_549 132_555 132_556 132_560  132_57 
##       1       1       1       1       1       1       1       1       1       1 
## 132_570 132_575 132_578 132_579 132_584 132_586 132_587 132_589 132_597 132_601 
##       1       1       1       1       1       1       1       1       1       1 
## 132_604  132_61 132_610 132_612 132_614  132_62 132_627  132_63 132_631 132_637 
##       1       1       1       1       1       1       1       1       1       1 
## 132_638 132_639  132_64 132_640 132_642 132_645 132_646 132_647 132_650 132_652 
##       1       1       1       1       1       1       1       1       1       1 
## 132_656 132_658 132_661 132_668 132_671 132_672 132_675 132_676 132_677 132_678 
##       1       1       1       1       1       1       1       1       1       1 
## 132_679 132_680 132_681 132_682 132_687 132_689 132_691 132_696  132_70 132_703 
##       1       1       1       1       1       1       1       1       1       1 
## 132_707 132_710 132_711 132_712 132_714 132_718 132_719  132_72 132_721 132_724 
##       1       1       1       1       1       1       1       1       1       1 
## 132_725 132_727 132_728 132_729 132_731 132_732 132_740 132_743 132_745 132_747 
##       1       1       1       1       1       1       1       1       1       1 
## 132_748 132_749 132_750 132_751 132_758 132_761 132_762 132_764 132_769 132_770 
##       1       1       1       1       1       1       1       1       1       1 
## 132_772 132_778   132_8  132_82  132_86  132_87  132_89  132_92  132_98 
##       1       1       1       1       1       1       1       1       1
MTH_132_124_set %>% group_by(stud_id) %>% summarise(count=n())
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 429 x 2
##    stud_id count
##    <chr>   <int>
##  1 124_1       1
##  2 124_10      1
##  3 124_100     1
##  4 124_101     1
##  5 124_102     1
##  6 124_103     1
##  7 124_104     1
##  8 124_105     1
##  9 124_106     1
## 10 124_108     1
## # … with 419 more rows

Descriptives

# a<-left_join(MTH_132_124_set, MTH_132_124_pre_survey, by="stud_id")
# describe(a$pre_cost_te_overall)
# describe(a$pre_cost_oe_overall)
# describe(a$pre_cost_lv_overall)
# describe(a$pre_cost_em_overall)
# describe(a$pre_exp_overall)
# describe(a$pre_val_overall)
# 
# b<-left_join(MTH_132_124_set, MTH_132_124_post_survey, by = "stud_id")
# describe(b$post_stem_int)
# 
# d<-left_join(b, MTH_132_124_achievement)
# describe(d$Grade)
# 
# describe(MTH_132_124_EOC$eoc_cost_te)
# describe(MTH_132_124_EOC$eoc_cost_oe)
# describe(MTH_132_124_EOC$eoc_cost_lv)
# describe(MTH_132_124_EOC$eoc_cost_em)

APS Class Level frequencies

# table(a$pre_class_code)
# table(a$pre_class_level)

APS reliabilities

# library(psy)
# 
# pre_te <- select(a, pre_cost_te_1, pre_cost_te_2, pre_cost_te_3, pre_cost_te_4, pre_cost_te_5)
# cronbach(pre_te)
# 
# pre_oe <- select(a, pre_cost_oe_1, pre_cost_oe_2, pre_cost_oe_3, pre_cost_oe_4)
# cronbach(pre_oe)
# 
# pre_lv <- select(a, pre_cost_lv_1, pre_cost_lv_2, pre_cost_lv_3, pre_cost_lv_4)
# cronbach(pre_lv)
# 
# pre_em <- select(a, pre_cost_em_1, pre_cost_em_2, pre_cost_em_3, pre_cost_em_4, pre_cost_em_5, pre_cost_em_6)
# cronbach(pre_em)
# 
# pre_exp <-select(a, pre_exp_1, pre_exp_2, pre_exp_3)
# cronbach(pre_exp)
# 
# pre_val <-select(a, pre_val_1, pre_val_2, pre_val_3)
# cronbach(pre_val)

Within person correlations

# library(rmcorr)
# MTH_132_124_EOC$stud_id <- as.factor(MTH_132_124_EOC$stud_id)
# out <- rmcorr(participant = stud_id, eoc_cost_lv, eoc_cost_em, data = MTH_132_124_EOC)
# out

Between person correlations

# MTH_132_124_all %>% group_by(stud_id) %>%
#   select(eoc_cost_te, eoc_cost_oe, eoc_cost_lv, eoc_cost_em, pre_cost_te_overall, pre_cost_oe_overall, pre_cost_lv_overall, pre_cost_em_overall, pre_exp_overall, pre_val_overall, Grade, post_stem_int) %>%
#   summarize_all(mean) %>%
#   select(-stud_id) %>%
#   as.matrix() %>%
#   Hmisc::rcorr()

Response Rate across participants in 52%

# library(psych)
# c <- count(MTH_132_124_EOC, stud_id)
# c <- rename(c, signals_responded_to = n)
# c$response_rate <- (c$signals_responded_to/11)
# describe(c$response_rate)
# describe(c$signals_responded_to)
# 
# d<-left_join (c, MTH_132_124_pre_survey, by = "stud_id")

ANOVA for response rate

# rr_anov <- aov(response_rate ~ pre_course, data = d)
# summary(rr_anov)
# 
# d %>%
#   group_by(pre_course) %>%
#   summarise(mean=mean(response_rate))

MANOVA for pre and post cost

# e<-left_join(a, b, by="stud_id")
# e<-left_join(e, MTH_132_124_achievement, by="stud_id")
# 
# cost_man<-manova(cbind(pre_cost_te_overall, pre_cost_oe_overall, pre_cost_lv_overall, pre_cost_em_overall,
#          pre_exp_overall, pre_val_overall, Grade, post_stem_int)
#          ~ pre_course, data = e)
# summary(cost_man, test = "Wilks")
# summary.aov(cost_man)
# 
# e %>%
#   group_by(pre_course) %>%
#   summarise_at(vars(post_stem_int), funs(mean(., na.rm=TRUE)))

MANOVA for EOC cost variables

# eoc_cost_man<-manova(cbind(eoc_cost_te, eoc_cost_oe, eoc_cost_lv, eoc_cost_em)
#          ~ pre_course, data = MTH_132_124_all)
# summary(eoc_cost_man, test = "Wilks")
# summary.aov(eoc_cost_man)
# 
# MTH_132_124_all %>%
#   group_by(pre_course) %>%
#   summarise_at(vars(eoc_cost_te), funs(mean(., na.rm=TRUE)))
# 
# MTH_132_124_all %>%
#   group_by(pre_course) %>%
#   summarise_at(vars(eoc_cost_oe), funs(mean(., na.rm=TRUE)))
# 
# MTH_132_124_all %>%
#   group_by(pre_course) %>%
#   summarise_at(vars(eoc_cost_lv), funs(mean(., na.rm=TRUE)))
# 
# MTH_132_124_all %>%
#   group_by(pre_course) %>%
#   summarise_at(vars(eoc_cost_em), funs(mean(., na.rm=TRUE)))

Creating variables for missing

# MTH_132_124_EOC$missing_frustrated <- is.na(MTH_132_124_EOC$frustrated)
# table(MTH_132_124_EOC$missing_frustrated)
# MTH_132_124_EOC$missing_bored <- is.na(MTH_132_124_EOC$bored)
# table(MTH_132_124_EOC$missing_bored)
# MTH_132_124_EOC$missing_happy <- is.na(MTH_132_124_EOC$happy)
# table(MTH_132_124_EOC$missing_happy)
# MTH_132_124_EOC$missing_excited <- is.na(MTH_132_124_EOC$excited)
# table(MTH_132_124_EOC$missing_excited)
# MTH_132_124_EOC$missing_control <- is.na(MTH_132_124_EOC$overall_control)
# table(MTH_132_124_EOC$missing_control)
# MTH_132_124_EOC$missing_value <- is.na(MTH_132_124_EOC$overall_value)
# table(MTH_132_124_EOC$missing_value)

# e$missing_grade <- is.na (e$Grade)
# table(e$missing_grade)
# e$missing_post_stem_int <- is.na (e$post_stem_int)
# table(e$missing_post_stem_int)

Missing Data Analysis

# #joining for missing data analysis
# f<- left_join(d, MTH_132_124_demographics, by = "stud_id")
# 
# #checking response rate
# t.test(f$response_rate ~ f$female)
# 
# fit<-aov(f$response_rate ~ f$ethnicity)
# summary(fit)
# TukeyHSD(fit)
# 
# fit2<-aov(f$response_rate ~ f$pre_class_code)
# summary(fit2)
# 
# t.test(f$response_rate ~ f$pre_course)
# 
# #Chisquare on grades
# chisq.test(e$missing_grade, e$ethnicity.x)
# chisq.test(e$missing_grade, e$ethnicity.x, simulate.p.value = TRUE)
# 
# chisq.test(e$missing_grade, e$gender.x)
# chisq.test(e$missing_grade, e$gender.x, simulate.p.value = TRUE)
# 
# chisq.test(e$missing_grade, e$pre_class_code)
# chisq.test(e$missing_grade, e$pre_class_code, simulate.p.value = TRUE)
# 
# chisq.test(e$missing_grade, e$pre_course)
# chisq.test(e$missing_grade, e$pre_course, simulate.p.value = TRUE)
# 
# #Chisquare on stemint
# chisq.test(e$missing_post_stem_int, e$ethnicity.x)
# chisq.test(e$missing_post_stem_int, e$ethnicity.x, simulate.p.value = TRUE)
# 
# chisq.test(e$missing_post_stem_int, e$gender.x)
# chisq.test(e$missing_post_stem_int, e$gender.x, simulate.p.value = TRUE)
# 
# chisq.test(e$missing_post_stem_int, e$pre_class_code)
# chisq.test(e$missing_post_stem_int, e$pre_class_code, simulate.p.value = TRUE)
# 
# chisq.test(e$missing_post_stem_int, e$pre_course)
# chisq.test(e$missing_post_stem_int, e$pre_course, simulate.p.value = TRUE)
# table1 <- table(e$missing_grade, e$ethnicity.x)
# table1
# #round(prop.table(table1), 2)
# #round(prop.table(table1, 1), 2)
# 
# table2 <- table(e$missing_grade, e$pre_class_code)
# table2
# 
# table3 <- table(e$missing_post_stem_int, e$ethnicity.x)
# table3
# 
# table4 <- table(e$missing_post_stem_int, e$pre_class_code)
# table4
# 
# table5 <- table(e$missing_post_stem_int, e$pre_course)
# table5
# 
# f %>%
#   group_by(ethnicity) %>%
#   summarise_at(vars(response_rate), funs(mean(., na.rm=TRUE)))
M00 <- lm(pre_cost_te_overall ~ pre_val_overall_z + pre_exp_overall_z + hs_prep_z + 
          pre_hours_work_z + pre_hours_math_prep_z + pre_stem_int_z + credits_more_than_15 +
          female + urm + Best_MPS_z,
          data = MTH_132_124_all_wide)
summary(M00)
## 
## Call:
## lm(formula = pre_cost_te_overall ~ pre_val_overall_z + pre_exp_overall_z + 
##     hs_prep_z + pre_hours_work_z + pre_hours_math_prep_z + pre_stem_int_z + 
##     credits_more_than_15 + female + urm + Best_MPS_z, data = MTH_132_124_all_wide)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6029 -0.8030 -0.1224  0.6586  3.0225 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.78801    0.17248  21.962  < 2e-16 ***
## pre_val_overall_z      0.02579    0.14410   0.179 0.858255    
## pre_exp_overall_z     -0.55743    0.14800  -3.767 0.000248 ***
## hs_prep_z             -0.01327    0.10057  -0.132 0.895243    
## pre_hours_work_z       0.21925    0.11752   1.866 0.064304 .  
## pre_hours_math_prep_z  0.35145    0.09881   3.557 0.000522 ***
## pre_stem_int_z        -0.17789    0.15811  -1.125 0.262592    
## credits_more_than_15  -0.40073    0.19681  -2.036 0.043743 *  
## female                -0.15591    0.19071  -0.818 0.415114    
## urm                   -0.04410    0.33298  -0.132 0.894831    
## Best_MPS_z            -0.15880    0.13881  -1.144 0.254685    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.084 on 132 degrees of freedom
##   (286 observations deleted due to missingness)
## Multiple R-squared:  0.2699, Adjusted R-squared:  0.2146 
## F-statistic:  4.88 on 10 and 132 DF,  p-value: 5.523e-06
M11 <- lm(pre_cost_oe_overall ~ pre_val_overall_z + pre_exp_overall_z + hs_prep_z + 
          pre_hours_work_z + pre_hours_math_prep_z + pre_stem_int_z + credits_more_than_15 +
          female + urm + Best_MPS_z,
          data = MTH_132_124_all_wide)
summary(M11)
## 
## Call:
## lm(formula = pre_cost_oe_overall ~ pre_val_overall_z + pre_exp_overall_z + 
##     hs_prep_z + pre_hours_work_z + pre_hours_math_prep_z + pre_stem_int_z + 
##     credits_more_than_15 + female + urm + Best_MPS_z, data = MTH_132_124_all_wide)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6672 -0.6895 -0.1783  0.3689  4.4178 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.15746    0.17074  18.492   <2e-16 ***
## pre_val_overall_z     -0.08194    0.14265  -0.574   0.5667    
## pre_exp_overall_z     -0.39650    0.14651  -2.706   0.0077 ** 
## hs_prep_z             -0.08236    0.09956  -0.827   0.4096    
## pre_hours_work_z       0.11217    0.11633   0.964   0.3367    
## pre_hours_math_prep_z  0.08755    0.09781   0.895   0.3724    
## pre_stem_int_z        -0.26681    0.15652  -1.705   0.0906 .  
## credits_more_than_15  -0.22862    0.19484  -1.173   0.2428    
## female                -0.18407    0.18879  -0.975   0.3314    
## urm                   -0.11610    0.32963  -0.352   0.7253    
## Best_MPS_z            -0.06661    0.13741  -0.485   0.6286    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.073 on 132 degrees of freedom
##   (286 observations deleted due to missingness)
## Multiple R-squared:  0.2013, Adjusted R-squared:  0.1408 
## F-statistic: 3.326 on 10 and 132 DF,  p-value: 0.0006982
M22 <- lm(pre_cost_lv_overall ~ pre_val_overall_z + pre_exp_overall_z + hs_prep_z + 
          pre_hours_work_z + pre_hours_math_prep_z + pre_stem_int_z + credits_more_than_15 +
          female + urm + Best_MPS_z,
          data = MTH_132_124_all_wide)
summary(M22)
## 
## Call:
## lm(formula = pre_cost_lv_overall ~ pre_val_overall_z + pre_exp_overall_z + 
##     hs_prep_z + pre_hours_work_z + pre_hours_math_prep_z + pre_stem_int_z + 
##     credits_more_than_15 + female + urm + Best_MPS_z, data = MTH_132_124_all_wide)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5118 -0.6965 -0.0837  0.5152  3.6499 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.60566    0.17166  21.005  < 2e-16 ***
## pre_val_overall_z     -0.03004    0.14341  -0.209 0.834398    
## pre_exp_overall_z     -0.47137    0.14729  -3.200 0.001720 ** 
## hs_prep_z              0.07979    0.10009   0.797 0.426760    
## pre_hours_work_z       0.11367    0.11696   0.972 0.332893    
## pre_hours_math_prep_z  0.33577    0.09834   3.414 0.000849 ***
## pre_stem_int_z        -0.05879    0.15736  -0.374 0.709281    
## credits_more_than_15  -0.60138    0.19588  -3.070 0.002598 ** 
## female                -0.03325    0.18980  -0.175 0.861202    
## urm                    0.57545    0.33140   1.736 0.084817 .  
## Best_MPS_z            -0.21753    0.13815  -1.575 0.117744    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.079 on 132 degrees of freedom
##   (286 observations deleted due to missingness)
## Multiple R-squared:  0.2594, Adjusted R-squared:  0.2033 
## F-statistic: 4.623 on 10 and 132 DF,  p-value: 1.224e-05
M33 <- lm(pre_cost_em_overall ~ pre_val_overall_z + pre_exp_overall_z + hs_prep_z + 
          pre_hours_work_z + pre_hours_math_prep_z + pre_stem_int_z + credits_more_than_15 +
          female + urm + Best_MPS_z,
          data = MTH_132_124_all_wide)
summary(M33)
## 
## Call:
## lm(formula = pre_cost_em_overall ~ pre_val_overall_z + pre_exp_overall_z + 
##     hs_prep_z + pre_hours_work_z + pre_hours_math_prep_z + pre_stem_int_z + 
##     credits_more_than_15 + female + urm + Best_MPS_z, data = MTH_132_124_all_wide)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5032 -0.8251 -0.1313  0.7993  3.3309 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.03269    0.18108  22.270  < 2e-16 ***
## pre_val_overall_z      0.02828    0.15129   0.187 0.851988    
## pre_exp_overall_z     -0.57240    0.15538  -3.684 0.000334 ***
## hs_prep_z             -0.05631    0.10558  -0.533 0.594733    
## pre_hours_work_z       0.23140    0.12338   1.876 0.062928 .  
## pre_hours_math_prep_z  0.30355    0.10374   2.926 0.004042 ** 
## pre_stem_int_z        -0.02804    0.16600  -0.169 0.866141    
## credits_more_than_15  -0.55296    0.20663  -2.676 0.008394 ** 
## female                 0.37199    0.20022   1.858 0.065415 .  
## urm                    0.24907    0.34959   0.712 0.477440    
## Best_MPS_z            -0.43191    0.14573  -2.964 0.003607 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.138 on 132 degrees of freedom
##   (286 observations deleted due to missingness)
## Multiple R-squared:  0.3102, Adjusted R-squared:  0.2579 
## F-statistic: 5.936 on 10 and 132 DF,  p-value: 2.21e-07
M0 <- lmer(eoc_cost_te ~ pre_cost_te_overall_z + pre_val_overall_z + pre_exp_overall_z + hs_prep_z + 
          pre_hours_work_z + pre_hours_math_prep + pre_stem_int_z + credits_more_than_15 + week +
          female + urm + Best_MPS_z + eoc_future_goals_gmc +
          (1|stud_id),
          data = MTH_132_124_all, control=lmerControl(optimizer="bobyqa"))
summary(M0)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## eoc_cost_te ~ pre_cost_te_overall_z + pre_val_overall_z + pre_exp_overall_z +  
##     hs_prep_z + pre_hours_work_z + pre_hours_math_prep + pre_stem_int_z +  
##     credits_more_than_15 + week + female + urm + Best_MPS_z +  
##     eoc_future_goals_gmc + (1 | stud_id)
##    Data: MTH_132_124_all
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 1978.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4802 -0.5636 -0.0533  0.5772  3.3686 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  stud_id  (Intercept) 0.9299   0.9643  
##  Residual             0.8374   0.9151  
## Number of obs: 651, groups:  stud_id, 136
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             2.929029   0.317441 130.683092   9.227 6.37e-16 ***
## pre_cost_te_overall_z   0.757032   0.111968 129.846231   6.761 4.20e-10 ***
## pre_val_overall_z      -0.189236   0.150314 121.212763  -1.259 0.210472    
## pre_exp_overall_z      -0.058511   0.167891 135.710146  -0.349 0.728000    
## hs_prep_z              -0.253142   0.107819 130.057040  -2.348 0.020391 *  
## pre_hours_work_z       -0.092375   0.125869 127.361162  -0.734 0.464358    
## pre_hours_math_prep    -0.007682   0.081006 119.957615  -0.095 0.924603    
## pre_stem_int_z          0.008285   0.155080 125.216848   0.053 0.957481    
## credits_more_than_15    0.060535   0.215287 123.675612   0.281 0.779040    
## week                    0.042576   0.012856 574.298998   3.312 0.000985 ***
## female                  0.048115   0.199723 121.642465   0.241 0.810033    
## urm                     0.929445   0.389015 136.587986   2.389 0.018250 *  
## Best_MPS_z             -0.307212   0.142934 122.877412  -2.149 0.033569 *  
## eoc_future_goals_gmc   -0.048478   0.037352 522.143463  -1.298 0.194909    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
performance::icc(M0, by_group = T)
## # ICC by Group
## 
## Group   |   ICC
## ---------------
## stud_id | 0.526
M1 <- lmer(eoc_cost_oe ~ pre_cost_oe_overall_z + pre_val_overall_z + pre_exp_overall_z + hs_prep_z + 
          pre_hours_work_z + pre_hours_math_prep + pre_stem_int_z + credits_more_than_15 + week +
          female + urm + Best_MPS_z + eoc_future_goals_gmc +
          (1|stud_id),
          data = MTH_132_124_all, control=lmerControl(optimizer="bobyqa"))
summary(M1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## eoc_cost_oe ~ pre_cost_oe_overall_z + pre_val_overall_z + pre_exp_overall_z +  
##     hs_prep_z + pre_hours_work_z + pre_hours_math_prep + pre_stem_int_z +  
##     credits_more_than_15 + week + female + urm + Best_MPS_z +  
##     eoc_future_goals_gmc + (1 | stud_id)
##    Data: MTH_132_124_all
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 1971.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9073 -0.5331 -0.0792  0.5292  4.4393 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  stud_id  (Intercept) 0.8370   0.9149  
##  Residual             0.8382   0.9155  
## Number of obs: 652, groups:  stud_id, 136
## 
## Fixed effects:
##                        Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)             2.28709    0.30260 131.32617   7.558 6.23e-12 ***
## pre_cost_oe_overall_z   0.63499    0.09462 115.35525   6.711 7.59e-10 ***
## pre_val_overall_z      -0.05537    0.14457 119.74842  -0.383   0.7024    
## pre_exp_overall_z      -0.15813    0.15756 134.70584  -1.004   0.3174    
## hs_prep_z              -0.17389    0.10364 128.42083  -1.678   0.0958 .  
## pre_hours_work_z       -0.11435    0.11914 123.42091  -0.960   0.3390    
## pre_hours_math_prep     0.08130    0.07453 117.33151   1.091   0.2776    
## pre_stem_int_z          0.02243    0.14981 123.62313   0.150   0.8812    
## credits_more_than_15    0.27119    0.20393 120.83686   1.330   0.1861    
## week                    0.03004    0.01282 577.96010   2.343   0.0194 *  
## female                  0.17610    0.19169 120.27263   0.919   0.3601    
## urm                     0.67796    0.37426 136.22435   1.811   0.0723 .  
## Best_MPS_z             -0.21372    0.13667 121.38643  -1.564   0.1205    
## eoc_future_goals_gmc   -0.01647    0.03736 523.24370  -0.441   0.6594    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
performance::icc(M1, by_group = T)
## # ICC by Group
## 
## Group   |   ICC
## ---------------
## stud_id | 0.500
M2 <- lmer(eoc_cost_lv ~ pre_cost_lv_overall_z + pre_val_overall_z + pre_exp_overall_z + hs_prep_z + 
          pre_hours_work_z + pre_hours_math_prep + pre_stem_int_z + credits_more_than_15 + week +
          female + urm + Best_MPS_z + eoc_future_goals_gmc +
          (1|stud_id),
          data = MTH_132_124_all, control=lmerControl(optimizer="bobyqa"))
summary(M2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## eoc_cost_lv ~ pre_cost_lv_overall_z + pre_val_overall_z + pre_exp_overall_z +  
##     hs_prep_z + pre_hours_work_z + pre_hours_math_prep + pre_stem_int_z +  
##     credits_more_than_15 + week + female + urm + Best_MPS_z +  
##     eoc_future_goals_gmc + (1 | stud_id)
##    Data: MTH_132_124_all
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 1978.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6871 -0.5230 -0.0506  0.4428  5.2804 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  stud_id  (Intercept) 1.0713   1.0350  
##  Residual             0.8124   0.9013  
## Number of obs: 652, groups:  stud_id, 136
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             2.299193   0.333509 129.037290   6.894 2.17e-10 ***
## pre_cost_lv_overall_z   0.465606   0.111155 125.463868   4.189 5.24e-05 ***
## pre_val_overall_z      -0.122208   0.158668 121.174164  -0.770  0.44267    
## pre_exp_overall_z      -0.245721   0.174535 133.013030  -1.408  0.16150    
## hs_prep_z              -0.279825   0.113695 128.451881  -2.461  0.01518 *  
## pre_hours_work_z       -0.002589   0.130823 123.902491  -0.020  0.98424    
## pre_hours_math_prep     0.128090   0.085106 118.636984   1.505  0.13497    
## pre_stem_int_z         -0.059956   0.162828 124.270399  -0.368  0.71334    
## credits_more_than_15    0.243173   0.230231 122.980642   1.056  0.29294    
## week                    0.032965   0.012694 568.411151   2.597  0.00965 ** 
## female                  0.131491   0.210530 120.946302   0.625  0.53343    
## urm                     0.010813   0.412412 134.303459   0.026  0.97912    
## Best_MPS_z             -0.314107   0.151676 122.443441  -2.071  0.04047 *  
## eoc_future_goals_gmc   -0.104251   0.036778 520.635324  -2.835  0.00477 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
performance::icc(M2, by_group = T)
## # ICC by Group
## 
## Group   |   ICC
## ---------------
## stud_id | 0.569
M3 <- lmer(eoc_cost_em ~ pre_cost_em_overall_z + pre_val_overall_z + pre_exp_overall_z + hs_prep_z + 
          pre_hours_work_z + pre_hours_math_prep + pre_stem_int_z + credits_more_than_15 + week +
          female + urm + Best_MPS_z + eoc_future_goals_gmc +
          (1|stud_id),
          data = MTH_132_124_all, control=lmerControl(optimizer="bobyqa"))
summary(M3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## eoc_cost_em ~ pre_cost_em_overall_z + pre_val_overall_z + pre_exp_overall_z +  
##     hs_prep_z + pre_hours_work_z + pre_hours_math_prep + pre_stem_int_z +  
##     credits_more_than_15 + week + female + urm + Best_MPS_z +  
##     eoc_future_goals_gmc + (1 | stud_id)
##    Data: MTH_132_124_all
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 2034.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7223 -0.4916 -0.1016  0.5546  3.7470 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  stud_id  (Intercept) 1.2121   1.1009  
##  Residual             0.8861   0.9413  
## Number of obs: 651, groups:  stud_id, 136
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.069474   0.356004 128.852241   8.622 2.06e-14 ***
## pre_cost_em_overall_z   0.596850   0.124362 121.007901   4.799 4.59e-06 ***
## pre_val_overall_z      -0.162990   0.168249 120.022143  -0.969  0.33462    
## pre_exp_overall_z      -0.087502   0.186393 130.428615  -0.469  0.63953    
## hs_prep_z              -0.238157   0.120578 127.823900  -1.975  0.05041 .  
## pre_hours_work_z       -0.276228   0.139830 124.518124  -1.975  0.05043 .  
## pre_hours_math_prep    -0.031048   0.090162 119.050388  -0.344  0.73119    
## pre_stem_int_z         -0.238120   0.172441 122.860093  -1.381  0.16982    
## credits_more_than_15    0.180425   0.240593 119.819090   0.750  0.45477    
## week                    0.009297   0.013283 565.791235   0.700  0.48427    
## female                  0.291815   0.226535 120.573313   1.288  0.20015    
## urm                     1.339101   0.435899 133.122465   3.072  0.00258 ** 
## Best_MPS_z             -0.226512   0.164166 120.623084  -1.380  0.17021    
## eoc_future_goals_gmc   -0.040233   0.038424 518.408150  -1.047  0.29555    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
performance::icc(M3, by_group = T)
## # ICC by Group
## 
## Group   |   ICC
## ---------------
## stud_id | 0.578
M4 <- lm(post_cost_te_overall ~ pre_cost_te_overall + pre_val_overall + pre_exp_overall +
          pre_hours_work + Msu_Lt_Atmpt_Hours + female,
          data = MTH_132_124_pre_post)
summary(M4)
## 
## Call:
## lm(formula = post_cost_te_overall ~ pre_cost_te_overall + pre_val_overall + 
##     pre_exp_overall + pre_hours_work + Msu_Lt_Atmpt_Hours + female, 
##     data = MTH_132_124_pre_post)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8270 -0.8402 -0.0618  0.7284  3.9596 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          3.389747   0.620638   5.462 6.72e-08 ***
## pre_cost_te_overall  0.475465   0.043538  10.921  < 2e-16 ***
## pre_val_overall     -0.004834   0.058889  -0.082  0.93461    
## pre_exp_overall     -0.180782   0.066151  -2.733  0.00645 ** 
## pre_hours_work       0.005853   0.032567   0.180  0.85744    
## Msu_Lt_Atmpt_Hours  -0.036728   0.032357  -1.135  0.25675    
## female               0.003566   0.098644   0.036  0.97117    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.22 on 650 degrees of freedom
##   (365 observations deleted due to missingness)
## Multiple R-squared:  0.2299, Adjusted R-squared:  0.2228 
## F-statistic: 32.34 on 6 and 650 DF,  p-value: < 2.2e-16
cost_te <- '
#measurement model

#regressions
#direct effects
post_cost_te_overall ~ pre_cost_te_overall + pre_val_overall + pre_exp_overall + pre_hours_work + Msu_Lt_Atmpt_Hours + female

#residual correlations
'

fit <- sem(cost_te, data=MTH_132_124_pre_post, missing = "ML.x")
summary(fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-7 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          8
##                                                       
##   Number of observations                          1022
##   Number of missing patterns                         9
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               172.345
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                     NA
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                                      NA
##   Bayesian (BIC)                                    NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                          Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   post_cost_te_overall ~                                                      
##     pre_cst_t_vrll          0.476    0.043   11.020    0.000    0.476    0.421
##     pre_val_overll         -0.005    0.059   -0.093    0.926   -0.005   -0.004
##     pre_exp_overll         -0.181    0.066   -2.749    0.006   -0.181   -0.131
##     pre_hours_work          0.003    0.032    0.080    0.936    0.003    0.003
##     Ms_Lt_Atmpt_Hr         -0.043    0.031   -1.370    0.171   -0.043   -0.058
##     female                 -0.001    0.097   -0.015    0.988   -0.001   -0.001
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pst_cst_t_vrll    3.496    0.608    5.752    0.000    3.496    2.507
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pst_cst_t_vrll    1.472    0.081   18.226    0.000    1.472    0.757
standardizedsolution(fit)
##                     lhs op                  rhs est.std    se      z pvalue
## 1  post_cost_te_overall  ~  pre_cost_te_overall   0.421 0.034 12.341  0.000
## 2  post_cost_te_overall  ~      pre_val_overall  -0.004 0.045 -0.093  0.926
## 3  post_cost_te_overall  ~      pre_exp_overall  -0.131 0.047 -2.767  0.006
## 4  post_cost_te_overall  ~       pre_hours_work   0.003 0.036  0.080  0.936
## 5  post_cost_te_overall  ~   Msu_Lt_Atmpt_Hours  -0.058 0.042 -1.376  0.169
## 6  post_cost_te_overall  ~               female  -0.001 0.034 -0.015  0.988
## 7  post_cost_te_overall ~~ post_cost_te_overall   0.757 0.028 26.797  0.000
## 8   pre_cost_te_overall ~~  pre_cost_te_overall   1.000 0.000     NA     NA
## 9   pre_cost_te_overall ~~      pre_val_overall  -0.222 0.000     NA     NA
## 10  pre_cost_te_overall ~~      pre_exp_overall  -0.380 0.000     NA     NA
## 11  pre_cost_te_overall ~~       pre_hours_work   0.062 0.000     NA     NA
## 12  pre_cost_te_overall ~~   Msu_Lt_Atmpt_Hours  -0.038 0.000     NA     NA
## 13  pre_cost_te_overall ~~               female   0.035 0.000     NA     NA
## 14      pre_val_overall ~~      pre_val_overall   1.000 0.000     NA     NA
## 15      pre_val_overall ~~      pre_exp_overall   0.592 0.000     NA     NA
## 16      pre_val_overall ~~       pre_hours_work  -0.106 0.000     NA     NA
## 17      pre_val_overall ~~   Msu_Lt_Atmpt_Hours   0.002 0.000     NA     NA
## 18      pre_val_overall ~~               female   0.022 0.000     NA     NA
## 19      pre_exp_overall ~~      pre_exp_overall   1.000 0.000     NA     NA
## 20      pre_exp_overall ~~       pre_hours_work  -0.033 0.000     NA     NA
## 21      pre_exp_overall ~~   Msu_Lt_Atmpt_Hours  -0.009 0.000     NA     NA
## 22      pre_exp_overall ~~               female  -0.067 0.000     NA     NA
## 23       pre_hours_work ~~       pre_hours_work   1.000 0.000     NA     NA
## 24       pre_hours_work ~~   Msu_Lt_Atmpt_Hours  -0.087 0.000     NA     NA
## 25       pre_hours_work ~~               female   0.050 0.000     NA     NA
## 26   Msu_Lt_Atmpt_Hours ~~   Msu_Lt_Atmpt_Hours   1.000 0.000     NA     NA
## 27   Msu_Lt_Atmpt_Hours ~~               female   0.037 0.000     NA     NA
## 28               female ~~               female   1.000 0.000     NA     NA
## 29 post_cost_te_overall ~1                        2.507 0.437  5.733  0.000
## 30  pre_cost_te_overall ~1                        2.731 0.000     NA     NA
## 31      pre_val_overall ~1                        5.246 0.000     NA     NA
## 32      pre_exp_overall ~1                        5.541 0.000     NA     NA
## 33       pre_hours_work ~1                        1.420 0.000     NA     NA
## 34   Msu_Lt_Atmpt_Hours ~1                        7.324 0.000     NA     NA
## 35               female ~1                        0.752 0.000     NA     NA
##    ci.lower ci.upper
## 1     0.354    0.488
## 2    -0.092    0.084
## 3    -0.224   -0.038
## 4    -0.067    0.073
## 5    -0.141    0.025
## 6    -0.066    0.065
## 7     0.701    0.812
## 8     1.000    1.000
## 9    -0.222   -0.222
## 10   -0.380   -0.380
## 11    0.062    0.062
## 12   -0.038   -0.038
## 13    0.035    0.035
## 14    1.000    1.000
## 15    0.592    0.592
## 16   -0.106   -0.106
## 17    0.002    0.002
## 18    0.022    0.022
## 19    1.000    1.000
## 20   -0.033   -0.033
## 21   -0.009   -0.009
## 22   -0.067   -0.067
## 23    1.000    1.000
## 24   -0.087   -0.087
## 25    0.050    0.050
## 26    1.000    1.000
## 27    0.037    0.037
## 28    1.000    1.000
## 29    1.650    3.364
## 30    2.731    2.731
## 31    5.246    5.246
## 32    5.541    5.541
## 33    1.420    1.420
## 34    7.324    7.324
## 35    0.752    0.752
M5 <- lm(post_cost_oe_overall ~ pre_cost_oe_overall + pre_val_overall + pre_exp_overall +
          pre_hours_work + Msu_Lt_Atmpt_Hours + female,
          data = MTH_132_124_pre_post)
summary(M5)
## 
## Call:
## lm(formula = post_cost_oe_overall ~ pre_cost_oe_overall + pre_val_overall + 
##     pre_exp_overall + pre_hours_work + Msu_Lt_Atmpt_Hours + female, 
##     data = MTH_132_124_pre_post)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3800 -0.8148 -0.0594  0.8241  3.9708 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          2.384874   0.600460   3.972 7.93e-05 ***
## pre_cost_oe_overall  0.493515   0.046755  10.555  < 2e-16 ***
## pre_val_overall      0.023283   0.056299   0.414   0.6793    
## pre_exp_overall     -0.126268   0.062712  -2.013   0.0445 *  
## pre_hours_work       0.042864   0.031087   1.379   0.1684    
## Msu_Lt_Atmpt_Hours  -0.008668   0.030953  -0.280   0.7795    
## female               0.002671   0.094457   0.028   0.9775    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.167 on 650 degrees of freedom
##   (365 observations deleted due to missingness)
## Multiple R-squared:  0.1998, Adjusted R-squared:  0.1924 
## F-statistic: 27.05 on 6 and 650 DF,  p-value: < 2.2e-16
cost_oe <- '
#measurement model

#regressions
#direct effects
post_cost_oe_overall ~ pre_cost_oe_overall + pre_val_overall + pre_exp_overall + pre_hours_work + Msu_Lt_Atmpt_Hours + female

#residual correlations
'

fit <- sem(cost_oe, data=MTH_132_124_pre_post, missing = "ML.x")
summary(fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-7 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          8
##                                                       
##   Number of observations                          1022
##   Number of missing patterns                         9
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               145.626
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                     NA
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                                      NA
##   Bayesian (BIC)                                    NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                          Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   post_cost_oe_overall ~                                                      
##     pre_cost__vrll          0.492    0.047   10.580    0.000    0.492    0.417
##     pre_val_overll          0.022    0.056    0.391    0.696    0.022    0.018
##     pre_exp_overll         -0.128    0.063   -2.040    0.041   -0.128   -0.099
##     pre_hours_work          0.040    0.031    1.296    0.195    0.040    0.047
##     Ms_Lt_Atmpt_Hr         -0.021    0.030   -0.703    0.482   -0.021   -0.030
##     female                 -0.010    0.094   -0.112    0.911   -0.010   -0.004
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .post_cst__vrll    2.601    0.589    4.414    0.000    2.601    1.980
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .post_cst__vrll    1.355    0.074   18.218    0.000    1.355    0.785
standardizedsolution(fit)
##                     lhs op                  rhs est.std    se      z pvalue
## 1  post_cost_oe_overall  ~  pre_cost_oe_overall   0.417 0.035 11.876  0.000
## 2  post_cost_oe_overall  ~      pre_val_overall   0.018 0.046  0.391  0.696
## 3  post_cost_oe_overall  ~      pre_exp_overall  -0.099 0.048 -2.047  0.041
## 4  post_cost_oe_overall  ~       pre_hours_work   0.047 0.036  1.300  0.194
## 5  post_cost_oe_overall  ~   Msu_Lt_Atmpt_Hours  -0.030 0.043 -0.703  0.482
## 6  post_cost_oe_overall  ~               female  -0.004 0.034 -0.112  0.911
## 7  post_cost_oe_overall ~~ post_cost_oe_overall   0.785 0.028 27.999  0.000
## 8   pre_cost_oe_overall ~~  pre_cost_oe_overall   1.000 0.000     NA     NA
## 9   pre_cost_oe_overall ~~      pre_val_overall  -0.246 0.000     NA     NA
## 10  pre_cost_oe_overall ~~      pre_exp_overall  -0.371 0.000     NA     NA
## 11  pre_cost_oe_overall ~~       pre_hours_work   0.042 0.000     NA     NA
## 12  pre_cost_oe_overall ~~   Msu_Lt_Atmpt_Hours  -0.032 0.000     NA     NA
## 13  pre_cost_oe_overall ~~               female  -0.023 0.000     NA     NA
## 14      pre_val_overall ~~      pre_val_overall   1.000 0.000     NA     NA
## 15      pre_val_overall ~~      pre_exp_overall   0.592 0.000     NA     NA
## 16      pre_val_overall ~~       pre_hours_work  -0.107 0.000     NA     NA
## 17      pre_val_overall ~~   Msu_Lt_Atmpt_Hours   0.002 0.000     NA     NA
## 18      pre_val_overall ~~               female   0.022 0.000     NA     NA
## 19      pre_exp_overall ~~      pre_exp_overall   1.000 0.000     NA     NA
## 20      pre_exp_overall ~~       pre_hours_work  -0.033 0.000     NA     NA
## 21      pre_exp_overall ~~   Msu_Lt_Atmpt_Hours  -0.009 0.000     NA     NA
## 22      pre_exp_overall ~~               female  -0.066 0.000     NA     NA
## 23       pre_hours_work ~~       pre_hours_work   1.000 0.000     NA     NA
## 24       pre_hours_work ~~   Msu_Lt_Atmpt_Hours  -0.087 0.000     NA     NA
## 25       pre_hours_work ~~               female   0.049 0.000     NA     NA
## 26   Msu_Lt_Atmpt_Hours ~~   Msu_Lt_Atmpt_Hours   1.000 0.000     NA     NA
## 27   Msu_Lt_Atmpt_Hours ~~               female   0.037 0.000     NA     NA
## 28               female ~~               female   1.000 0.000     NA     NA
## 29 post_cost_oe_overall ~1                        1.980 0.453  4.369  0.000
## 30  pre_cost_oe_overall ~1                        2.539 0.000     NA     NA
## 31      pre_val_overall ~1                        5.245 0.000     NA     NA
## 32      pre_exp_overall ~1                        5.541 0.000     NA     NA
## 33       pre_hours_work ~1                        1.420 0.000     NA     NA
## 34   Msu_Lt_Atmpt_Hours ~1                        7.324 0.000     NA     NA
## 35               female ~1                        0.752 0.000     NA     NA
##    ci.lower ci.upper
## 1     0.348    0.486
## 2    -0.072    0.107
## 3    -0.193   -0.004
## 4    -0.024    0.119
## 5    -0.115    0.054
## 6    -0.071    0.063
## 7     0.730    0.840
## 8     1.000    1.000
## 9    -0.246   -0.246
## 10   -0.371   -0.371
## 11    0.042    0.042
## 12   -0.032   -0.032
## 13   -0.023   -0.023
## 14    1.000    1.000
## 15    0.592    0.592
## 16   -0.107   -0.107
## 17    0.002    0.002
## 18    0.022    0.022
## 19    1.000    1.000
## 20   -0.033   -0.033
## 21   -0.009   -0.009
## 22   -0.066   -0.066
## 23    1.000    1.000
## 24   -0.087   -0.087
## 25    0.049    0.049
## 26    1.000    1.000
## 27    0.037    0.037
## 28    1.000    1.000
## 29    1.092    2.868
## 30    2.539    2.539
## 31    5.245    5.245
## 32    5.541    5.541
## 33    1.420    1.420
## 34    7.324    7.324
## 35    0.752    0.752
M6 <- lm(post_cost_lv_overall ~ pre_cost_lv_overall + pre_val_overall + pre_exp_overall +
          pre_hours_work + Msu_Lt_Atmpt_Hours + female,
          data = MTH_132_124_pre_post)
summary(M6)
## 
## Call:
## lm(formula = post_cost_lv_overall ~ pre_cost_lv_overall + pre_val_overall + 
##     pre_exp_overall + pre_hours_work + Msu_Lt_Atmpt_Hours + female, 
##     data = MTH_132_124_pre_post)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3916 -0.8353 -0.0204  0.7154  4.4884 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          3.16539    0.59672   5.305 1.55e-07 ***
## pre_cost_lv_overall  0.44510    0.04327  10.287  < 2e-16 ***
## pre_val_overall      0.02240    0.05634   0.398 0.691034    
## pre_exp_overall     -0.21239    0.06231  -3.408 0.000694 ***
## pre_hours_work       0.02541    0.03111   0.817 0.414354    
## Msu_Lt_Atmpt_Hours  -0.02248    0.03097  -0.726 0.468143    
## female              -0.06188    0.09457  -0.654 0.513114    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.168 on 651 degrees of freedom
##   (364 observations deleted due to missingness)
## Multiple R-squared:  0.2129, Adjusted R-squared:  0.2056 
## F-statistic: 29.34 on 6 and 651 DF,  p-value: < 2.2e-16
cost_lv <- '
#measurement model

#regressions
#direct effects
post_cost_lv_overall ~ pre_cost_lv_overall + pre_val_overall + pre_exp_overall + pre_hours_work + Msu_Lt_Atmpt_Hours + female

#residual correlations
'

fit <- sem(cost_lv, data=MTH_132_124_pre_post, missing = "ML.x")
summary(fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-7 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          8
##                                                       
##   Number of observations                          1022
##   Number of missing patterns                         9
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               156.878
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                     NA
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                                      NA
##   Bayesian (BIC)                                    NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                          Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   post_cost_lv_overall ~                                                      
##     pr_cst_lv_vrll          0.440    0.043   10.285    0.000    0.440    0.392
##     pre_val_overll          0.020    0.056    0.366    0.714    0.020    0.017
##     pre_exp_overll         -0.213    0.062   -3.437    0.001   -0.213   -0.163
##     pre_hours_work          0.021    0.031    0.669    0.504    0.021    0.024
##     Ms_Lt_Atmpt_Hr         -0.036    0.030   -1.183    0.237   -0.036   -0.051
##     female                 -0.068    0.093   -0.729    0.466   -0.068   -0.025
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pst_cst_lv_vrl    3.395    0.582    5.837    0.000    3.395    2.575
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pst_cst_lv_vrl    1.348    0.074   18.257    0.000    1.348    0.775
standardizedsolution(fit)
##                     lhs op                  rhs est.std    se      z pvalue
## 1  post_cost_lv_overall  ~  pre_cost_lv_overall   0.392 0.034 11.386  0.000
## 2  post_cost_lv_overall  ~      pre_val_overall   0.017 0.045  0.366  0.714
## 3  post_cost_lv_overall  ~      pre_exp_overall  -0.163 0.047 -3.477  0.001
## 4  post_cost_lv_overall  ~       pre_hours_work   0.024 0.036  0.669  0.503
## 5  post_cost_lv_overall  ~   Msu_Lt_Atmpt_Hours  -0.051 0.043 -1.187  0.235
## 6  post_cost_lv_overall  ~               female  -0.025 0.034 -0.729  0.466
## 7  post_cost_lv_overall ~~ post_cost_lv_overall   0.775 0.028 27.633  0.000
## 8   pre_cost_lv_overall ~~  pre_cost_lv_overall   1.000 0.000     NA     NA
## 9   pre_cost_lv_overall ~~      pre_val_overall  -0.194 0.000     NA     NA
## 10  pre_cost_lv_overall ~~      pre_exp_overall  -0.346 0.000     NA     NA
## 11  pre_cost_lv_overall ~~       pre_hours_work   0.031 0.000     NA     NA
## 12  pre_cost_lv_overall ~~   Msu_Lt_Atmpt_Hours  -0.039 0.000     NA     NA
## 13  pre_cost_lv_overall ~~               female  -0.036 0.000     NA     NA
## 14      pre_val_overall ~~      pre_val_overall   1.000 0.000     NA     NA
## 15      pre_val_overall ~~      pre_exp_overall   0.592 0.000     NA     NA
## 16      pre_val_overall ~~       pre_hours_work  -0.106 0.000     NA     NA
## 17      pre_val_overall ~~   Msu_Lt_Atmpt_Hours   0.002 0.000     NA     NA
## 18      pre_val_overall ~~               female   0.022 0.000     NA     NA
## 19      pre_exp_overall ~~      pre_exp_overall   1.000 0.000     NA     NA
## 20      pre_exp_overall ~~       pre_hours_work  -0.033 0.000     NA     NA
## 21      pre_exp_overall ~~   Msu_Lt_Atmpt_Hours  -0.009 0.000     NA     NA
## 22      pre_exp_overall ~~               female  -0.067 0.000     NA     NA
## 23       pre_hours_work ~~       pre_hours_work   1.000 0.000     NA     NA
## 24       pre_hours_work ~~   Msu_Lt_Atmpt_Hours  -0.087 0.000     NA     NA
## 25       pre_hours_work ~~               female   0.050 0.000     NA     NA
## 26   Msu_Lt_Atmpt_Hours ~~   Msu_Lt_Atmpt_Hours   1.000 0.000     NA     NA
## 27   Msu_Lt_Atmpt_Hours ~~               female   0.037 0.000     NA     NA
## 28               female ~~               female   1.000 0.000     NA     NA
## 29 post_cost_lv_overall ~1                        2.575 0.443  5.812  0.000
## 30  pre_cost_lv_overall ~1                        2.710 0.000     NA     NA
## 31      pre_val_overall ~1                        5.246 0.000     NA     NA
## 32      pre_exp_overall ~1                        5.542 0.000     NA     NA
## 33       pre_hours_work ~1                        1.420 0.000     NA     NA
## 34   Msu_Lt_Atmpt_Hours ~1                        7.324 0.000     NA     NA
## 35               female ~1                        0.752 0.000     NA     NA
##    ci.lower ci.upper
## 1     0.324    0.459
## 2    -0.072    0.105
## 3    -0.255   -0.071
## 4    -0.047    0.095
## 5    -0.135    0.033
## 6    -0.091    0.042
## 7     0.720    0.830
## 8     1.000    1.000
## 9    -0.194   -0.194
## 10   -0.346   -0.346
## 11    0.031    0.031
## 12   -0.039   -0.039
## 13   -0.036   -0.036
## 14    1.000    1.000
## 15    0.592    0.592
## 16   -0.106   -0.106
## 17    0.002    0.002
## 18    0.022    0.022
## 19    1.000    1.000
## 20   -0.033   -0.033
## 21   -0.009   -0.009
## 22   -0.067   -0.067
## 23    1.000    1.000
## 24   -0.087   -0.087
## 25    0.050    0.050
## 26    1.000    1.000
## 27    0.037    0.037
## 28    1.000    1.000
## 29    1.707    3.443
## 30    2.710    2.710
## 31    5.246    5.246
## 32    5.542    5.542
## 33    1.420    1.420
## 34    7.324    7.324
## 35    0.752    0.752
M7 <- lm(post_cost_em_overall ~ pre_cost_em_overall + pre_val_overall + pre_exp_overall +
          pre_hours_work + Msu_Lt_Atmpt_Hours + female,
          data = MTH_132_124_pre_post)
summary(M7)
## 
## Call:
## lm(formula = post_cost_em_overall ~ pre_cost_em_overall + pre_val_overall + 
##     pre_exp_overall + pre_hours_work + Msu_Lt_Atmpt_Hours + female, 
##     data = MTH_132_124_pre_post)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1118 -0.8967 -0.0224  0.8378  4.0928 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          3.50933    0.66635   5.267 1.89e-07 ***
## pre_cost_em_overall  0.55485    0.04447  12.478  < 2e-16 ***
## pre_val_overall     -0.05130    0.06228  -0.824    0.410    
## pre_exp_overall     -0.16055    0.07098  -2.262    0.024 *  
## pre_hours_work       0.02122    0.03432   0.618    0.537    
## Msu_Lt_Atmpt_Hours  -0.04549    0.03415  -1.332    0.183    
## female               0.09635    0.10467   0.921    0.358    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.288 on 649 degrees of freedom
##   (366 observations deleted due to missingness)
## Multiple R-squared:  0.2823, Adjusted R-squared:  0.2757 
## F-statistic: 42.55 on 6 and 649 DF,  p-value: < 2.2e-16
cost_em <- '
#measurement model

#regressions
#direct effects
post_cost_em_overall ~ pre_cost_em_overall + pre_val_overall + pre_exp_overall + pre_hours_work + Msu_Lt_Atmpt_Hours + female

#residual correlations
'

fit <- sem(cost_em, data=MTH_132_124_pre_post, missing = "ML.x")
summary(fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-7 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          8
##                                                       
##   Number of observations                          1022
##   Number of missing patterns                         9
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               218.644
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                     NA
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                                      NA
##   Bayesian (BIC)                                    NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                          Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   post_cost_em_overall ~                                                      
##     pre_cst_m_vrll          0.550    0.044   12.547    0.000    0.550    0.469
##     pre_val_overll         -0.053    0.062   -0.855    0.393   -0.053   -0.037
##     pre_exp_overll         -0.161    0.070   -2.288    0.022   -0.161   -0.107
##     pre_hours_work          0.022    0.034    0.665    0.506    0.022    0.023
##     Ms_Lt_Atmpt_Hr         -0.053    0.033   -1.610    0.107   -0.053   -0.066
##     female                  0.102    0.103    0.989    0.322    0.102    0.032
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pst_cst_m_vrll    3.646    0.649    5.620    0.000    3.646    2.393
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pst_cst_m_vrll    1.631    0.089   18.228    0.000    1.631    0.703
standardizedsolution(fit)
##                     lhs op                  rhs est.std    se      z pvalue
## 1  post_cost_em_overall  ~  pre_cost_em_overall   0.469 0.033 14.384  0.000
## 2  post_cost_em_overall  ~      pre_val_overall  -0.037 0.043 -0.855  0.392
## 3  post_cost_em_overall  ~      pre_exp_overall  -0.107 0.046 -2.298  0.022
## 4  post_cost_em_overall  ~       pre_hours_work   0.023 0.034  0.666  0.505
## 5  post_cost_em_overall  ~   Msu_Lt_Atmpt_Hours  -0.066 0.041 -1.618  0.106
## 6  post_cost_em_overall  ~               female   0.032 0.033  0.990  0.322
## 7  post_cost_em_overall ~~ post_cost_em_overall   0.703 0.029 24.629  0.000
## 8   pre_cost_em_overall ~~  pre_cost_em_overall   1.000 0.000     NA     NA
## 9   pre_cost_em_overall ~~      pre_val_overall  -0.190 0.000     NA     NA
## 10  pre_cost_em_overall ~~      pre_exp_overall  -0.402 0.000     NA     NA
## 11  pre_cost_em_overall ~~       pre_hours_work   0.021 0.000     NA     NA
## 12  pre_cost_em_overall ~~   Msu_Lt_Atmpt_Hours  -0.047 0.000     NA     NA
## 13  pre_cost_em_overall ~~               female   0.115 0.000     NA     NA
## 14      pre_val_overall ~~      pre_val_overall   1.000 0.000     NA     NA
## 15      pre_val_overall ~~      pre_exp_overall   0.591 0.000     NA     NA
## 16      pre_val_overall ~~       pre_hours_work  -0.107 0.000     NA     NA
## 17      pre_val_overall ~~   Msu_Lt_Atmpt_Hours   0.002 0.000     NA     NA
## 18      pre_val_overall ~~               female   0.021 0.000     NA     NA
## 19      pre_exp_overall ~~      pre_exp_overall   1.000 0.000     NA     NA
## 20      pre_exp_overall ~~       pre_hours_work  -0.034 0.000     NA     NA
## 21      pre_exp_overall ~~   Msu_Lt_Atmpt_Hours  -0.010 0.000     NA     NA
## 22      pre_exp_overall ~~               female  -0.068 0.000     NA     NA
## 23       pre_hours_work ~~       pre_hours_work   1.000 0.000     NA     NA
## 24       pre_hours_work ~~   Msu_Lt_Atmpt_Hours  -0.087 0.000     NA     NA
## 25       pre_hours_work ~~               female   0.050 0.000     NA     NA
## 26   Msu_Lt_Atmpt_Hours ~~   Msu_Lt_Atmpt_Hours   1.000 0.000     NA     NA
## 27   Msu_Lt_Atmpt_Hours ~~               female   0.037 0.000     NA     NA
## 28               female ~~               female   1.000 0.000     NA     NA
## 29 post_cost_em_overall ~1                        2.393 0.428  5.598  0.000
## 30  pre_cost_em_overall ~1                        2.861 0.000     NA     NA
## 31      pre_val_overall ~1                        5.246 0.000     NA     NA
## 32      pre_exp_overall ~1                        5.542 0.000     NA     NA
## 33       pre_hours_work ~1                        1.420 0.000     NA     NA
## 34   Msu_Lt_Atmpt_Hours ~1                        7.324 0.000     NA     NA
## 35               female ~1                        0.752 0.000     NA     NA
##    ci.lower ci.upper
## 1     0.405    0.532
## 2    -0.121    0.048
## 3    -0.197   -0.016
## 4    -0.045    0.091
## 5    -0.145    0.014
## 6    -0.032    0.096
## 7     0.647    0.759
## 8     1.000    1.000
## 9    -0.190   -0.190
## 10   -0.402   -0.402
## 11    0.021    0.021
## 12   -0.047   -0.047
## 13    0.115    0.115
## 14    1.000    1.000
## 15    0.591    0.591
## 16   -0.107   -0.107
## 17    0.002    0.002
## 18    0.021    0.021
## 19    1.000    1.000
## 20   -0.034   -0.034
## 21   -0.010   -0.010
## 22   -0.068   -0.068
## 23    1.000    1.000
## 24   -0.087   -0.087
## 25    0.050    0.050
## 26    1.000    1.000
## 27    0.037    0.037
## 28    1.000    1.000
## 29    1.555    3.231
## 30    2.861    2.861
## 31    5.246    5.246
## 32    5.542    5.542
## 33    1.420    1.420
## 34    7.324    7.324
## 35    0.752    0.752

Nov 2 Mediation model

Task Effort

cost_te <-'
#Measurement
hs_prep_1 =~ pre_hs_prep_1 + pre_hs_prep_2 + pre_hs_prep_3 + pre_hs_prep_4 + pre_hs_prep_5
expect =~ pre_exp_1 + pre_exp_2 + pre_exp_3
value =~ pre_val_1 + pre_val_2 + pre_val_3
a_te_cost =~ pre_cost_te_1 + pre_cost_te_2 + pre_cost_te_3 + pre_cost_te_4 + pre_cost_te_5

#Regressions
a_te_cost ~ aa*hs_prep_1 + ab*pre_hours_work + ac*pre_hours_math_prep + ad*credits_more_than_15 + ae*pre_stem_int + af*expect + ag*value + ah*female + ai*urm + aj*Best_MPS
eoc_cost_te ~ b*a_te_cost + hs_prep_1 + pre_hours_work + pre_hours_math_prep + credits_more_than_15 + pre_stem_int + expect + value + female + urm + Best_MPS + week

#indirect effects
hs_cost:= aa*b
work_cost:= ab*b
prep_cost:= ac*b
credits_cost:= ad*b
stem_cost:= ae*b
expect_cost:= af*b
val_cost:= ag*b
female_cost:= ah*b
urm_cost:= ai*b
mps_cost:= aj*b

#Covariances
# pre_stem_int ~~ expect + value + a_te_cost
# expect ~~ value + a_te_cost
# value ~~ a_te_cost
# pre_hours_math_prep ~~ pre_hours_math_prep
'

fit <- sem(cost_te, data=MTH_132_124_all, estimator = "MLR", cluster = "stud_id", missing = "ML.x", se = 'bootstrap')
test = parameterEstimates(fit,boot.ci.type = 'bca.simple',level=.95) # bootstrapped estimate
summary(fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-7 ended normally after 93 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         75
##                                                       
##   Number of observations                          2435
##   Number of clusters [stud_id]                     429
##   Number of missing patterns                        41
##                                                       
## Model Test User Model:
##                                                Standard      Robust
##   Test Statistic                               2358.604     331.562
##   Degrees of freedom                                231         231
##   P-value (Chi-square)                            0.000       0.000
##   Scaling correction factor                                   7.114
##        Yuan-Bentler correction (Mplus variant)                     
## 
## Model Test Baseline Model:
## 
##   Test statistic                             20873.117    2602.117
##   Degrees of freedom                               272         272
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  8.022
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.897       0.957
##   Tucker-Lewis Index (TLI)                       0.878       0.949
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.962
##   Robust Tucker-Lewis Index (TLI)                            0.955
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                     NA          NA
##   Scaling correction factor                                 11.494
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)             NA          NA
##   Scaling correction factor                                  8.187
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                      NA          NA
##   Bayesian (BIC)                                    NA          NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.062       0.013
##   90 Percent confidence interval - lower         0.059       0.012
##   90 Percent confidence interval - upper         0.064       0.015
##   P-value RMSEA <= 0.05                          0.000       1.000
##                                                                   
##   Robust RMSEA                                               0.036
##   90 Percent confidence interval - lower                     0.027
##   90 Percent confidence interval - upper                     0.044
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.066       0.066
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   hs_prep_1 =~                                                          
##     pre_hs_prep_1     1.000                               0.682    0.519
##     pre_hs_prep_2     0.736    0.108    6.797    0.000    0.502    0.614
##     pre_hs_prep_3     0.759    0.118    6.439    0.000    0.518    0.784
##     pre_hs_prep_4     0.802    0.126    6.375    0.000    0.547    0.841
##     pre_hs_prep_5     0.793    0.148    5.347    0.000    0.541    0.652
##   expect =~                                                             
##     pre_exp_1         1.000                               0.884    0.763
##     pre_exp_2         0.913    0.078   11.704    0.000    0.807    0.827
##     pre_exp_3         1.129    0.080   14.183    0.000    0.998    0.831
##   value =~                                                              
##     pre_val_1         1.000                               1.026    0.843
##     pre_val_2         0.955    0.053   18.104    0.000    0.980    0.852
##     pre_val_3         1.047    0.053   19.871    0.000    1.074    0.845
##   a_te_cost =~                                                          
##     pre_cost_te_1     1.000                               1.175    0.842
##     pre_cost_te_2     0.908    0.063   14.384    0.000    1.067    0.735
##     pre_cost_te_3     0.990    0.048   20.551    0.000    1.163    0.849
##     pre_cost_te_4     1.032    0.060   17.086    0.000    1.212    0.826
##     pre_cost_te_5     1.009    0.062   16.408    0.000    1.186    0.827
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   a_te_cost ~                                                           
##     hs_prep_1 (aa)   -0.295    0.232   -1.272    0.203   -0.172   -0.172
##     pr_hrs_wr (ab)    0.014    0.057    0.245    0.806    0.012    0.018
##     pr_hrs_m_ (ac)    0.097    0.059    1.656    0.098    0.083    0.109
##     crdt___15 (ad)   -0.287    0.128   -2.234    0.025   -0.244   -0.117
##     pr_stm_nt (ae)   -0.025    0.040   -0.619    0.536   -0.021   -0.039
##     expect    (af)   -0.485    0.181   -2.684    0.007   -0.365   -0.365
##     value     (ag)    0.019    0.107    0.178    0.859    0.017    0.017
##     female    (ah)    0.048    0.134    0.357    0.721    0.041    0.020
##     urm       (ai)    0.099    0.224    0.441    0.659    0.084    0.023
##     Best_MPS  (aj)    0.006    0.013    0.457    0.647    0.005    0.026
##   eoc_cost_te ~                                                         
##     a_te_cost  (b)    0.521    0.075    6.985    0.000    0.612    0.379
##     hs_prep_1        -0.269    0.150   -1.792    0.073   -0.183   -0.114
##     pr_hrs_wr         0.046    0.046    0.997    0.319    0.046    0.043
##     pr_hrs_m_         0.097    0.055    1.787    0.074    0.097    0.080
##     crdt___15        -0.324    0.134   -2.417    0.016   -0.324   -0.097
##     pr_stm_nt        -0.067    0.042   -1.587    0.113   -0.067   -0.076
##     expect           -0.306    0.146   -2.091    0.037   -0.270   -0.167
##     value             0.171    0.126    1.357    0.175    0.176    0.109
##     female           -0.102    0.128   -0.793    0.428   -0.102   -0.031
##     urm               0.360    0.240    1.500    0.134    0.360    0.060
##     Best_MPS         -0.044    0.014   -3.041    0.002   -0.044   -0.137
##     week              0.006    0.011    0.564    0.573    0.006    0.012
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   hs_prep_1 ~~                                                          
##     expect            0.223    0.090    2.467    0.014    0.370    0.370
##     value             0.186    0.100    1.857    0.063    0.266    0.266
##   expect ~~                                                             
##     value             0.614    0.130    4.725    0.000    0.677    0.677
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pre_hs_prep_1     4.349    0.109   39.945    0.000    4.349    3.307
##    .pre_hs_prep_2     4.928    0.071   69.238    0.000    4.928    6.025
##    .pre_hs_prep_3     5.303    0.056   95.061    0.000    5.303    8.029
##    .pre_hs_prep_4     5.439    0.057   94.766    0.000    5.439    8.360
##    .pre_hs_prep_5     5.128    0.069   74.039    0.000    5.128    6.171
##    .pre_exp_1         5.716    0.066   86.114    0.000    5.716    4.933
##    .pre_exp_2         5.923    0.057  103.303    0.000    5.923    6.071
##    .pre_exp_3         5.496    0.069   79.317    0.000    5.496    4.579
##    .pre_val_1         5.805    0.071   81.510    0.000    5.805    4.768
##    .pre_val_2         5.659    0.067   84.337    0.000    5.659    4.921
##    .pre_val_3         5.576    0.075   74.571    0.000    5.576    4.385
##    .pre_cost_te_1     3.080    0.441    6.977    0.000    3.080    2.207
##    .pre_cost_te_2     3.272    0.405    8.082    0.000    3.272    2.254
##    .pre_cost_te_3     2.934    0.438    6.704    0.000    2.934    2.141
##    .pre_cost_te_4     3.161    0.453    6.972    0.000    3.161    2.155
##    .pre_cost_te_5     3.045    0.447    6.809    0.000    3.045    2.123
##    .eoc_cost_te       3.806    0.456    8.339    0.000    3.806    2.357
##     hs_prep_1         0.000                               0.000    0.000
##     expect            0.000                               0.000    0.000
##     value             0.000                               0.000    0.000
##    .a_te_cost         0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pre_hs_prep_1     1.264    0.178    7.116    0.000    1.264    0.731
##    .pre_hs_prep_2     0.417    0.068    6.110    0.000    0.417    0.623
##    .pre_hs_prep_3     0.168    0.033    5.026    0.000    0.168    0.386
##    .pre_hs_prep_4     0.124    0.028    4.357    0.000    0.124    0.292
##    .pre_hs_prep_5     0.397    0.148    2.687    0.007    0.397    0.575
##    .pre_exp_1         0.561    0.159    3.532    0.000    0.561    0.418
##    .pre_exp_2         0.300    0.060    4.964    0.000    0.300    0.315
##    .pre_exp_3         0.445    0.086    5.176    0.000    0.445    0.309
##    .pre_val_1         0.429    0.095    4.512    0.000    0.429    0.290
##    .pre_val_2         0.363    0.060    6.079    0.000    0.363    0.274
##    .pre_val_3         0.462    0.086    5.366    0.000    0.462    0.286
##    .pre_cost_te_1     0.567    0.092    6.141    0.000    0.567    0.291
##    .pre_cost_te_2     0.969    0.119    8.158    0.000    0.969    0.460
##    .pre_cost_te_3     0.526    0.072    7.291    0.000    0.526    0.280
##    .pre_cost_te_4     0.683    0.127    5.372    0.000    0.683    0.317
##    .pre_cost_te_5     0.650    0.101    6.407    0.000    0.650    0.316
##    .eoc_cost_te       1.826    0.124   14.736    0.000    1.826    0.701
##     hs_prep_1         0.466    0.125    3.730    0.000    1.000    1.000
##     expect            0.782    0.159    4.924    0.000    1.000    1.000
##     value             1.053    0.185    5.692    0.000    1.000    1.000
##    .a_te_cost         1.065    0.145    7.323    0.000    0.771    0.771
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     hs_cost          -0.154    0.115   -1.338    0.181   -0.105   -0.065
##     work_cost         0.007    0.030    0.241    0.810    0.007    0.007
##     prep_cost         0.051    0.034    1.500    0.134    0.051    0.041
##     credits_cost     -0.149    0.070   -2.142    0.032   -0.149   -0.045
##     stem_cost        -0.013    0.021   -0.623    0.533   -0.013   -0.015
##     expect_cost      -0.253    0.109   -2.321    0.020   -0.223   -0.138
##     val_cost          0.010    0.056    0.178    0.858    0.010    0.006
##     female_cost       0.025    0.069    0.360    0.719    0.025    0.008
##     urm_cost          0.052    0.116    0.443    0.658    0.052    0.009
##     mps_cost          0.003    0.007    0.452    0.651    0.003    0.010
test
##                      lhs op                  rhs        label    est    se
## 1              hs_prep_1 =~        pre_hs_prep_1               1.000 0.000
## 2              hs_prep_1 =~        pre_hs_prep_2               0.736 0.108
## 3              hs_prep_1 =~        pre_hs_prep_3               0.759 0.118
## 4              hs_prep_1 =~        pre_hs_prep_4               0.802 0.126
## 5              hs_prep_1 =~        pre_hs_prep_5               0.793 0.148
## 6                 expect =~            pre_exp_1               1.000 0.000
## 7                 expect =~            pre_exp_2               0.913 0.078
## 8                 expect =~            pre_exp_3               1.129 0.080
## 9                  value =~            pre_val_1               1.000 0.000
## 10                 value =~            pre_val_2               0.955 0.053
## 11                 value =~            pre_val_3               1.047 0.053
## 12             a_te_cost =~        pre_cost_te_1               1.000 0.000
## 13             a_te_cost =~        pre_cost_te_2               0.908 0.063
## 14             a_te_cost =~        pre_cost_te_3               0.990 0.048
## 15             a_te_cost =~        pre_cost_te_4               1.032 0.060
## 16             a_te_cost =~        pre_cost_te_5               1.009 0.062
## 17             a_te_cost  ~            hs_prep_1           aa -0.295 0.232
## 18             a_te_cost  ~       pre_hours_work           ab  0.014 0.057
## 19             a_te_cost  ~  pre_hours_math_prep           ac  0.097 0.059
## 20             a_te_cost  ~ credits_more_than_15           ad -0.287 0.128
## 21             a_te_cost  ~         pre_stem_int           ae -0.025 0.040
## 22             a_te_cost  ~               expect           af -0.485 0.181
## 23             a_te_cost  ~                value           ag  0.019 0.107
## 24             a_te_cost  ~               female           ah  0.048 0.134
## 25             a_te_cost  ~                  urm           ai  0.099 0.224
## 26             a_te_cost  ~             Best_MPS           aj  0.006 0.013
## 27           eoc_cost_te  ~            a_te_cost            b  0.521 0.075
## 28           eoc_cost_te  ~            hs_prep_1              -0.269 0.150
## 29           eoc_cost_te  ~       pre_hours_work               0.046 0.046
## 30           eoc_cost_te  ~  pre_hours_math_prep               0.097 0.055
## 31           eoc_cost_te  ~ credits_more_than_15              -0.324 0.134
## 32           eoc_cost_te  ~         pre_stem_int              -0.067 0.042
## 33           eoc_cost_te  ~               expect              -0.306 0.146
## 34           eoc_cost_te  ~                value               0.171 0.126
## 35           eoc_cost_te  ~               female              -0.102 0.128
## 36           eoc_cost_te  ~                  urm               0.360 0.240
## 37           eoc_cost_te  ~             Best_MPS              -0.044 0.014
## 38           eoc_cost_te  ~                 week               0.006 0.011
## 39         pre_hs_prep_1 ~~        pre_hs_prep_1               1.264 0.178
## 40         pre_hs_prep_2 ~~        pre_hs_prep_2               0.417 0.068
## 41         pre_hs_prep_3 ~~        pre_hs_prep_3               0.168 0.033
## 42         pre_hs_prep_4 ~~        pre_hs_prep_4               0.124 0.028
## 43         pre_hs_prep_5 ~~        pre_hs_prep_5               0.397 0.148
## 44             pre_exp_1 ~~            pre_exp_1               0.561 0.159
## 45             pre_exp_2 ~~            pre_exp_2               0.300 0.060
## 46             pre_exp_3 ~~            pre_exp_3               0.445 0.086
## 47             pre_val_1 ~~            pre_val_1               0.429 0.095
## 48             pre_val_2 ~~            pre_val_2               0.363 0.060
## 49             pre_val_3 ~~            pre_val_3               0.462 0.086
## 50         pre_cost_te_1 ~~        pre_cost_te_1               0.567 0.092
## 51         pre_cost_te_2 ~~        pre_cost_te_2               0.969 0.119
## 52         pre_cost_te_3 ~~        pre_cost_te_3               0.526 0.072
## 53         pre_cost_te_4 ~~        pre_cost_te_4               0.683 0.127
## 54         pre_cost_te_5 ~~        pre_cost_te_5               0.650 0.101
## 55           eoc_cost_te ~~          eoc_cost_te               1.826 0.124
## 56             hs_prep_1 ~~            hs_prep_1               0.466 0.125
## 57                expect ~~               expect               0.782 0.159
## 58                 value ~~                value               1.053 0.185
## 59             a_te_cost ~~            a_te_cost               1.065 0.145
## 60             hs_prep_1 ~~               expect               0.223 0.090
## 61             hs_prep_1 ~~                value               0.186 0.100
## 62                expect ~~                value               0.614 0.130
## 63        pre_hours_work ~~       pre_hours_work               2.327 0.000
## 64        pre_hours_work ~~  pre_hours_math_prep               0.159 0.000
## 65        pre_hours_work ~~ credits_more_than_15              -0.031 0.000
## 66        pre_hours_work ~~         pre_stem_int               0.325 0.000
## 67        pre_hours_work ~~               female               0.089 0.000
## 68        pre_hours_work ~~                  urm               0.087 0.000
## 69        pre_hours_work ~~             Best_MPS              -0.646 0.000
## 70        pre_hours_work ~~                 week              -0.012 0.000
## 71   pre_hours_math_prep ~~  pre_hours_math_prep               1.744 0.000
## 72   pre_hours_math_prep ~~ credits_more_than_15              -0.033 0.000
## 73   pre_hours_math_prep ~~         pre_stem_int               0.055 0.000
## 74   pre_hours_math_prep ~~               female              -0.053 0.000
## 75   pre_hours_math_prep ~~                  urm              -0.003 0.000
## 76   pre_hours_math_prep ~~             Best_MPS               0.475 0.000
## 77   pre_hours_math_prep ~~                 week              -0.082 0.000
## 78  credits_more_than_15 ~~ credits_more_than_15               0.231 0.000
## 79  credits_more_than_15 ~~         pre_stem_int              -0.068 0.000
## 80  credits_more_than_15 ~~               female               0.007 0.000
## 81  credits_more_than_15 ~~                  urm               0.007 0.000
## 82  credits_more_than_15 ~~             Best_MPS              -0.107 0.000
## 83  credits_more_than_15 ~~                 week               0.004 0.000
## 84          pre_stem_int ~~         pre_stem_int               3.382 0.000
## 85          pre_stem_int ~~               female               0.005 0.000
## 86          pre_stem_int ~~                  urm               0.030 0.000
## 87          pre_stem_int ~~             Best_MPS               0.235 0.000
## 88          pre_stem_int ~~                 week              -0.126 0.000
## 89                female ~~               female               0.243 0.000
## 90                female ~~                  urm               0.012 0.000
## 91                female ~~             Best_MPS              -0.231 0.000
## 92                female ~~                 week               0.077 0.000
## 93                   urm ~~                  urm               0.072 0.000
## 94                   urm ~~             Best_MPS              -0.366 0.000
## 95                   urm ~~                 week              -0.008 0.000
## 96              Best_MPS ~~             Best_MPS              25.353 0.000
## 97              Best_MPS ~~                 week              -0.311 0.000
## 98                  week ~~                 week               9.922 0.000
## 99         pre_hs_prep_1 ~1                                    4.349 0.109
## 100        pre_hs_prep_2 ~1                                    4.928 0.071
## 101        pre_hs_prep_3 ~1                                    5.303 0.056
## 102        pre_hs_prep_4 ~1                                    5.439 0.057
## 103        pre_hs_prep_5 ~1                                    5.128 0.069
## 104            pre_exp_1 ~1                                    5.716 0.066
## 105            pre_exp_2 ~1                                    5.923 0.057
## 106            pre_exp_3 ~1                                    5.496 0.069
## 107            pre_val_1 ~1                                    5.805 0.071
## 108            pre_val_2 ~1                                    5.659 0.067
## 109            pre_val_3 ~1                                    5.576 0.075
## 110        pre_cost_te_1 ~1                                    3.080 0.441
## 111        pre_cost_te_2 ~1                                    3.272 0.405
## 112        pre_cost_te_3 ~1                                    2.934 0.438
## 113        pre_cost_te_4 ~1                                    3.161 0.453
## 114        pre_cost_te_5 ~1                                    3.045 0.447
## 115          eoc_cost_te ~1                                    3.806 0.456
## 116       pre_hours_work ~1                                    2.189 0.000
## 117  pre_hours_math_prep ~1                                    3.310 0.000
## 118 credits_more_than_15 ~1                                    0.363 0.000
## 119         pre_stem_int ~1                                    5.041 0.000
## 120               female ~1                                    0.417 0.000
## 121                  urm ~1                                    0.078 0.000
## 122             Best_MPS ~1                                   18.664 0.000
## 123                 week ~1                                    5.469 0.000
## 124            hs_prep_1 ~1                                    0.000 0.000
## 125               expect ~1                                    0.000 0.000
## 126                value ~1                                    0.000 0.000
## 127            a_te_cost ~1                                    0.000 0.000
## 128              hs_cost :=                 aa*b      hs_cost -0.154 0.115
## 129            work_cost :=                 ab*b    work_cost  0.007 0.030
## 130            prep_cost :=                 ac*b    prep_cost  0.051 0.034
## 131         credits_cost :=                 ad*b credits_cost -0.149 0.070
## 132            stem_cost :=                 ae*b    stem_cost -0.013 0.021
## 133          expect_cost :=                 af*b  expect_cost -0.253 0.109
## 134             val_cost :=                 ag*b     val_cost  0.010 0.056
## 135          female_cost :=                 ah*b  female_cost  0.025 0.069
## 136             urm_cost :=                 ai*b     urm_cost  0.052 0.116
## 137             mps_cost :=                 aj*b     mps_cost  0.003 0.007
##           z pvalue ci.lower ci.upper
## 1        NA     NA    1.000    1.000
## 2     6.797  0.000    0.524    0.948
## 3     6.439  0.000    0.528    0.990
## 4     6.375  0.000    0.556    1.049
## 5     5.347  0.000    0.503    1.084
## 6        NA     NA    1.000    1.000
## 7    11.704  0.000    0.760    1.066
## 8    14.183  0.000    0.973    1.285
## 9        NA     NA    1.000    1.000
## 10   18.104  0.000    0.851    1.058
## 11   19.871  0.000    0.944    1.150
## 12       NA     NA    1.000    1.000
## 13   14.384  0.000    0.785    1.032
## 14   20.551  0.000    0.895    1.084
## 15   17.086  0.000    0.913    1.150
## 16   16.408  0.000    0.889    1.130
## 17   -1.272  0.203   -0.750    0.160
## 18    0.245  0.806   -0.098    0.126
## 19    1.656  0.098   -0.018    0.212
## 20   -2.234  0.025   -0.539   -0.035
## 21   -0.619  0.536   -0.104    0.054
## 22   -2.684  0.007   -0.839   -0.131
## 23    0.178  0.859   -0.191    0.230
## 24    0.357  0.721   -0.215    0.311
## 25    0.441  0.659   -0.341    0.539
## 26    0.457  0.647   -0.020    0.033
## 27    6.985  0.000    0.375    0.667
## 28   -1.792  0.073   -0.563    0.025
## 29    0.997  0.319   -0.044    0.136
## 30    1.787  0.074   -0.009    0.204
## 31   -2.417  0.016   -0.587   -0.061
## 32   -1.587  0.113   -0.149    0.016
## 33   -2.091  0.037   -0.592   -0.019
## 34    1.357  0.175   -0.076    0.418
## 35   -0.793  0.428   -0.353    0.150
## 36    1.500  0.134   -0.110    0.830
## 37   -3.041  0.002   -0.072   -0.016
## 38    0.564  0.573   -0.016    0.028
## 39    7.116  0.000    0.916    1.613
## 40    6.110  0.000    0.283    0.551
## 41    5.026  0.000    0.103    0.234
## 42    4.357  0.000    0.068    0.179
## 43    2.687  0.007    0.107    0.687
## 44    3.532  0.000    0.250    0.872
## 45    4.964  0.000    0.182    0.419
## 46    5.176  0.000    0.276    0.613
## 47    4.512  0.000    0.243    0.616
## 48    6.079  0.000    0.246    0.480
## 49    5.366  0.000    0.294    0.631
## 50    6.141  0.000    0.386    0.748
## 51    8.158  0.000    0.736    1.202
## 52    7.291  0.000    0.384    0.667
## 53    5.372  0.000    0.434    0.932
## 54    6.407  0.000    0.451    0.848
## 55   14.736  0.000    1.583    2.069
## 56    3.730  0.000    0.221    0.710
## 57    4.924  0.000    0.471    1.093
## 58    5.692  0.000    0.690    1.416
## 59    7.323  0.000    0.780    1.350
## 60    2.467  0.014    0.046    0.400
## 61    1.857  0.063   -0.010    0.383
## 62    4.725  0.000    0.359    0.869
## 63       NA     NA    2.327    2.327
## 64       NA     NA    0.159    0.159
## 65       NA     NA   -0.031   -0.031
## 66       NA     NA    0.325    0.325
## 67       NA     NA    0.089    0.089
## 68       NA     NA    0.087    0.087
## 69       NA     NA   -0.646   -0.646
## 70       NA     NA   -0.012   -0.012
## 71       NA     NA    1.744    1.744
## 72       NA     NA   -0.033   -0.033
## 73       NA     NA    0.055    0.055
## 74       NA     NA   -0.053   -0.053
## 75       NA     NA   -0.003   -0.003
## 76       NA     NA    0.475    0.475
## 77       NA     NA   -0.082   -0.082
## 78       NA     NA    0.231    0.231
## 79       NA     NA   -0.068   -0.068
## 80       NA     NA    0.007    0.007
## 81       NA     NA    0.007    0.007
## 82       NA     NA   -0.107   -0.107
## 83       NA     NA    0.004    0.004
## 84       NA     NA    3.382    3.382
## 85       NA     NA    0.005    0.005
## 86       NA     NA    0.030    0.030
## 87       NA     NA    0.235    0.235
## 88       NA     NA   -0.126   -0.126
## 89       NA     NA    0.243    0.243
## 90       NA     NA    0.012    0.012
## 91       NA     NA   -0.231   -0.231
## 92       NA     NA    0.077    0.077
## 93       NA     NA    0.072    0.072
## 94       NA     NA   -0.366   -0.366
## 95       NA     NA   -0.008   -0.008
## 96       NA     NA   25.353   25.353
## 97       NA     NA   -0.311   -0.311
## 98       NA     NA    9.922    9.922
## 99   39.945  0.000    4.136    4.563
## 100  69.238  0.000    4.788    5.067
## 101  95.061  0.000    5.193    5.412
## 102  94.766  0.000    5.327    5.552
## 103  74.039  0.000    4.992    5.264
## 104  86.114  0.000    5.586    5.846
## 105 103.303  0.000    5.811    6.035
## 106  79.317  0.000    5.360    5.632
## 107  81.510  0.000    5.665    5.944
## 108  84.337  0.000    5.527    5.790
## 109  74.571  0.000    5.429    5.722
## 110   6.977  0.000    2.215    3.945
## 111   8.082  0.000    2.479    4.066
## 112   6.704  0.000    2.076    3.792
## 113   6.972  0.000    2.273    4.050
## 114   6.809  0.000    2.168    3.921
## 115   8.339  0.000    2.911    4.700
## 116      NA     NA    2.189    2.189
## 117      NA     NA    3.310    3.310
## 118      NA     NA    0.363    0.363
## 119      NA     NA    5.041    5.041
## 120      NA     NA    0.417    0.417
## 121      NA     NA    0.078    0.078
## 122      NA     NA   18.664   18.664
## 123      NA     NA    5.469    5.469
## 124      NA     NA    0.000    0.000
## 125      NA     NA    0.000    0.000
## 126      NA     NA    0.000    0.000
## 127      NA     NA    0.000    0.000
## 128  -1.338  0.181   -0.379    0.072
## 129   0.241  0.810   -0.052    0.067
## 130   1.500  0.134   -0.016    0.117
## 131  -2.142  0.032   -0.286   -0.013
## 132  -0.623  0.533   -0.054    0.028
## 133  -2.321  0.020   -0.466   -0.039
## 134   0.178  0.858   -0.099    0.119
## 135   0.360  0.719   -0.111    0.161
## 136   0.443  0.658   -0.176    0.280
## 137   0.452  0.651   -0.011    0.017

Outside effort

cost_oe <-'
#Measurement
hs_prep_1 =~ pre_hs_prep_1 + pre_hs_prep_2 + pre_hs_prep_3 + pre_hs_prep_4 + pre_hs_prep_5
expect =~ pre_exp_1 + pre_exp_2 + pre_exp_3
value =~ pre_val_1 + pre_val_2 + pre_val_3
a_oe_cost =~ pre_cost_oe_1 + pre_cost_oe_2 + pre_cost_oe_3 + pre_cost_oe_4

#Regressions
a_oe_cost ~ aa*hs_prep_1 + ab*pre_hours_work + ac*pre_hours_math_prep + ad*credits_more_than_15 + ae*pre_stem_int + af*expect + ag*value + ah*female + ai*urm + aj*Best_MPS
eoc_cost_oe ~ b*a_oe_cost + hs_prep_1 + pre_hours_work + pre_hours_math_prep + credits_more_than_15 + pre_stem_int + expect + value + female + urm + Best_MPS + week

#indirect effects
hs_cost:= aa*b
work_cost:= ab*b
prep_cost:= ac*b
credits_cost:= ad*b
stem_cost:= ae*b
expect_cost:= af*b
val_cost:= ag*b
female_cost:= ah*b
urm_cost:= ai*b
mps_cost:= aj*b

#Covariances
# pre_stem_int ~~ expect + value + a_te_cost
# expect ~~ value + a_te_cost
# value ~~ a_te_cost
# pre_hours_math_prep ~~ pre_hours_math_prep
'

fit <- sem(cost_oe, data=MTH_132_124_all, estimator = "MLR", cluster = "stud_id", missing = "ML.x", se = 'bootstrap')
test = parameterEstimates(fit,boot.ci.type = 'bca.simple',level=.95) # bootstrapped estimate
summary(fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-7 ended normally after 95 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         72
##                                                       
##   Number of observations                          2435
##   Number of clusters [stud_id]                     429
##   Number of missing patterns                        36
##                                                       
## Model Test User Model:
##                                                Standard      Robust
##   Test Statistic                               1812.427     255.233
##   Degrees of freedom                                208         208
##   P-value (Chi-square)                            0.000       0.014
##   Scaling correction factor                                   7.101
##        Yuan-Bentler correction (Mplus variant)                     
## 
## Model Test Baseline Model:
## 
##   Test statistic                             18313.436    2299.202
##   Degrees of freedom                               248         248
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  7.965
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.911       0.977
##   Tucker-Lewis Index (TLI)                       0.894       0.973
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.979
##   Robust Tucker-Lewis Index (TLI)                            0.976
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                     NA          NA
##   Scaling correction factor                                 11.463
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)             NA          NA
##   Scaling correction factor                                  8.223
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                      NA          NA
##   Bayesian (BIC)                                    NA          NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.056       0.010
##   90 Percent confidence interval - lower         0.054       0.008
##   90 Percent confidence interval - upper         0.059       0.011
##   P-value RMSEA <= 0.05                          0.000       1.000
##                                                                   
##   Robust RMSEA                                               0.026
##   90 Percent confidence interval - lower                     0.012
##   90 Percent confidence interval - upper                     0.036
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.067       0.067
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   hs_prep_1 =~                                                          
##     pre_hs_prep_1     1.000                               0.673    0.512
##     pre_hs_prep_2     0.743    0.110    6.750    0.000    0.499    0.611
##     pre_hs_prep_3     0.766    0.119    6.445    0.000    0.515    0.781
##     pre_hs_prep_4     0.820    0.129    6.375    0.000    0.551    0.847
##     pre_hs_prep_5     0.806    0.150    5.364    0.000    0.542    0.652
##   expect =~                                                             
##     pre_exp_1         1.000                               0.885    0.764
##     pre_exp_2         0.925    0.077   11.971    0.000    0.819    0.839
##     pre_exp_3         1.108    0.074   15.046    0.000    0.981    0.818
##   value =~                                                              
##     pre_val_1         1.000                               1.027    0.843
##     pre_val_2         0.954    0.053   17.981    0.000    0.980    0.852
##     pre_val_3         1.046    0.053   19.858    0.000    1.074    0.844
##   a_oe_cost =~                                                          
##     pre_cost_oe_1     1.000                               1.035    0.810
##     pre_cost_oe_2     1.062    0.066   15.978    0.000    1.099    0.865
##     pre_cost_oe_3     1.054    0.069   15.269    0.000    1.091    0.836
##     pre_cost_oe_4     0.985    0.065   15.136    0.000    1.020    0.817
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   a_oe_cost ~                                                           
##     hs_prep_1 (aa)   -0.252    0.190   -1.328    0.184   -0.164   -0.164
##     pr_hrs_wr (ab)   -0.001    0.048   -0.015    0.988   -0.001   -0.001
##     pr_hrs_m_ (ac)   -0.025    0.049   -0.519    0.604   -0.025   -0.032
##     crdt___15 (ad)   -0.291    0.114   -2.553    0.011   -0.281   -0.135
##     pr_stm_nt (ae)   -0.036    0.035   -1.016    0.310   -0.034   -0.063
##     expect    (af)   -0.398    0.146   -2.721    0.007   -0.341   -0.341
##     value     (ag)    0.062    0.101    0.617    0.537    0.062    0.062
##     female    (ah)   -0.130    0.116   -1.115    0.265   -0.125   -0.062
##     urm       (ai)   -0.196    0.172   -1.142    0.253   -0.189   -0.051
##     Best_MPS  (aj)    0.001    0.014    0.058    0.954    0.001    0.004
##   eoc_cost_oe ~                                                         
##     a_oe_cost  (b)    0.512    0.091    5.628    0.000    0.530    0.344
##     hs_prep_1        -0.274    0.152   -1.797    0.072   -0.184   -0.119
##     pr_hrs_wr         0.045    0.049    0.910    0.363    0.045    0.044
##     pr_hrs_m_         0.069    0.040    1.717    0.086    0.069    0.059
##     crdt___15        -0.213    0.129   -1.651    0.099   -0.213   -0.067
##     pr_stm_nt        -0.074    0.040   -1.856    0.063   -0.074   -0.089
##     expect           -0.246    0.122   -2.022    0.043   -0.218   -0.141
##     value             0.089    0.110    0.804    0.422    0.091    0.059
##     female            0.007    0.128    0.056    0.955    0.007    0.002
##     urm               0.381    0.252    1.511    0.131    0.381    0.067
##     Best_MPS         -0.043    0.015   -2.818    0.005   -0.043   -0.141
##     week              0.029    0.011    2.707    0.007    0.029    0.060
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   hs_prep_1 ~~                                                          
##     expect            0.219    0.092    2.385    0.017    0.367    0.367
##     value             0.176    0.103    1.712    0.087    0.255    0.255
##   expect ~~                                                             
##     value             0.616    0.130    4.754    0.000    0.678    0.678
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pre_hs_prep_1     4.360    0.110   39.567    0.000    4.360    3.316
##    .pre_hs_prep_2     4.935    0.072   68.572    0.000    4.935    6.037
##    .pre_hs_prep_3     5.311    0.057   93.661    0.000    5.311    8.046
##    .pre_hs_prep_4     5.448    0.058   93.793    0.000    5.448    8.375
##    .pre_hs_prep_5     5.136    0.071   72.665    0.000    5.136    6.182
##    .pre_exp_1         5.717    0.066   86.209    0.000    5.717    4.934
##    .pre_exp_2         5.924    0.057  103.466    0.000    5.924    6.072
##    .pre_exp_3         5.497    0.069   79.413    0.000    5.497    4.582
##    .pre_val_1         5.805    0.071   81.576    0.000    5.805    4.769
##    .pre_val_2         5.660    0.067   84.384    0.000    5.660    4.922
##    .pre_val_3         5.576    0.075   74.584    0.000    5.576    4.386
##    .pre_cost_oe_1     3.137    0.395    7.938    0.000    3.137    2.455
##    .pre_cost_oe_2     3.183    0.426    7.476    0.000    3.183    2.503
##    .pre_cost_oe_3     3.157    0.423    7.463    0.000    3.157    2.420
##    .pre_cost_oe_4     3.126    0.399    7.839    0.000    3.126    2.504
##    .eoc_cost_oe       3.767    0.452    8.332    0.000    3.767    2.444
##     hs_prep_1         0.000                               0.000    0.000
##     expect            0.000                               0.000    0.000
##     value             0.000                               0.000    0.000
##    .a_oe_cost         0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pre_hs_prep_1     1.276    0.178    7.174    0.000    1.276    0.738
##    .pre_hs_prep_2     0.419    0.070    6.020    0.000    0.419    0.627
##    .pre_hs_prep_3     0.170    0.034    4.958    0.000    0.170    0.390
##    .pre_hs_prep_4     0.119    0.026    4.543    0.000    0.119    0.282
##    .pre_hs_prep_5     0.397    0.147    2.692    0.007    0.397    0.575
##    .pre_exp_1         0.559    0.160    3.483    0.000    0.559    0.416
##    .pre_exp_2         0.281    0.056    5.004    0.000    0.281    0.295
##    .pre_exp_3         0.477    0.091    5.237    0.000    0.477    0.331
##    .pre_val_1         0.428    0.096    4.454    0.000    0.428    0.289
##    .pre_val_2         0.363    0.060    6.093    0.000    0.363    0.274
##    .pre_val_3         0.464    0.088    5.276    0.000    0.464    0.287
##    .pre_cost_oe_1     0.562    0.110    5.105    0.000    0.562    0.344
##    .pre_cost_oe_2     0.409    0.068    6.019    0.000    0.409    0.253
##    .pre_cost_oe_3     0.512    0.083    6.139    0.000    0.512    0.301
##    .pre_cost_oe_4     0.518    0.069    7.477    0.000    0.518    0.332
##    .eoc_cost_oe       1.770    0.113   15.601    0.000    1.770    0.746
##     hs_prep_1         0.452    0.121    3.736    0.000    1.000    1.000
##     expect            0.784    0.158    4.956    0.000    1.000    1.000
##     value             1.054    0.185    5.709    0.000    1.000    1.000
##    .a_oe_cost         0.874    0.149    5.857    0.000    0.816    0.816
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     hs_cost          -0.129    0.098   -1.317    0.188   -0.087   -0.056
##     work_cost        -0.000    0.025   -0.015    0.988   -0.000   -0.000
##     prep_cost        -0.013    0.026   -0.509    0.611   -0.013   -0.011
##     credits_cost     -0.149    0.063   -2.379    0.017   -0.149   -0.046
##     stem_cost        -0.018    0.017   -1.043    0.297   -0.018   -0.022
##     expect_cost      -0.204    0.086   -2.383    0.017   -0.180   -0.117
##     val_cost          0.032    0.051    0.622    0.534    0.033    0.021
##     female_cost      -0.066    0.060   -1.103    0.270   -0.066   -0.021
##     urm_cost         -0.100    0.090   -1.116    0.264   -0.100   -0.018
##     mps_cost          0.000    0.007    0.058    0.954    0.000    0.001
test
##                      lhs op                  rhs        label    est    se
## 1              hs_prep_1 =~        pre_hs_prep_1               1.000 0.000
## 2              hs_prep_1 =~        pre_hs_prep_2               0.743 0.110
## 3              hs_prep_1 =~        pre_hs_prep_3               0.766 0.119
## 4              hs_prep_1 =~        pre_hs_prep_4               0.820 0.129
## 5              hs_prep_1 =~        pre_hs_prep_5               0.806 0.150
## 6                 expect =~            pre_exp_1               1.000 0.000
## 7                 expect =~            pre_exp_2               0.925 0.077
## 8                 expect =~            pre_exp_3               1.108 0.074
## 9                  value =~            pre_val_1               1.000 0.000
## 10                 value =~            pre_val_2               0.954 0.053
## 11                 value =~            pre_val_3               1.046 0.053
## 12             a_oe_cost =~        pre_cost_oe_1               1.000 0.000
## 13             a_oe_cost =~        pre_cost_oe_2               1.062 0.066
## 14             a_oe_cost =~        pre_cost_oe_3               1.054 0.069
## 15             a_oe_cost =~        pre_cost_oe_4               0.985 0.065
## 16             a_oe_cost  ~            hs_prep_1           aa -0.252 0.190
## 17             a_oe_cost  ~       pre_hours_work           ab -0.001 0.048
## 18             a_oe_cost  ~  pre_hours_math_prep           ac -0.025 0.049
## 19             a_oe_cost  ~ credits_more_than_15           ad -0.291 0.114
## 20             a_oe_cost  ~         pre_stem_int           ae -0.036 0.035
## 21             a_oe_cost  ~               expect           af -0.398 0.146
## 22             a_oe_cost  ~                value           ag  0.062 0.101
## 23             a_oe_cost  ~               female           ah -0.130 0.116
## 24             a_oe_cost  ~                  urm           ai -0.196 0.172
## 25             a_oe_cost  ~             Best_MPS           aj  0.001 0.014
## 26           eoc_cost_oe  ~            a_oe_cost            b  0.512 0.091
## 27           eoc_cost_oe  ~            hs_prep_1              -0.274 0.152
## 28           eoc_cost_oe  ~       pre_hours_work               0.045 0.049
## 29           eoc_cost_oe  ~  pre_hours_math_prep               0.069 0.040
## 30           eoc_cost_oe  ~ credits_more_than_15              -0.213 0.129
## 31           eoc_cost_oe  ~         pre_stem_int              -0.074 0.040
## 32           eoc_cost_oe  ~               expect              -0.246 0.122
## 33           eoc_cost_oe  ~                value               0.089 0.110
## 34           eoc_cost_oe  ~               female               0.007 0.128
## 35           eoc_cost_oe  ~                  urm               0.381 0.252
## 36           eoc_cost_oe  ~             Best_MPS              -0.043 0.015
## 37           eoc_cost_oe  ~                 week               0.029 0.011
## 38         pre_hs_prep_1 ~~        pre_hs_prep_1               1.276 0.178
## 39         pre_hs_prep_2 ~~        pre_hs_prep_2               0.419 0.070
## 40         pre_hs_prep_3 ~~        pre_hs_prep_3               0.170 0.034
## 41         pre_hs_prep_4 ~~        pre_hs_prep_4               0.119 0.026
## 42         pre_hs_prep_5 ~~        pre_hs_prep_5               0.397 0.147
## 43             pre_exp_1 ~~            pre_exp_1               0.559 0.160
## 44             pre_exp_2 ~~            pre_exp_2               0.281 0.056
## 45             pre_exp_3 ~~            pre_exp_3               0.477 0.091
## 46             pre_val_1 ~~            pre_val_1               0.428 0.096
## 47             pre_val_2 ~~            pre_val_2               0.363 0.060
## 48             pre_val_3 ~~            pre_val_3               0.464 0.088
## 49         pre_cost_oe_1 ~~        pre_cost_oe_1               0.562 0.110
## 50         pre_cost_oe_2 ~~        pre_cost_oe_2               0.409 0.068
## 51         pre_cost_oe_3 ~~        pre_cost_oe_3               0.512 0.083
## 52         pre_cost_oe_4 ~~        pre_cost_oe_4               0.518 0.069
## 53           eoc_cost_oe ~~          eoc_cost_oe               1.770 0.113
## 54             hs_prep_1 ~~            hs_prep_1               0.452 0.121
## 55                expect ~~               expect               0.784 0.158
## 56                 value ~~                value               1.054 0.185
## 57             a_oe_cost ~~            a_oe_cost               0.874 0.149
## 58             hs_prep_1 ~~               expect               0.219 0.092
## 59             hs_prep_1 ~~                value               0.176 0.103
## 60                expect ~~                value               0.616 0.130
## 61        pre_hours_work ~~       pre_hours_work               2.327 0.000
## 62        pre_hours_work ~~  pre_hours_math_prep               0.159 0.000
## 63        pre_hours_work ~~ credits_more_than_15              -0.031 0.000
## 64        pre_hours_work ~~         pre_stem_int               0.322 0.000
## 65        pre_hours_work ~~               female               0.089 0.000
## 66        pre_hours_work ~~                  urm               0.087 0.000
## 67        pre_hours_work ~~             Best_MPS              -0.602 0.000
## 68        pre_hours_work ~~                 week              -0.012 0.000
## 69   pre_hours_math_prep ~~  pre_hours_math_prep               1.744 0.000
## 70   pre_hours_math_prep ~~ credits_more_than_15              -0.033 0.000
## 71   pre_hours_math_prep ~~         pre_stem_int               0.054 0.000
## 72   pre_hours_math_prep ~~               female              -0.053 0.000
## 73   pre_hours_math_prep ~~                  urm              -0.003 0.000
## 74   pre_hours_math_prep ~~             Best_MPS               0.459 0.000
## 75   pre_hours_math_prep ~~                 week              -0.082 0.000
## 76  credits_more_than_15 ~~ credits_more_than_15               0.231 0.000
## 77  credits_more_than_15 ~~         pre_stem_int              -0.067 0.000
## 78  credits_more_than_15 ~~               female               0.007 0.000
## 79  credits_more_than_15 ~~                  urm               0.007 0.000
## 80  credits_more_than_15 ~~             Best_MPS              -0.085 0.000
## 81  credits_more_than_15 ~~                 week               0.004 0.000
## 82          pre_stem_int ~~         pre_stem_int               3.383 0.000
## 83          pre_stem_int ~~               female               0.006 0.000
## 84          pre_stem_int ~~                  urm               0.031 0.000
## 85          pre_stem_int ~~             Best_MPS               0.254 0.000
## 86          pre_stem_int ~~                 week              -0.122 0.000
## 87                female ~~               female               0.243 0.000
## 88                female ~~                  urm               0.012 0.000
## 89                female ~~             Best_MPS              -0.228 0.000
## 90                female ~~                 week               0.077 0.000
## 91                   urm ~~                  urm               0.072 0.000
## 92                   urm ~~             Best_MPS              -0.369 0.000
## 93                   urm ~~                 week              -0.008 0.000
## 94              Best_MPS ~~             Best_MPS              25.341 0.000
## 95              Best_MPS ~~                 week              -0.328 0.000
## 96                  week ~~                 week               9.922 0.000
## 97         pre_hs_prep_1 ~1                                    4.360 0.110
## 98         pre_hs_prep_2 ~1                                    4.935 0.072
## 99         pre_hs_prep_3 ~1                                    5.311 0.057
## 100        pre_hs_prep_4 ~1                                    5.448 0.058
## 101        pre_hs_prep_5 ~1                                    5.136 0.071
## 102            pre_exp_1 ~1                                    5.717 0.066
## 103            pre_exp_2 ~1                                    5.924 0.057
## 104            pre_exp_3 ~1                                    5.497 0.069
## 105            pre_val_1 ~1                                    5.805 0.071
## 106            pre_val_2 ~1                                    5.660 0.067
## 107            pre_val_3 ~1                                    5.576 0.075
## 108        pre_cost_oe_1 ~1                                    3.137 0.395
## 109        pre_cost_oe_2 ~1                                    3.183 0.426
## 110        pre_cost_oe_3 ~1                                    3.157 0.423
## 111        pre_cost_oe_4 ~1                                    3.126 0.399
## 112          eoc_cost_oe ~1                                    3.767 0.452
## 113       pre_hours_work ~1                                    2.189 0.000
## 114  pre_hours_math_prep ~1                                    3.310 0.000
## 115 credits_more_than_15 ~1                                    0.363 0.000
## 116         pre_stem_int ~1                                    5.041 0.000
## 117               female ~1                                    0.417 0.000
## 118                  urm ~1                                    0.078 0.000
## 119             Best_MPS ~1                                   18.701 0.000
## 120                 week ~1                                    5.469 0.000
## 121            hs_prep_1 ~1                                    0.000 0.000
## 122               expect ~1                                    0.000 0.000
## 123                value ~1                                    0.000 0.000
## 124            a_oe_cost ~1                                    0.000 0.000
## 125              hs_cost :=                 aa*b      hs_cost -0.129 0.098
## 126            work_cost :=                 ab*b    work_cost  0.000 0.025
## 127            prep_cost :=                 ac*b    prep_cost -0.013 0.026
## 128         credits_cost :=                 ad*b credits_cost -0.149 0.063
## 129            stem_cost :=                 ae*b    stem_cost -0.018 0.017
## 130          expect_cost :=                 af*b  expect_cost -0.204 0.086
## 131             val_cost :=                 ag*b     val_cost  0.032 0.051
## 132          female_cost :=                 ah*b  female_cost -0.066 0.060
## 133             urm_cost :=                 ai*b     urm_cost -0.100 0.090
## 134             mps_cost :=                 aj*b     mps_cost  0.000 0.007
##           z pvalue ci.lower ci.upper
## 1        NA     NA    1.000    1.000
## 2     6.750  0.000    0.527    0.958
## 3     6.445  0.000    0.533    0.999
## 4     6.375  0.000    0.568    1.072
## 5     5.364  0.000    0.511    1.100
## 6        NA     NA    1.000    1.000
## 7    11.971  0.000    0.774    1.077
## 8    15.046  0.000    0.964    1.253
## 9        NA     NA    1.000    1.000
## 10   17.981  0.000    0.850    1.058
## 11   19.858  0.000    0.943    1.149
## 12       NA     NA    1.000    1.000
## 13   15.978  0.000    0.932    1.193
## 14   15.269  0.000    0.919    1.189
## 15   15.136  0.000    0.858    1.113
## 16   -1.328  0.184   -0.625    0.120
## 17   -0.015  0.988   -0.095    0.093
## 18   -0.519  0.604   -0.122    0.071
## 19   -2.553  0.011   -0.514   -0.068
## 20   -1.016  0.310   -0.104    0.033
## 21   -2.721  0.007   -0.685   -0.111
## 22    0.617  0.537   -0.135    0.259
## 23   -1.115  0.265   -0.358    0.098
## 24   -1.142  0.253   -0.533    0.140
## 25    0.058  0.954   -0.026    0.028
## 26    5.628  0.000    0.333    0.690
## 27   -1.797  0.072   -0.572    0.025
## 28    0.910  0.363   -0.051    0.140
## 29    1.717  0.086   -0.010    0.147
## 30   -1.651  0.099   -0.466    0.040
## 31   -1.856  0.063   -0.153    0.004
## 32   -2.022  0.043   -0.484   -0.008
## 33    0.804  0.422   -0.128    0.305
## 34    0.056  0.955   -0.243    0.258
## 35    1.511  0.131   -0.113    0.876
## 36   -2.818  0.005   -0.073   -0.013
## 37    2.707  0.007    0.008    0.051
## 38    7.174  0.000    0.928    1.625
## 39    6.020  0.000    0.283    0.555
## 40    4.958  0.000    0.103    0.237
## 41    4.543  0.000    0.068    0.171
## 42    2.692  0.007    0.108    0.685
## 43    3.483  0.000    0.244    0.873
## 44    5.004  0.000    0.171    0.391
## 45    5.237  0.000    0.298    0.655
## 46    4.454  0.000    0.240    0.616
## 47    6.093  0.000    0.246    0.479
## 48    5.276  0.000    0.291    0.636
## 49    5.105  0.000    0.346    0.777
## 50    6.019  0.000    0.275    0.542
## 51    6.139  0.000    0.349    0.676
## 52    7.477  0.000    0.382    0.654
## 53   15.601  0.000    1.548    1.993
## 54    3.736  0.000    0.215    0.690
## 55    4.956  0.000    0.474    1.094
## 56    5.709  0.000    0.692    1.416
## 57    5.857  0.000    0.581    1.166
## 58    2.385  0.017    0.039    0.398
## 59    1.712  0.087   -0.025    0.377
## 60    4.754  0.000    0.362    0.870
## 61       NA     NA    2.327    2.327
## 62       NA     NA    0.159    0.159
## 63       NA     NA   -0.031   -0.031
## 64       NA     NA    0.322    0.322
## 65       NA     NA    0.089    0.089
## 66       NA     NA    0.087    0.087
## 67       NA     NA   -0.602   -0.602
## 68       NA     NA   -0.012   -0.012
## 69       NA     NA    1.744    1.744
## 70       NA     NA   -0.033   -0.033
## 71       NA     NA    0.054    0.054
## 72       NA     NA   -0.053   -0.053
## 73       NA     NA   -0.003   -0.003
## 74       NA     NA    0.459    0.459
## 75       NA     NA   -0.082   -0.082
## 76       NA     NA    0.231    0.231
## 77       NA     NA   -0.067   -0.067
## 78       NA     NA    0.007    0.007
## 79       NA     NA    0.007    0.007
## 80       NA     NA   -0.085   -0.085
## 81       NA     NA    0.004    0.004
## 82       NA     NA    3.383    3.383
## 83       NA     NA    0.006    0.006
## 84       NA     NA    0.031    0.031
## 85       NA     NA    0.254    0.254
## 86       NA     NA   -0.122   -0.122
## 87       NA     NA    0.243    0.243
## 88       NA     NA    0.012    0.012
## 89       NA     NA   -0.228   -0.228
## 90       NA     NA    0.077    0.077
## 91       NA     NA    0.072    0.072
## 92       NA     NA   -0.369   -0.369
## 93       NA     NA   -0.008   -0.008
## 94       NA     NA   25.341   25.341
## 95       NA     NA   -0.328   -0.328
## 96       NA     NA    9.922    9.922
## 97   39.567  0.000    4.144    4.576
## 98   68.572  0.000    4.794    5.076
## 99   93.661  0.000    5.200    5.422
## 100  93.793  0.000    5.334    5.561
## 101  72.665  0.000    4.998    5.275
## 102  86.209  0.000    5.587    5.847
## 103 103.466  0.000    5.812    6.036
## 104  79.413  0.000    5.361    5.633
## 105  81.576  0.000    5.666    5.945
## 106  84.384  0.000    5.528    5.791
## 107  74.584  0.000    5.430    5.723
## 108   7.938  0.000    2.362    3.912
## 109   7.476  0.000    2.349    4.017
## 110   7.463  0.000    2.328    3.986
## 111   7.839  0.000    2.344    3.907
## 112   8.332  0.000    2.881    4.653
## 113      NA     NA    2.189    2.189
## 114      NA     NA    3.310    3.310
## 115      NA     NA    0.363    0.363
## 116      NA     NA    5.041    5.041
## 117      NA     NA    0.417    0.417
## 118      NA     NA    0.078    0.078
## 119      NA     NA   18.701   18.701
## 120      NA     NA    5.469    5.469
## 121      NA     NA    0.000    0.000
## 122      NA     NA    0.000    0.000
## 123      NA     NA    0.000    0.000
## 124      NA     NA    0.000    0.000
## 125  -1.317  0.188   -0.321    0.063
## 126  -0.015  0.988   -0.049    0.048
## 127  -0.509  0.611   -0.063    0.037
## 128  -2.379  0.017   -0.271   -0.026
## 129  -1.043  0.297   -0.052    0.016
## 130  -2.383  0.017   -0.371   -0.036
## 131   0.622  0.534   -0.068    0.132
## 132  -1.103  0.270   -0.184    0.052
## 133  -1.116  0.264   -0.276    0.076
## 134   0.058  0.954   -0.014    0.014

Loss of Valued Alternatives

cost_lv <-'
#Measurement
hs_prep_1 =~ pre_hs_prep_1 + pre_hs_prep_2 + pre_hs_prep_3 + pre_hs_prep_4 + pre_hs_prep_5
expect =~ pre_exp_1 + pre_exp_2 + pre_exp_3
value =~ pre_val_1 + pre_val_2 + pre_val_3
a_lv_cost =~ pre_cost_lv_1 + pre_cost_lv_2 + pre_cost_lv_3 + pre_cost_lv_4

#Regressions
a_lv_cost ~ aa*hs_prep_1 + ab*pre_hours_work + ac*pre_hours_math_prep + ad*credits_more_than_15 + ae*pre_stem_int + af*expect + ag*value + ah*female + ai*urm + aj*Best_MPS
eoc_cost_lv ~ b*a_lv_cost + hs_prep_1 + pre_hours_work + pre_hours_math_prep + credits_more_than_15 + pre_stem_int + expect + value + female + urm + Best_MPS + week

#indirect effects
hs_cost:= aa*b
work_cost:= ab*b
prep_cost:= ac*b
credits_cost:= ad*b
stem_cost:= ae*b
expect_cost:= af*b
val_cost:= ag*b
female_cost:= ah*b
urm_cost:= ai*b
mps_cost:= aj*b

#Covariances
#expect ~~ value
#pre_hours_math_prep ~~ pre_hours_math_prep
'

fit <- sem(cost_lv, data=MTH_132_124_all, estimator = "MLR", cluster = "stud_id", missing = "ML.x", se = 'bootstrap')
test = parameterEstimates(fit,boot.ci.type = 'bca.simple',level=.95) # bootstrapped estimate
summary(fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-7 ended normally after 91 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         72
##                                                       
##   Number of observations                          2435
##   Number of clusters [stud_id]                     429
##   Number of missing patterns                        39
##                                                       
## Model Test User Model:
##                                                Standard      Robust
##   Test Statistic                               1952.162     276.246
##   Degrees of freedom                                208         208
##   P-value (Chi-square)                            0.000       0.001
##   Scaling correction factor                                   7.067
##        Yuan-Bentler correction (Mplus variant)                     
## 
## Model Test Baseline Model:
## 
##   Test statistic                             17246.845    2182.777
##   Degrees of freedom                               248         248
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  7.901
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.897       0.965
##   Tucker-Lewis Index (TLI)                       0.878       0.958
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.968
##   Robust Tucker-Lewis Index (TLI)                            0.962
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                     NA          NA
##   Scaling correction factor                                 11.196
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)             NA          NA
##   Scaling correction factor                                  8.128
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                      NA          NA
##   Bayesian (BIC)                                    NA          NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.059       0.012
##   90 Percent confidence interval - lower         0.056       0.010
##   90 Percent confidence interval - upper         0.061       0.013
##   P-value RMSEA <= 0.05                          0.000       1.000
##                                                                   
##   Robust RMSEA                                               0.031
##   90 Percent confidence interval - lower                     0.020
##   90 Percent confidence interval - upper                     0.040
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.064       0.064
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   hs_prep_1 =~                                                          
##     pre_hs_prep_1     1.000                               0.679    0.517
##     pre_hs_prep_2     0.736    0.109    6.742    0.000    0.500    0.612
##     pre_hs_prep_3     0.760    0.119    6.374    0.000    0.516    0.783
##     pre_hs_prep_4     0.803    0.127    6.327    0.000    0.545    0.840
##     pre_hs_prep_5     0.796    0.150    5.318    0.000    0.540    0.651
##   expect =~                                                             
##     pre_exp_1         1.000                               0.886    0.764
##     pre_exp_2         0.912    0.077   11.774    0.000    0.808    0.828
##     pre_exp_3         1.125    0.078   14.349    0.000    0.997    0.830
##   value =~                                                              
##     pre_val_1         1.000                               1.027    0.844
##     pre_val_2         0.953    0.053   18.028    0.000    0.978    0.851
##     pre_val_3         1.047    0.053   19.817    0.000    1.075    0.845
##   a_lv_cost =~                                                          
##     pre_cost_lv_1     1.000                               1.005    0.767
##     pre_cost_lv_2     1.125    0.068   16.458    0.000    1.130    0.838
##     pre_cost_lv_3     1.204    0.085   14.213    0.000    1.210    0.879
##     pre_cost_lv_4     0.921    0.093    9.928    0.000    0.925    0.613
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   a_lv_cost ~                                                           
##     hs_prep_1 (aa)   -0.209    0.193   -1.086    0.278   -0.141   -0.141
##     pr_hrs_wr (ab)   -0.022    0.050   -0.443    0.657   -0.022   -0.033
##     pr_hrs_m_ (ac)    0.047    0.051    0.925    0.355    0.047    0.062
##     crdt___15 (ad)   -0.397    0.110   -3.613    0.000   -0.395   -0.190
##     pr_stm_nt (ae)   -0.003    0.036   -0.087    0.931   -0.003   -0.006
##     expect    (af)   -0.316    0.150   -2.109    0.035   -0.278   -0.278
##     value     (ag)   -0.041    0.096   -0.428    0.669   -0.042   -0.042
##     female    (ah)   -0.050    0.116   -0.429    0.668   -0.049   -0.024
##     urm       (ai)    0.218    0.195    1.122    0.262    0.217    0.058
##     Best_MPS  (aj)    0.024    0.012    1.964    0.050    0.024    0.119
##   eoc_cost_lv ~                                                         
##     a_lv_cost  (b)    0.566    0.100    5.654    0.000    0.569    0.363
##     hs_prep_1        -0.351    0.142   -2.477    0.013   -0.238   -0.152
##     pr_hrs_wr         0.064    0.046    1.388    0.165    0.064    0.062
##     pr_hrs_m_         0.087    0.044    2.004    0.045    0.087    0.074
##     crdt___15        -0.239    0.130   -1.832    0.067   -0.239   -0.073
##     pr_stm_nt        -0.061    0.037   -1.672    0.095   -0.061   -0.072
##     expect           -0.356    0.152   -2.346    0.019   -0.315   -0.201
##     value             0.177    0.120    1.469    0.142    0.182    0.116
##     female           -0.082    0.127   -0.649    0.516   -0.082   -0.026
##     urm               0.138    0.246    0.562    0.574    0.138    0.024
##     Best_MPS         -0.048    0.014   -3.358    0.001   -0.048   -0.156
##     week              0.025    0.011    2.262    0.024    0.025    0.050
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   hs_prep_1 ~~                                                          
##     expect            0.216    0.094    2.300    0.021    0.359    0.359
##     value             0.178    0.104    1.717    0.086    0.255    0.255
##   expect ~~                                                             
##     value             0.616    0.130    4.732    0.000    0.677    0.677
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pre_hs_prep_1     4.358    0.110   39.735    0.000    4.358    3.317
##    .pre_hs_prep_2     4.934    0.072   68.814    0.000    4.934    6.041
##    .pre_hs_prep_3     5.309    0.056   93.996    0.000    5.309    8.055
##    .pre_hs_prep_4     5.446    0.058   94.021    0.000    5.446    8.391
##    .pre_hs_prep_5     5.135    0.070   73.048    0.000    5.135    6.188
##    .pre_exp_1         5.716    0.066   86.099    0.000    5.716    4.933
##    .pre_exp_2         5.923    0.057  103.296    0.000    5.923    6.071
##    .pre_exp_3         5.496    0.069   79.316    0.000    5.496    4.578
##    .pre_val_1         5.805    0.071   81.473    0.000    5.805    4.768
##    .pre_val_2         5.659    0.067   84.306    0.000    5.659    4.921
##    .pre_val_3         5.576    0.075   74.539    0.000    5.576    4.385
##    .pre_cost_lv_1     2.450    0.377    6.496    0.000    2.450    1.870
##    .pre_cost_lv_2     2.561    0.422    6.075    0.000    2.561    1.899
##    .pre_cost_lv_3     2.541    0.451    5.639    0.000    2.541    1.845
##    .pre_cost_lv_4     3.372    0.351    9.599    0.000    3.372    2.235
##    .eoc_cost_lv       3.387    0.436    7.761    0.000    3.387    2.164
##     hs_prep_1         0.000                               0.000    0.000
##     expect            0.000                               0.000    0.000
##     value             0.000                               0.000    0.000
##    .a_lv_cost         0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pre_hs_prep_1     1.265    0.177    7.131    0.000    1.265    0.733
##    .pre_hs_prep_2     0.417    0.068    6.166    0.000    0.417    0.625
##    .pre_hs_prep_3     0.168    0.033    5.033    0.000    0.168    0.387
##    .pre_hs_prep_4     0.124    0.028    4.374    0.000    0.124    0.294
##    .pre_hs_prep_5     0.396    0.149    2.667    0.008    0.396    0.576
##    .pre_exp_1         0.558    0.159    3.509    0.000    0.558    0.416
##    .pre_exp_2         0.299    0.060    5.000    0.000    0.299    0.314
##    .pre_exp_3         0.448    0.088    5.116    0.000    0.448    0.311
##    .pre_val_1         0.427    0.095    4.508    0.000    0.427    0.288
##    .pre_val_2         0.365    0.060    6.092    0.000    0.365    0.276
##    .pre_val_3         0.461    0.086    5.376    0.000    0.461    0.285
##    .pre_cost_lv_1     0.707    0.094    7.504    0.000    0.707    0.412
##    .pre_cost_lv_2     0.542    0.089    6.105    0.000    0.542    0.298
##    .pre_cost_lv_3     0.432    0.070    6.186    0.000    0.432    0.228
##    .pre_cost_lv_4     1.420    0.139   10.222    0.000    1.420    0.624
##    .eoc_cost_lv       1.722    0.115   15.033    0.000    1.722    0.703
##     hs_prep_1         0.461    0.124    3.727    0.000    1.000    1.000
##     expect            0.784    0.159    4.928    0.000    1.000    1.000
##     value             1.055    0.185    5.700    0.000    1.000    1.000
##    .a_lv_cost         0.804    0.140    5.744    0.000    0.796    0.796
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     hs_cost          -0.118    0.106   -1.116    0.265   -0.080   -0.051
##     work_cost        -0.012    0.027   -0.457    0.648   -0.012   -0.012
##     prep_cost         0.027    0.030    0.905    0.366    0.027    0.023
##     credits_cost     -0.225    0.073   -3.092    0.002   -0.225   -0.069
##     stem_cost        -0.002    0.021   -0.087    0.931   -0.002   -0.002
##     expect_cost      -0.179    0.096   -1.859    0.063   -0.158   -0.101
##     val_cost         -0.023    0.055   -0.426    0.670   -0.024   -0.015
##     female_cost      -0.028    0.066   -0.426    0.670   -0.028   -0.009
##     urm_cost          0.124    0.110    1.125    0.260    0.124    0.021
##     mps_cost          0.013    0.007    1.800    0.072    0.013    0.043
test
##                      lhs op                  rhs        label    est    se
## 1              hs_prep_1 =~        pre_hs_prep_1               1.000 0.000
## 2              hs_prep_1 =~        pre_hs_prep_2               0.736 0.109
## 3              hs_prep_1 =~        pre_hs_prep_3               0.760 0.119
## 4              hs_prep_1 =~        pre_hs_prep_4               0.803 0.127
## 5              hs_prep_1 =~        pre_hs_prep_5               0.796 0.150
## 6                 expect =~            pre_exp_1               1.000 0.000
## 7                 expect =~            pre_exp_2               0.912 0.077
## 8                 expect =~            pre_exp_3               1.125 0.078
## 9                  value =~            pre_val_1               1.000 0.000
## 10                 value =~            pre_val_2               0.953 0.053
## 11                 value =~            pre_val_3               1.047 0.053
## 12             a_lv_cost =~        pre_cost_lv_1               1.000 0.000
## 13             a_lv_cost =~        pre_cost_lv_2               1.125 0.068
## 14             a_lv_cost =~        pre_cost_lv_3               1.204 0.085
## 15             a_lv_cost =~        pre_cost_lv_4               0.921 0.093
## 16             a_lv_cost  ~            hs_prep_1           aa -0.209 0.193
## 17             a_lv_cost  ~       pre_hours_work           ab -0.022 0.050
## 18             a_lv_cost  ~  pre_hours_math_prep           ac  0.047 0.051
## 19             a_lv_cost  ~ credits_more_than_15           ad -0.397 0.110
## 20             a_lv_cost  ~         pre_stem_int           ae -0.003 0.036
## 21             a_lv_cost  ~               expect           af -0.316 0.150
## 22             a_lv_cost  ~                value           ag -0.041 0.096
## 23             a_lv_cost  ~               female           ah -0.050 0.116
## 24             a_lv_cost  ~                  urm           ai  0.218 0.195
## 25             a_lv_cost  ~             Best_MPS           aj  0.024 0.012
## 26           eoc_cost_lv  ~            a_lv_cost            b  0.566 0.100
## 27           eoc_cost_lv  ~            hs_prep_1              -0.351 0.142
## 28           eoc_cost_lv  ~       pre_hours_work               0.064 0.046
## 29           eoc_cost_lv  ~  pre_hours_math_prep               0.087 0.044
## 30           eoc_cost_lv  ~ credits_more_than_15              -0.239 0.130
## 31           eoc_cost_lv  ~         pre_stem_int              -0.061 0.037
## 32           eoc_cost_lv  ~               expect              -0.356 0.152
## 33           eoc_cost_lv  ~                value               0.177 0.120
## 34           eoc_cost_lv  ~               female              -0.082 0.127
## 35           eoc_cost_lv  ~                  urm               0.138 0.246
## 36           eoc_cost_lv  ~             Best_MPS              -0.048 0.014
## 37           eoc_cost_lv  ~                 week               0.025 0.011
## 38         pre_hs_prep_1 ~~        pre_hs_prep_1               1.265 0.177
## 39         pre_hs_prep_2 ~~        pre_hs_prep_2               0.417 0.068
## 40         pre_hs_prep_3 ~~        pre_hs_prep_3               0.168 0.033
## 41         pre_hs_prep_4 ~~        pre_hs_prep_4               0.124 0.028
## 42         pre_hs_prep_5 ~~        pre_hs_prep_5               0.396 0.149
## 43             pre_exp_1 ~~            pre_exp_1               0.558 0.159
## 44             pre_exp_2 ~~            pre_exp_2               0.299 0.060
## 45             pre_exp_3 ~~            pre_exp_3               0.448 0.088
## 46             pre_val_1 ~~            pre_val_1               0.427 0.095
## 47             pre_val_2 ~~            pre_val_2               0.365 0.060
## 48             pre_val_3 ~~            pre_val_3               0.461 0.086
## 49         pre_cost_lv_1 ~~        pre_cost_lv_1               0.707 0.094
## 50         pre_cost_lv_2 ~~        pre_cost_lv_2               0.542 0.089
## 51         pre_cost_lv_3 ~~        pre_cost_lv_3               0.432 0.070
## 52         pre_cost_lv_4 ~~        pre_cost_lv_4               1.420 0.139
## 53           eoc_cost_lv ~~          eoc_cost_lv               1.722 0.115
## 54             hs_prep_1 ~~            hs_prep_1               0.461 0.124
## 55                expect ~~               expect               0.784 0.159
## 56                 value ~~                value               1.055 0.185
## 57             a_lv_cost ~~            a_lv_cost               0.804 0.140
## 58             hs_prep_1 ~~               expect               0.216 0.094
## 59             hs_prep_1 ~~                value               0.178 0.104
## 60                expect ~~                value               0.616 0.130
## 61        pre_hours_work ~~       pre_hours_work               2.327 0.000
## 62        pre_hours_work ~~  pre_hours_math_prep               0.159 0.000
## 63        pre_hours_work ~~ credits_more_than_15              -0.031 0.000
## 64        pre_hours_work ~~         pre_stem_int               0.335 0.000
## 65        pre_hours_work ~~               female               0.089 0.000
## 66        pre_hours_work ~~                  urm               0.087 0.000
## 67        pre_hours_work ~~             Best_MPS              -0.645 0.000
## 68        pre_hours_work ~~                 week              -0.012 0.000
## 69   pre_hours_math_prep ~~  pre_hours_math_prep               1.744 0.000
## 70   pre_hours_math_prep ~~ credits_more_than_15              -0.033 0.000
## 71   pre_hours_math_prep ~~         pre_stem_int               0.056 0.000
## 72   pre_hours_math_prep ~~               female              -0.053 0.000
## 73   pre_hours_math_prep ~~                  urm              -0.003 0.000
## 74   pre_hours_math_prep ~~             Best_MPS               0.434 0.000
## 75   pre_hours_math_prep ~~                 week              -0.082 0.000
## 76  credits_more_than_15 ~~ credits_more_than_15               0.231 0.000
## 77  credits_more_than_15 ~~         pre_stem_int              -0.069 0.000
## 78  credits_more_than_15 ~~               female               0.007 0.000
## 79  credits_more_than_15 ~~                  urm               0.007 0.000
## 80  credits_more_than_15 ~~             Best_MPS              -0.071 0.000
## 81  credits_more_than_15 ~~                 week               0.004 0.000
## 82          pre_stem_int ~~         pre_stem_int               3.389 0.000
## 83          pre_stem_int ~~               female               0.008 0.000
## 84          pre_stem_int ~~                  urm               0.030 0.000
## 85          pre_stem_int ~~             Best_MPS               0.277 0.000
## 86          pre_stem_int ~~                 week              -0.121 0.000
## 87                female ~~               female               0.243 0.000
## 88                female ~~                  urm               0.012 0.000
## 89                female ~~             Best_MPS              -0.221 0.000
## 90                female ~~                 week               0.077 0.000
## 91                   urm ~~                  urm               0.072 0.000
## 92                   urm ~~             Best_MPS              -0.377 0.000
## 93                   urm ~~                 week              -0.008 0.000
## 94              Best_MPS ~~             Best_MPS              25.367 0.000
## 95              Best_MPS ~~                 week              -0.320 0.000
## 96                  week ~~                 week               9.922 0.000
## 97         pre_hs_prep_1 ~1                                    4.358 0.110
## 98         pre_hs_prep_2 ~1                                    4.934 0.072
## 99         pre_hs_prep_3 ~1                                    5.309 0.056
## 100        pre_hs_prep_4 ~1                                    5.446 0.058
## 101        pre_hs_prep_5 ~1                                    5.135 0.070
## 102            pre_exp_1 ~1                                    5.716 0.066
## 103            pre_exp_2 ~1                                    5.923 0.057
## 104            pre_exp_3 ~1                                    5.496 0.069
## 105            pre_val_1 ~1                                    5.805 0.071
## 106            pre_val_2 ~1                                    5.659 0.067
## 107            pre_val_3 ~1                                    5.576 0.075
## 108        pre_cost_lv_1 ~1                                    2.450 0.377
## 109        pre_cost_lv_2 ~1                                    2.561 0.422
## 110        pre_cost_lv_3 ~1                                    2.541 0.451
## 111        pre_cost_lv_4 ~1                                    3.372 0.351
## 112          eoc_cost_lv ~1                                    3.387 0.436
## 113       pre_hours_work ~1                                    2.189 0.000
## 114  pre_hours_math_prep ~1                                    3.310 0.000
## 115 credits_more_than_15 ~1                                    0.363 0.000
## 116         pre_stem_int ~1                                    5.045 0.000
## 117               female ~1                                    0.417 0.000
## 118                  urm ~1                                    0.078 0.000
## 119             Best_MPS ~1                                   18.655 0.000
## 120                 week ~1                                    5.469 0.000
## 121            hs_prep_1 ~1                                    0.000 0.000
## 122               expect ~1                                    0.000 0.000
## 123                value ~1                                    0.000 0.000
## 124            a_lv_cost ~1                                    0.000 0.000
## 125              hs_cost :=                 aa*b      hs_cost -0.118 0.106
## 126            work_cost :=                 ab*b    work_cost -0.012 0.027
## 127            prep_cost :=                 ac*b    prep_cost  0.027 0.030
## 128         credits_cost :=                 ad*b credits_cost -0.225 0.073
## 129            stem_cost :=                 ae*b    stem_cost -0.002 0.021
## 130          expect_cost :=                 af*b  expect_cost -0.179 0.096
## 131             val_cost :=                 ag*b     val_cost -0.023 0.055
## 132          female_cost :=                 ah*b  female_cost -0.028 0.066
## 133             urm_cost :=                 ai*b     urm_cost  0.124 0.110
## 134             mps_cost :=                 aj*b     mps_cost  0.013 0.007
##           z pvalue ci.lower ci.upper
## 1        NA     NA    1.000    1.000
## 2     6.742  0.000    0.522    0.950
## 3     6.374  0.000    0.526    0.994
## 4     6.327  0.000    0.554    1.052
## 5     5.318  0.000    0.502    1.089
## 6        NA     NA    1.000    1.000
## 7    11.774  0.000    0.760    1.064
## 8    14.349  0.000    0.972    1.279
## 9        NA     NA    1.000    1.000
## 10   18.028  0.000    0.849    1.056
## 11   19.817  0.000    0.943    1.150
## 12       NA     NA    1.000    1.000
## 13   16.458  0.000    0.991    1.259
## 14   14.213  0.000    1.038    1.370
## 15    9.928  0.000    0.739    1.102
## 16   -1.086  0.278   -0.587    0.169
## 17   -0.443  0.657   -0.119    0.075
## 18    0.925  0.355   -0.053    0.147
## 19   -3.613  0.000   -0.613   -0.182
## 20   -0.087  0.931   -0.074    0.068
## 21   -2.109  0.035   -0.610   -0.022
## 22   -0.428  0.669   -0.229    0.147
## 23   -0.429  0.668   -0.277    0.177
## 24    1.122  0.262   -0.163    0.600
## 25    1.964  0.050    0.000    0.047
## 26    5.654  0.000    0.370    0.762
## 27   -2.477  0.013   -0.628   -0.073
## 28    1.388  0.165   -0.026    0.154
## 29    2.004  0.045    0.002    0.173
## 30   -1.832  0.067   -0.494    0.017
## 31   -1.672  0.095   -0.133    0.011
## 32   -2.346  0.019   -0.653   -0.058
## 33    1.469  0.142   -0.059    0.413
## 34   -0.649  0.516   -0.331    0.166
## 35    0.562  0.574   -0.344    0.621
## 36   -3.358  0.001   -0.077   -0.020
## 37    2.262  0.024    0.003    0.046
## 38    7.131  0.000    0.918    1.613
## 39    6.166  0.000    0.285    0.550
## 40    5.033  0.000    0.103    0.233
## 41    4.374  0.000    0.068    0.179
## 42    2.667  0.008    0.105    0.688
## 43    3.509  0.000    0.246    0.870
## 44    5.000  0.000    0.182    0.417
## 45    5.116  0.000    0.276    0.620
## 46    4.508  0.000    0.242    0.613
## 47    6.092  0.000    0.248    0.483
## 48    5.376  0.000    0.293    0.630
## 49    7.504  0.000    0.522    0.892
## 50    6.105  0.000    0.368    0.716
## 51    6.186  0.000    0.295    0.569
## 52   10.222  0.000    1.148    1.692
## 53   15.033  0.000    1.497    1.946
## 54    3.727  0.000    0.219    0.704
## 55    4.928  0.000    0.472    1.096
## 56    5.700  0.000    0.692    1.417
## 57    5.744  0.000    0.530    1.078
## 58    2.300  0.021    0.032    0.400
## 59    1.717  0.086   -0.025    0.381
## 60    4.732  0.000    0.361    0.871
## 61       NA     NA    2.327    2.327
## 62       NA     NA    0.159    0.159
## 63       NA     NA   -0.031   -0.031
## 64       NA     NA    0.335    0.335
## 65       NA     NA    0.089    0.089
## 66       NA     NA    0.087    0.087
## 67       NA     NA   -0.645   -0.645
## 68       NA     NA   -0.012   -0.012
## 69       NA     NA    1.744    1.744
## 70       NA     NA   -0.033   -0.033
## 71       NA     NA    0.056    0.056
## 72       NA     NA   -0.053   -0.053
## 73       NA     NA   -0.003   -0.003
## 74       NA     NA    0.434    0.434
## 75       NA     NA   -0.082   -0.082
## 76       NA     NA    0.231    0.231
## 77       NA     NA   -0.069   -0.069
## 78       NA     NA    0.007    0.007
## 79       NA     NA    0.007    0.007
## 80       NA     NA   -0.071   -0.071
## 81       NA     NA    0.004    0.004
## 82       NA     NA    3.389    3.389
## 83       NA     NA    0.008    0.008
## 84       NA     NA    0.030    0.030
## 85       NA     NA    0.277    0.277
## 86       NA     NA   -0.121   -0.121
## 87       NA     NA    0.243    0.243
## 88       NA     NA    0.012    0.012
## 89       NA     NA   -0.221   -0.221
## 90       NA     NA    0.077    0.077
## 91       NA     NA    0.072    0.072
## 92       NA     NA   -0.377   -0.377
## 93       NA     NA   -0.008   -0.008
## 94       NA     NA   25.367   25.367
## 95       NA     NA   -0.320   -0.320
## 96       NA     NA    9.922    9.922
## 97   39.735  0.000    4.143    4.573
## 98   68.814  0.000    4.794    5.075
## 99   93.996  0.000    5.199    5.420
## 100  94.021  0.000    5.333    5.560
## 101  73.048  0.000    4.997    5.273
## 102  86.099  0.000    5.586    5.846
## 103 103.296  0.000    5.811    6.036
## 104  79.316  0.000    5.360    5.632
## 105  81.473  0.000    5.665    5.944
## 106  84.306  0.000    5.527    5.791
## 107  74.539  0.000    5.429    5.723
## 108   6.496  0.000    1.711    3.189
## 109   6.075  0.000    1.735    3.388
## 110   5.639  0.000    1.658    3.424
## 111   9.599  0.000    2.683    4.060
## 112   7.761  0.000    2.532    4.242
## 113      NA     NA    2.189    2.189
## 114      NA     NA    3.310    3.310
## 115      NA     NA    0.363    0.363
## 116      NA     NA    5.045    5.045
## 117      NA     NA    0.417    0.417
## 118      NA     NA    0.078    0.078
## 119      NA     NA   18.655   18.655
## 120      NA     NA    5.469    5.469
## 121      NA     NA    0.000    0.000
## 122      NA     NA    0.000    0.000
## 123      NA     NA    0.000    0.000
## 124      NA     NA    0.000    0.000
## 125  -1.116  0.265   -0.327    0.090
## 126  -0.457  0.648   -0.066    0.041
## 127   0.905  0.366   -0.031    0.085
## 128  -3.092  0.002   -0.367   -0.082
## 129  -0.087  0.931   -0.042    0.038
## 130  -1.859  0.063   -0.367    0.010
## 131  -0.426  0.670   -0.130    0.084
## 132  -0.426  0.670   -0.157    0.101
## 133   1.125  0.260   -0.092    0.339
## 134   1.800  0.072   -0.001    0.028

Emotional Cost

cost_em <-'
#Measurement
hs_prep_1 =~ pre_hs_prep_1 + pre_hs_prep_2 + pre_hs_prep_3 + pre_hs_prep_4 + pre_hs_prep_5
expect =~ pre_exp_1 + pre_exp_2 + pre_exp_3
value =~ pre_val_1 + pre_val_2 + pre_val_3
a_em_cost =~ pre_cost_em_1 + pre_cost_em_2 + pre_cost_em_3 + pre_cost_em_4 + pre_cost_em_5 + pre_cost_em_6

#Regressions
a_em_cost ~ aa*hs_prep_1 + ab*pre_hours_work + ac*pre_hours_math_prep + ad*credits_more_than_15 + ae*pre_stem_int + af*expect + ag*value + ah*female + ai*urm + aj*Best_MPS
eoc_cost_em ~ b*a_em_cost + hs_prep_1 + pre_hours_work + pre_hours_math_prep + credits_more_than_15 + pre_stem_int + expect + value + female + urm + Best_MPS + week

#indirect effects
hs_cost:= aa*b
work_cost:= ab*b
prep_cost:= ac*b
credits_cost:= ad*b
stem_cost:= ae*b
expect_cost:= af*b
val_cost:= ag*b
female_cost:= ah*b
urm_cost:= ai*b
mps_cost:= aj*b

#Covariances
# pre_stem_int ~~ expect + value + a_te_cost
# expect ~~ value + a_te_cost
# value ~~ a_te_cost
# pre_hours_math_prep ~~ pre_hours_math_prep
'

fit <- sem(cost_em, data=MTH_132_124_all, estimator = "MLR", cluster = "stud_id", missing = "ML.x", se = 'bootstrap')
test = parameterEstimates(fit,boot.ci.type = 'bca.simple',level=.95) # bootstrapped estimate
summary(fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-7 ended normally after 95 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         78
##                                                       
##   Number of observations                          2435
##   Number of clusters [stud_id]                     429
##   Number of missing patterns                        43
##                                                       
## Model Test User Model:
##                                                Standard      Robust
##   Test Statistic                               2438.350     340.952
##   Degrees of freedom                                255         255
##   P-value (Chi-square)                            0.000       0.000
##   Scaling correction factor                                   7.152
##        Yuan-Bentler correction (Mplus variant)                     
## 
## Model Test Baseline Model:
## 
##   Test statistic                             21940.210    2756.242
##   Degrees of freedom                               297         297
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  7.960
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.899       0.965
##   Tucker-Lewis Index (TLI)                       0.883       0.959
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.969
##   Robust Tucker-Lewis Index (TLI)                            0.963
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                     NA          NA
##   Scaling correction factor                                 11.212
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)             NA          NA
##   Scaling correction factor                                  8.103
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                      NA          NA
##   Bayesian (BIC)                                    NA          NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.059       0.012
##   90 Percent confidence interval - lower         0.057       0.011
##   90 Percent confidence interval - upper         0.061       0.013
##   P-value RMSEA <= 0.05                          0.000       1.000
##                                                                   
##   Robust RMSEA                                               0.031
##   90 Percent confidence interval - lower                     0.022
##   90 Percent confidence interval - upper                     0.040
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.064       0.064
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   hs_prep_1 =~                                                          
##     pre_hs_prep_1     1.000                               0.693    0.526
##     pre_hs_prep_2     0.735    0.108    6.836    0.000    0.509    0.622
##     pre_hs_prep_3     0.751    0.117    6.400    0.000    0.520    0.786
##     pre_hs_prep_4     0.787    0.125    6.305    0.000    0.546    0.836
##     pre_hs_prep_5     0.785    0.149    5.272    0.000    0.544    0.653
##   expect =~                                                             
##     pre_exp_1         1.000                               0.881    0.760
##     pre_exp_2         0.910    0.076   12.032    0.000    0.801    0.821
##     pre_exp_3         1.144    0.084   13.553    0.000    1.008    0.840
##   value =~                                                              
##     pre_val_1         1.000                               1.026    0.843
##     pre_val_2         0.955    0.052   18.312    0.000    0.979    0.852
##     pre_val_3         1.048    0.053   19.729    0.000    1.075    0.846
##   a_em_cost =~                                                          
##     pre_cost_em_1     1.000                               1.253    0.775
##     pre_cost_em_2     0.906    0.064   14.234    0.000    1.135    0.797
##     pre_cost_em_3     0.931    0.072   12.927    0.000    1.167    0.749
##     pre_cost_em_4     0.952    0.067   14.236    0.000    1.193    0.804
##     pre_cost_em_5     1.007    0.057   17.683    0.000    1.262    0.826
##     pre_cost_em_6     1.029    0.062   16.641    0.000    1.290    0.797
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   a_em_cost ~                                                           
##     hs_prep_1 (aa)   -0.358    0.220   -1.625    0.104   -0.198   -0.198
##     pr_hrs_wr (ab)   -0.007    0.061   -0.119    0.905   -0.006   -0.009
##     pr_hrs_m_ (ac)    0.062    0.059    1.062    0.288    0.050    0.066
##     crdt___15 (ad)   -0.328    0.134   -2.453    0.014   -0.262   -0.126
##     pr_stm_nt (ae)    0.001    0.044    0.025    0.980    0.001    0.002
##     expect    (af)   -0.642    0.189   -3.398    0.001   -0.452   -0.452
##     value     (ag)    0.104    0.125    0.832    0.406    0.085    0.085
##     female    (ah)    0.212    0.144    1.479    0.139    0.169    0.084
##     urm       (ai)    0.182    0.254    0.716    0.474    0.145    0.039
##     Best_MPS  (aj)   -0.017    0.014   -1.201    0.230   -0.014   -0.070
##   eoc_cost_em ~                                                         
##     a_em_cost  (b)    0.534    0.073    7.308    0.000    0.669    0.385
##     hs_prep_1        -0.150    0.163   -0.921    0.357   -0.104   -0.060
##     pr_hrs_wr         0.011    0.051    0.213    0.831    0.011    0.010
##     pr_hrs_m_         0.081    0.056    1.437    0.151    0.081    0.061
##     crdt___15        -0.261    0.150   -1.733    0.083   -0.261   -0.072
##     pr_stm_nt        -0.044    0.041   -1.065    0.287   -0.044   -0.046
##     expect           -0.335    0.139   -2.405    0.016   -0.295   -0.170
##     value             0.111    0.124    0.896    0.370    0.114    0.066
##     female           -0.006    0.149   -0.037    0.970   -0.006   -0.002
##     urm               0.346    0.274    1.259    0.208    0.346    0.054
##     Best_MPS         -0.051    0.015   -3.323    0.001   -0.051   -0.147
##     week              0.003    0.012    0.285    0.776    0.003    0.006
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   hs_prep_1 ~~                                                          
##     expect            0.237    0.089    2.659    0.008    0.388    0.388
##     value             0.202    0.101    1.988    0.047    0.284    0.284
##   expect ~~                                                             
##     value             0.611    0.131    4.665    0.000    0.676    0.676
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pre_hs_prep_1     4.353    0.109   39.867    0.000    4.353    3.306
##    .pre_hs_prep_2     4.930    0.071   69.285    0.000    4.930    6.018
##    .pre_hs_prep_3     5.306    0.056   94.639    0.000    5.306    8.014
##    .pre_hs_prep_4     5.443    0.058   94.328    0.000    5.443    8.342
##    .pre_hs_prep_5     5.131    0.070   73.695    0.000    5.131    6.164
##    .pre_exp_1         5.715    0.066   86.172    0.000    5.715    4.932
##    .pre_exp_2         5.923    0.057  103.369    0.000    5.923    6.069
##    .pre_exp_3         5.496    0.069   79.367    0.000    5.496    4.578
##    .pre_val_1         5.805    0.071   81.553    0.000    5.805    4.767
##    .pre_val_2         5.659    0.067   84.400    0.000    5.659    4.920
##    .pre_val_3         5.575    0.075   74.628    0.000    5.575    4.385
##    .pre_cost_em_1     4.206    0.501    8.389    0.000    4.206    2.602
##    .pre_cost_em_2     3.582    0.450    7.953    0.000    3.582    2.514
##    .pre_cost_em_3     3.936    0.464    8.485    0.000    3.936    2.526
##    .pre_cost_em_4     3.644    0.475    7.677    0.000    3.644    2.454
##    .pre_cost_em_5     3.863    0.502    7.689    0.000    3.863    2.529
##    .pre_cost_em_6     3.891    0.516    7.535    0.000    3.891    2.404
##    .eoc_cost_em       4.181    0.510    8.199    0.000    4.181    2.407
##     hs_prep_1         0.000                               0.000    0.000
##     expect            0.000                               0.000    0.000
##     value             0.000                               0.000    0.000
##    .a_em_cost         0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pre_hs_prep_1     1.254    0.177    7.066    0.000    1.254    0.723
##    .pre_hs_prep_2     0.412    0.067    6.153    0.000    0.412    0.613
##    .pre_hs_prep_3     0.168    0.033    5.015    0.000    0.168    0.383
##    .pre_hs_prep_4     0.128    0.029    4.359    0.000    0.128    0.301
##    .pre_hs_prep_5     0.397    0.149    2.658    0.008    0.397    0.574
##    .pre_exp_1         0.567    0.159    3.560    0.000    0.567    0.422
##    .pre_exp_2         0.310    0.060    5.178    0.000    0.310    0.326
##    .pre_exp_3         0.425    0.086    4.923    0.000    0.425    0.295
##    .pre_val_1         0.430    0.096    4.478    0.000    0.430    0.290
##    .pre_val_2         0.363    0.060    6.087    0.000    0.363    0.275
##    .pre_val_3         0.461    0.087    5.320    0.000    0.461    0.285
##    .pre_cost_em_1     1.044    0.114    9.168    0.000    1.044    0.399
##    .pre_cost_em_2     0.741    0.086    8.669    0.000    0.741    0.365
##    .pre_cost_em_3     1.067    0.135    7.885    0.000    1.067    0.440
##    .pre_cost_em_4     0.781    0.119    6.584    0.000    0.781    0.354
##    .pre_cost_em_5     0.741    0.108    6.836    0.000    0.741    0.318
##    .pre_cost_em_6     0.957    0.112    8.541    0.000    0.957    0.365
##    .eoc_cost_em       2.120    0.120   17.604    0.000    2.120    0.702
##     hs_prep_1         0.480    0.128    3.745    0.000    1.000    1.000
##     expect            0.776    0.160    4.865    0.000    1.000    1.000
##     value             1.053    0.186    5.672    0.000    1.000    1.000
##    .a_em_cost         1.112    0.184    6.047    0.000    0.708    0.708
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     hs_cost          -0.191    0.118   -1.625    0.104   -0.132   -0.076
##     work_cost        -0.004    0.033   -0.119    0.905   -0.004   -0.003
##     prep_cost         0.033    0.031    1.063    0.288    0.033    0.025
##     credits_cost     -0.175    0.077   -2.260    0.024   -0.175   -0.048
##     stem_cost         0.001    0.023    0.025    0.980    0.001    0.001
##     expect_cost      -0.343    0.114   -3.013    0.003   -0.302   -0.174
##     val_cost          0.055    0.066    0.835    0.404    0.057    0.033
##     female_cost       0.113    0.077    1.471    0.141    0.113    0.032
##     urm_cost          0.097    0.137    0.710    0.478    0.097    0.015
##     mps_cost         -0.009    0.008   -1.203    0.229   -0.009   -0.027
test
##                      lhs op                  rhs        label    est    se
## 1              hs_prep_1 =~        pre_hs_prep_1               1.000 0.000
## 2              hs_prep_1 =~        pre_hs_prep_2               0.735 0.108
## 3              hs_prep_1 =~        pre_hs_prep_3               0.751 0.117
## 4              hs_prep_1 =~        pre_hs_prep_4               0.787 0.125
## 5              hs_prep_1 =~        pre_hs_prep_5               0.785 0.149
## 6                 expect =~            pre_exp_1               1.000 0.000
## 7                 expect =~            pre_exp_2               0.910 0.076
## 8                 expect =~            pre_exp_3               1.144 0.084
## 9                  value =~            pre_val_1               1.000 0.000
## 10                 value =~            pre_val_2               0.955 0.052
## 11                 value =~            pre_val_3               1.048 0.053
## 12             a_em_cost =~        pre_cost_em_1               1.000 0.000
## 13             a_em_cost =~        pre_cost_em_2               0.906 0.064
## 14             a_em_cost =~        pre_cost_em_3               0.931 0.072
## 15             a_em_cost =~        pre_cost_em_4               0.952 0.067
## 16             a_em_cost =~        pre_cost_em_5               1.007 0.057
## 17             a_em_cost =~        pre_cost_em_6               1.029 0.062
## 18             a_em_cost  ~            hs_prep_1           aa -0.358 0.220
## 19             a_em_cost  ~       pre_hours_work           ab -0.007 0.061
## 20             a_em_cost  ~  pre_hours_math_prep           ac  0.062 0.059
## 21             a_em_cost  ~ credits_more_than_15           ad -0.328 0.134
## 22             a_em_cost  ~         pre_stem_int           ae  0.001 0.044
## 23             a_em_cost  ~               expect           af -0.642 0.189
## 24             a_em_cost  ~                value           ag  0.104 0.125
## 25             a_em_cost  ~               female           ah  0.212 0.144
## 26             a_em_cost  ~                  urm           ai  0.182 0.254
## 27             a_em_cost  ~             Best_MPS           aj -0.017 0.014
## 28           eoc_cost_em  ~            a_em_cost            b  0.534 0.073
## 29           eoc_cost_em  ~            hs_prep_1              -0.150 0.163
## 30           eoc_cost_em  ~       pre_hours_work               0.011 0.051
## 31           eoc_cost_em  ~  pre_hours_math_prep               0.081 0.056
## 32           eoc_cost_em  ~ credits_more_than_15              -0.261 0.150
## 33           eoc_cost_em  ~         pre_stem_int              -0.044 0.041
## 34           eoc_cost_em  ~               expect              -0.335 0.139
## 35           eoc_cost_em  ~                value               0.111 0.124
## 36           eoc_cost_em  ~               female              -0.006 0.149
## 37           eoc_cost_em  ~                  urm               0.346 0.274
## 38           eoc_cost_em  ~             Best_MPS              -0.051 0.015
## 39           eoc_cost_em  ~                 week               0.003 0.012
## 40         pre_hs_prep_1 ~~        pre_hs_prep_1               1.254 0.177
## 41         pre_hs_prep_2 ~~        pre_hs_prep_2               0.412 0.067
## 42         pre_hs_prep_3 ~~        pre_hs_prep_3               0.168 0.033
## 43         pre_hs_prep_4 ~~        pre_hs_prep_4               0.128 0.029
## 44         pre_hs_prep_5 ~~        pre_hs_prep_5               0.397 0.149
## 45             pre_exp_1 ~~            pre_exp_1               0.567 0.159
## 46             pre_exp_2 ~~            pre_exp_2               0.310 0.060
## 47             pre_exp_3 ~~            pre_exp_3               0.425 0.086
## 48             pre_val_1 ~~            pre_val_1               0.430 0.096
## 49             pre_val_2 ~~            pre_val_2               0.363 0.060
## 50             pre_val_3 ~~            pre_val_3               0.461 0.087
## 51         pre_cost_em_1 ~~        pre_cost_em_1               1.044 0.114
## 52         pre_cost_em_2 ~~        pre_cost_em_2               0.741 0.086
## 53         pre_cost_em_3 ~~        pre_cost_em_3               1.067 0.135
## 54         pre_cost_em_4 ~~        pre_cost_em_4               0.781 0.119
## 55         pre_cost_em_5 ~~        pre_cost_em_5               0.741 0.108
## 56         pre_cost_em_6 ~~        pre_cost_em_6               0.957 0.112
## 57           eoc_cost_em ~~          eoc_cost_em               2.120 0.120
## 58             hs_prep_1 ~~            hs_prep_1               0.480 0.128
## 59                expect ~~               expect               0.776 0.160
## 60                 value ~~                value               1.053 0.186
## 61             a_em_cost ~~            a_em_cost               1.112 0.184
## 62             hs_prep_1 ~~               expect               0.237 0.089
## 63             hs_prep_1 ~~                value               0.202 0.101
## 64                expect ~~                value               0.611 0.131
## 65        pre_hours_work ~~       pre_hours_work               2.327 0.000
## 66        pre_hours_work ~~  pre_hours_math_prep               0.159 0.000
## 67        pre_hours_work ~~ credits_more_than_15              -0.031 0.000
## 68        pre_hours_work ~~         pre_stem_int               0.329 0.000
## 69        pre_hours_work ~~               female               0.089 0.000
## 70        pre_hours_work ~~                  urm               0.087 0.000
## 71        pre_hours_work ~~             Best_MPS              -0.545 0.000
## 72        pre_hours_work ~~                 week              -0.012 0.000
## 73   pre_hours_math_prep ~~  pre_hours_math_prep               1.744 0.000
## 74   pre_hours_math_prep ~~ credits_more_than_15              -0.033 0.000
## 75   pre_hours_math_prep ~~         pre_stem_int               0.056 0.000
## 76   pre_hours_math_prep ~~               female              -0.053 0.000
## 77   pre_hours_math_prep ~~                  urm              -0.003 0.000
## 78   pre_hours_math_prep ~~             Best_MPS               0.466 0.000
## 79   pre_hours_math_prep ~~                 week              -0.082 0.000
## 80  credits_more_than_15 ~~ credits_more_than_15               0.231 0.000
## 81  credits_more_than_15 ~~         pre_stem_int              -0.068 0.000
## 82  credits_more_than_15 ~~               female               0.007 0.000
## 83  credits_more_than_15 ~~                  urm               0.007 0.000
## 84  credits_more_than_15 ~~             Best_MPS              -0.108 0.000
## 85  credits_more_than_15 ~~                 week               0.004 0.000
## 86          pre_stem_int ~~         pre_stem_int               3.382 0.000
## 87          pre_stem_int ~~               female               0.006 0.000
## 88          pre_stem_int ~~                  urm               0.030 0.000
## 89          pre_stem_int ~~             Best_MPS               0.344 0.000
## 90          pre_stem_int ~~                 week              -0.126 0.000
## 91                female ~~               female               0.243 0.000
## 92                female ~~                  urm               0.012 0.000
## 93                female ~~             Best_MPS              -0.217 0.000
## 94                female ~~                 week               0.077 0.000
## 95                   urm ~~                  urm               0.072 0.000
## 96                   urm ~~             Best_MPS              -0.376 0.000
## 97                   urm ~~                 week              -0.008 0.000
## 98              Best_MPS ~~             Best_MPS              25.700 0.000
## 99              Best_MPS ~~                 week              -0.381 0.000
## 100                 week ~~                 week               9.922 0.000
## 101        pre_hs_prep_1 ~1                                    4.353 0.109
## 102        pre_hs_prep_2 ~1                                    4.930 0.071
## 103        pre_hs_prep_3 ~1                                    5.306 0.056
## 104        pre_hs_prep_4 ~1                                    5.443 0.058
## 105        pre_hs_prep_5 ~1                                    5.131 0.070
## 106            pre_exp_1 ~1                                    5.715 0.066
## 107            pre_exp_2 ~1                                    5.923 0.057
## 108            pre_exp_3 ~1                                    5.496 0.069
## 109            pre_val_1 ~1                                    5.805 0.071
## 110            pre_val_2 ~1                                    5.659 0.067
## 111            pre_val_3 ~1                                    5.575 0.075
## 112        pre_cost_em_1 ~1                                    4.206 0.501
## 113        pre_cost_em_2 ~1                                    3.582 0.450
## 114        pre_cost_em_3 ~1                                    3.936 0.464
## 115        pre_cost_em_4 ~1                                    3.644 0.475
## 116        pre_cost_em_5 ~1                                    3.863 0.502
## 117        pre_cost_em_6 ~1                                    3.891 0.516
## 118          eoc_cost_em ~1                                    4.181 0.510
## 119       pre_hours_work ~1                                    2.189 0.000
## 120  pre_hours_math_prep ~1                                    3.310 0.000
## 121 credits_more_than_15 ~1                                    0.363 0.000
## 122         pre_stem_int ~1                                    5.043 0.000
## 123               female ~1                                    0.417 0.000
## 124                  urm ~1                                    0.078 0.000
## 125             Best_MPS ~1                                   18.680 0.000
## 126                 week ~1                                    5.469 0.000
## 127            hs_prep_1 ~1                                    0.000 0.000
## 128               expect ~1                                    0.000 0.000
## 129                value ~1                                    0.000 0.000
## 130            a_em_cost ~1                                    0.000 0.000
## 131              hs_cost :=                 aa*b      hs_cost -0.191 0.118
## 132            work_cost :=                 ab*b    work_cost -0.004 0.033
## 133            prep_cost :=                 ac*b    prep_cost  0.033 0.031
## 134         credits_cost :=                 ad*b credits_cost -0.175 0.077
## 135            stem_cost :=                 ae*b    stem_cost  0.001 0.023
## 136          expect_cost :=                 af*b  expect_cost -0.343 0.114
## 137             val_cost :=                 ag*b     val_cost  0.055 0.066
## 138          female_cost :=                 ah*b  female_cost  0.113 0.077
## 139             urm_cost :=                 ai*b     urm_cost  0.097 0.137
## 140             mps_cost :=                 aj*b     mps_cost -0.009 0.008
##           z pvalue ci.lower ci.upper
## 1        NA     NA    1.000    1.000
## 2     6.836  0.000    0.524    0.946
## 3     6.400  0.000    0.521    0.980
## 4     6.305  0.000    0.543    1.032
## 5     5.272  0.000    0.493    1.076
## 6        NA     NA    1.000    1.000
## 7    12.032  0.000    0.761    1.058
## 8    13.553  0.000    0.979    1.310
## 9        NA     NA    1.000    1.000
## 10   18.312  0.000    0.852    1.057
## 11   19.729  0.000    0.944    1.152
## 12       NA     NA    1.000    1.000
## 13   14.234  0.000    0.781    1.031
## 14   12.927  0.000    0.790    1.072
## 15   14.236  0.000    0.821    1.083
## 16   17.683  0.000    0.895    1.118
## 17   16.641  0.000    0.908    1.150
## 18   -1.625  0.104   -0.790    0.074
## 19   -0.119  0.905   -0.127    0.113
## 20    1.062  0.288   -0.053    0.178
## 21   -2.453  0.014   -0.590   -0.066
## 22    0.025  0.980   -0.085    0.087
## 23   -3.398  0.001   -1.013   -0.272
## 24    0.832  0.406   -0.141    0.349
## 25    1.479  0.139   -0.069    0.494
## 26    0.716  0.474   -0.315    0.678
## 27   -1.201  0.230   -0.046    0.011
## 28    7.308  0.000    0.391    0.677
## 29   -0.921  0.357   -0.470    0.169
## 30    0.213  0.831   -0.089    0.111
## 31    1.437  0.151   -0.029    0.191
## 32   -1.733  0.083   -0.555    0.034
## 33   -1.065  0.287   -0.124    0.037
## 34   -2.405  0.016   -0.607   -0.062
## 35    0.896  0.370   -0.132    0.354
## 36   -0.037  0.970   -0.298    0.287
## 37    1.259  0.208   -0.192    0.884
## 38   -3.323  0.001   -0.080   -0.021
## 39    0.285  0.776   -0.019    0.026
## 40    7.066  0.000    0.906    1.602
## 41    6.153  0.000    0.280    0.543
## 42    5.015  0.000    0.102    0.233
## 43    4.359  0.000    0.070    0.186
## 44    2.658  0.008    0.104    0.690
## 45    3.560  0.000    0.255    0.879
## 46    5.178  0.000    0.193    0.427
## 47    4.923  0.000    0.256    0.594
## 48    4.478  0.000    0.242    0.618
## 49    6.087  0.000    0.246    0.480
## 50    5.320  0.000    0.291    0.631
## 51    9.168  0.000    0.821    1.267
## 52    8.669  0.000    0.574    0.909
## 53    7.885  0.000    0.802    1.333
## 54    6.584  0.000    0.548    1.013
## 55    6.836  0.000    0.529    0.954
## 56    8.541  0.000    0.738    1.177
## 57   17.604  0.000    1.884    2.356
## 58    3.745  0.000    0.229    0.731
## 59    4.865  0.000    0.464    1.089
## 60    5.672  0.000    0.689    1.417
## 61    6.047  0.000    0.752    1.473
## 62    2.659  0.008    0.062    0.411
## 63    1.988  0.047    0.003    0.401
## 64    4.665  0.000    0.355    0.868
## 65       NA     NA    2.327    2.327
## 66       NA     NA    0.159    0.159
## 67       NA     NA   -0.031   -0.031
## 68       NA     NA    0.329    0.329
## 69       NA     NA    0.089    0.089
## 70       NA     NA    0.087    0.087
## 71       NA     NA   -0.545   -0.545
## 72       NA     NA   -0.012   -0.012
## 73       NA     NA    1.744    1.744
## 74       NA     NA   -0.033   -0.033
## 75       NA     NA    0.056    0.056
## 76       NA     NA   -0.053   -0.053
## 77       NA     NA   -0.003   -0.003
## 78       NA     NA    0.466    0.466
## 79       NA     NA   -0.082   -0.082
## 80       NA     NA    0.231    0.231
## 81       NA     NA   -0.068   -0.068
## 82       NA     NA    0.007    0.007
## 83       NA     NA    0.007    0.007
## 84       NA     NA   -0.108   -0.108
## 85       NA     NA    0.004    0.004
## 86       NA     NA    3.382    3.382
## 87       NA     NA    0.006    0.006
## 88       NA     NA    0.030    0.030
## 89       NA     NA    0.344    0.344
## 90       NA     NA   -0.126   -0.126
## 91       NA     NA    0.243    0.243
## 92       NA     NA    0.012    0.012
## 93       NA     NA   -0.217   -0.217
## 94       NA     NA    0.077    0.077
## 95       NA     NA    0.072    0.072
## 96       NA     NA   -0.376   -0.376
## 97       NA     NA   -0.008   -0.008
## 98       NA     NA   25.700   25.700
## 99       NA     NA   -0.381   -0.381
## 100      NA     NA    9.922    9.922
## 101  39.867  0.000    4.139    4.567
## 102  69.285  0.000    4.791    5.070
## 103  94.639  0.000    5.196    5.415
## 104  94.328  0.000    5.330    5.556
## 105  73.695  0.000    4.995    5.267
## 106  86.172  0.000    5.585    5.845
## 107 103.369  0.000    5.811    6.035
## 108  79.367  0.000    5.360    5.632
## 109  81.553  0.000    5.665    5.944
## 110  84.400  0.000    5.527    5.790
## 111  74.628  0.000    5.429    5.722
## 112   8.389  0.000    3.224    5.189
## 113   7.953  0.000    2.699    4.464
## 114   8.485  0.000    3.027    4.845
## 115   7.677  0.000    2.713    4.574
## 116   7.689  0.000    2.879    4.848
## 117   7.535  0.000    2.879    4.903
## 118   8.199  0.000    3.182    5.181
## 119      NA     NA    2.189    2.189
## 120      NA     NA    3.310    3.310
## 121      NA     NA    0.363    0.363
## 122      NA     NA    5.043    5.043
## 123      NA     NA    0.417    0.417
## 124      NA     NA    0.078    0.078
## 125      NA     NA   18.680   18.680
## 126      NA     NA    5.469    5.469
## 127      NA     NA    0.000    0.000
## 128      NA     NA    0.000    0.000
## 129      NA     NA    0.000    0.000
## 130      NA     NA    0.000    0.000
## 131  -1.625  0.104   -0.422    0.039
## 132  -0.119  0.905   -0.068    0.060
## 133   1.063  0.288   -0.028    0.095
## 134  -2.260  0.024   -0.327   -0.023
## 135   0.025  0.980   -0.045    0.046
## 136  -3.013  0.003   -0.566   -0.120
## 137   0.835  0.404   -0.075    0.186
## 138   1.471  0.141   -0.038    0.264
## 139   0.710  0.478   -0.171    0.365
## 140  -1.203  0.229   -0.024    0.006

Multilevel SEM model

# cost_te <-'
# level: 1
# eoc_cost_te ~~ eoc_cost_te
# 
# level: 2
# #Measurement
# hs_prep_1 =~ pre_hs_prep_1 + pre_hs_prep_2 + pre_hs_prep_3 + pre_hs_prep_4 + pre_hs_prep_5
# expect =~ pre_exp_1 + pre_exp_2 + pre_exp_3
# value =~ pre_val_1 + pre_val_2 + pre_val_3
# a_te_cost =~ pre_cost_te_1 + pre_cost_te_2 + pre_cost_te_3 + pre_cost_te_4 + pre_cost_te_5
# b_te_cost =~ post_cost_te_1 + post_cost_te_2 + post_cost_te_3 + post_cost_te_4 + post_cost_te_5
# 
# #Regressions
# b_te_cost ~ hs_prep_1 + pre_hours_work + Msu_Lt_Atmpt_Hours + pre_stem_int + expect + value + a_te_cost + eoc_cost_te
# eoc_cost_te ~ hs_prep_1 + pre_hours_work + Msu_Lt_Atmpt_Hours + pre_stem_int + expect + value + a_te_cost
# 
# #Covariances
# pre_stem_int ~~ expect + value + a_te_cost
# expect ~~ value + a_te_cost
# value ~~ a_te_cost
# pre_hours_class_prep ~~ pre_hours_math_prep
# '
# 
# fit <- sem(cost_te, data=MTH_132_124_all, cluster = "stud_id", missing = "ML.x")
# summary(fit, fit.measures = TRUE, standardized = TRUE)
# cost_oe <-'
# level: 1
# eoc_cost_oe ~~ eoc_cost_oe
# 
# level: 2
# #Measurement
# hs_prep_1 =~ pre_hs_prep_1 + pre_hs_prep_2 + pre_hs_prep_3 + pre_hs_prep_4 + pre_hs_prep_5
# expect =~ pre_exp_1 + pre_exp_2 + pre_exp_3
# value =~ pre_val_1 + pre_val_2 + pre_val_3
# a_oe_cost =~ pre_cost_oe_1 + pre_cost_oe_2 + pre_cost_oe_3 + pre_cost_oe_4
# b_oe_cost =~ post_cost_oe_1 + post_cost_oe_2 + post_cost_oe_3 + post_cost_oe_4
# 
# #Regressions
# b_oe_cost ~ hs_prep_1 + pre_hours_work + Msu_Lt_Atmpt_Hours + pre_stem_int + expect + value + a_oe_cost + eoc_cost_oe
# eoc_cost_oe ~ hs_prep_1 + pre_hours_work + Msu_Lt_Atmpt_Hours + pre_stem_int + expect + value + a_oe_cost
# 
# #Covariances
# pre_stem_int ~~ expect + value + a_oe_cost
# expect ~~ value + a_oe_cost
# value ~~ a_oe_cost
# pre_hours_class_prep ~~ pre_hours_math_prep
# '
# 
# fit <- sem(cost_oe, data=MTH_132_124_all, cluster = "stud_id", missing = "ML.x")
# summary(fit, fit.measures = TRUE, standardized = TRUE)
# cost_lv <-'
# level: 1
# eoc_cost_lv ~~ eoc_cost_lv
# 
# level: 2
# #Measurement
# hs_prep_1 =~ pre_hs_prep_1 + pre_hs_prep_2 + pre_hs_prep_3 + pre_hs_prep_4 + pre_hs_prep_5
# expect =~ pre_exp_1 + pre_exp_2 + pre_exp_3
# value =~ pre_val_1 + pre_val_2 + pre_val_3
# a_lv_cost =~ pre_cost_lv_1 + pre_cost_lv_2 + pre_cost_lv_3 + pre_cost_lv_4
# b_lv_cost =~ post_cost_lv_1 + post_cost_lv_2 + post_cost_lv_3 + post_cost_lv_4
# 
# #Regressions
# b_lv_cost ~ hs_prep_1 + pre_hours_work + Msu_Lt_Atmpt_Hours + pre_stem_int + expect + value + a_lv_cost + eoc_cost_lv
# eoc_cost_lv ~ hs_prep_1 + pre_hours_work + Msu_Lt_Atmpt_Hours + pre_stem_int + expect + value + a_lv_cost
# 
# #Covariances
# pre_stem_int ~~ expect + value + a_lv_cost
# expect ~~ value + a_lv_cost
# value ~~ a_lv_cost
# pre_hours_class_prep ~~ pre_hours_math_prep
# '
# 
# fit <- sem(cost_lv, data=MTH_132_124_all, cluster = "stud_id", missing = "ML.x")
# summary(fit, fit.measures = TRUE, standardized = TRUE)
# cost_em <-'
# level: 1
# eoc_cost_em ~~ eoc_cost_em
# 
# level: 2
# #Measurement
# hs_prep_1 =~ pre_hs_prep_1 + pre_hs_prep_2 + pre_hs_prep_3 + pre_hs_prep_4 + pre_hs_prep_5
# expect =~ pre_exp_1 + pre_exp_2 + pre_exp_3
# value =~ pre_val_1 + pre_val_2 + pre_val_3
# a_em_cost =~ pre_cost_em_1 + pre_cost_em_2 + pre_cost_em_3 + pre_cost_em_4 + pre_cost_em_5 + pre_cost_em_6
# b_em_cost =~ post_cost_em_1 + post_cost_em_2 + post_cost_em_3 + post_cost_em_4 + post_cost_em_5 + post_cost_em_6
# 
# #Regressions
# b_em_cost ~ hs_prep_1 + pre_hours_work + Msu_Lt_Atmpt_Hours + pre_stem_int + expect + value + a_em_cost + eoc_cost_em
# eoc_cost_em ~ hs_prep_1 + pre_hours_work + Msu_Lt_Atmpt_Hours + pre_stem_int + expect + value + a_em_cost
# 
# #Covariances
# pre_stem_int ~~ expect + value + a_em_cost
# expect ~~ value + a_em_cost
# value ~~ a_em_cost
# pre_hours_class_prep ~~ pre_hours_math_prep
# '
# 
# fit <- sem(cost_em, data=MTH_132_124_all, cluster = "stud_id", missing = "ML.x")
# summary(fit, fit.measures = TRUE, standardized = TRUE)

Not relevant to this study

MTH_132_124_all$engagement <- composite_mean_maker(MTH_132_124_all, eoc_conc, eoc_hard_work)

M0 <- lmer(engagement ~ eoc_con + eoc_val + eoc_confused + eoc_confused*eoc_val +
      female + week + 
      (1|stud_id),
      data = MTH_132_124_all, control=lmerControl(optimizer="bobyqa"))
summary(M0)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: engagement ~ eoc_con + eoc_val + eoc_confused + eoc_confused *  
##     eoc_val + female + week + (1 | stud_id)
##    Data: MTH_132_124_all
## Control: lmerControl(optimizer = "bobyqa")
## 
## REML criterion at convergence: 6282.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6462 -0.5253  0.0597  0.5963  4.1065 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  stud_id  (Intercept) 0.4503   0.6710  
##  Residual             0.7795   0.8829  
## Number of obs: 2210, groups:  stud_id, 415
## 
## Fixed effects:
##                        Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)           1.978e+00  1.602e-01  2.004e+03  12.346  < 2e-16 ***
## eoc_con               1.329e-01  1.664e-02  2.202e+03   7.991 2.14e-15 ***
## eoc_val               4.204e-01  2.678e-02  2.168e+03  15.697  < 2e-16 ***
## eoc_confused          2.117e-01  3.664e-02  2.202e+03   5.778 8.63e-09 ***
## female                1.491e-01  8.228e-02  3.609e+02   1.812  0.07083 .  
## week                 -1.717e-02  6.411e-03  2.030e+03  -2.678  0.00747 ** 
## eoc_val:eoc_confused -3.054e-02  7.434e-03  2.201e+03  -4.107 4.15e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) eoc_cn eoc_vl ec_cnf female week  
## eoc_con     -0.435                                   
## eoc_val     -0.693 -0.172                            
## eoc_confusd -0.730  0.158  0.702                     
## female      -0.215  0.017  0.017  0.008              
## week        -0.283  0.034  0.096  0.046 -0.035       
## ec_vl:c_cnf  0.618 -0.014 -0.794 -0.905 -0.015 -0.044
performance::icc(M0, by_group = T)
## # ICC by Group
## 
## Group   |   ICC
## ---------------
## stud_id | 0.366
library(sjPlot)
## Warning: package 'sjPlot' was built under R version 4.0.2
library(sjmisc)
## 
## Attaching package: 'sjmisc'
## The following object is masked from 'package:Hmisc':
## 
##     %nin%
## The following object is masked from 'package:purrr':
## 
##     is_empty
## The following object is masked from 'package:tidyr':
## 
##     replace_na
## The following object is masked from 'package:tibble':
## 
##     add_case
library(ggplot2)

# library(lavaan)
# calc_emo <- '
# #measurement model
# control =~ eoc_con + eoc_comp
# value =~ eoc_val + eoc_future_goals
# engage =~ eoc_conc + eoc_hard_work
# 
# #regressions
# #direct effects
# engage ~ eoc_confused + control + value + engage + eoc_confused*value
# eoc_confused ~ control + value
# 
# #residual correlations
# control ~~ value
# '
# 
# fit <- sem(calc_emo, data=MTH_132_124_all, estimator = "MLR", cluster = "stud_id", missing = "ML.x")
# summary(fit, fit.measures = TRUE, standardized = TRUE)
# standardizedsolution(fit)
# 
# MTH_132_124_all$stud