1 Homework1

## Loading required package: MASS
## Loading required package: gld
## Loading required package: mvtnorm
## Loading required package: lattice
## Loading required package: ggplot2
## 
## Attaching package: 'PairedData'
## The following object is masked from 'package:base':
## 
##     summary
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
## 
##     select
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
##   Prior  Post
## 1  83.8  95.2
## 2  83.3  94.3
## 3  86.0  91.5
## 4  82.5  91.9
## 5  86.7 100.3
## 6  79.6  76.7
## 'data.frame':    17 obs. of  2 variables:
##  $ Prior: num  83.8 83.3 86 82.5 86.7 79.6 76.9 94.2 73.4 80.5 ...
##  $ Post : num  95.2 94.3 91.5 91.9 100.3 ...
##    Prior     Post 
## 83.22941 90.49412
## Prior  Post 
##  5.02  8.48
##          Prior     Post
## Prior 25.16721 22.88268
## Post  22.88268 71.82684
##       Prior  Post
## Prior 1.000 0.538
## Post  0.538 1.000
## 
##  Welch Two Sample t-test
## 
## data:  Anorexia$Prior and Anorexia$Post
## t = -3.0414, df = 25.986, p-value = 0.005324
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -12.17472  -2.35469
## sample estimates:
## mean of x mean of y 
##  83.22941  90.49412
## 
##  Paired t-test
## 
## data:  Anorexia$Prior and Anorexia$Post
## t = -4.1849, df = 16, p-value = 0.0007003
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -10.94471  -3.58470
## sample estimates:
## mean of the differences 
##               -7.264706
##   Therapy Weight
## 1   Prior   83.8
## 2   Prior   83.3
## 3   Prior   86.0
## 4   Prior   82.5
## 5   Prior   86.7
## 6   Prior   79.6

## 
## Call:
## lm(formula = Weight ~ Therapy, data = dtaL)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.294  -2.454   1.106   4.004  11.106 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    90.494      1.689  53.578  < 2e-16 ***
## TherapyPrior   -7.265      2.389  -3.041  0.00467 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.964 on 32 degrees of freedom
## Multiple R-squared:  0.2242, Adjusted R-squared:    0.2 
## F-statistic:  9.25 on 1 and 32 DF,  p-value: 0.004673
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## Therapy      1  448.6   448.6    9.25 0.00467 **
## Residuals   32 1551.9    48.5                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Error: Subject
##           Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 16   1142   71.38               
## 
## Error: Subject:Therapy
##           Df Sum Sq Mean Sq F value Pr(>F)    
## Therapy    1  448.6   448.6   17.51  7e-04 ***
## Residuals 16  409.8    25.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df Sum Sq Mean Sq F value Pr(>F)    
## Therapy      1  448.6   448.6  17.513 0.0007 ***
## Subject     16 1142.1    71.4   2.787 0.0240 *  
## Residuals   16  409.8    25.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             Df Sum Sq Mean Sq
## Therapy      1  448.6   448.6
## Sbj         32 1551.9    48.5

2 Homework2

## 
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
## 
##     collapse
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
## 
## Attaching package: 'lme4'
## The following object is masked from 'package:nlme':
## 
##     lmList
## Grouped Data: effort ~ Type | Subject
##   effort Type Subject
## 1     12   T1       1
## 2     15   T2       1
## 3     12   T3       1
## 4     10   T4       1
## 5     10   T1       2
## 6     14   T2       2
## Classes 'nffGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame':   36 obs. of  3 variables:
##  $ effort : num  12 15 12 10 10 14 13 12 7 14 ...
##  $ Type   : Factor w/ 4 levels "T1","T2","T3",..: 1 2 3 4 1 2 3 4 1 2 ...
##  $ Subject: Ord.factor w/ 9 levels "8"<"5"<"4"<"9"<..: 8 8 8 8 9 9 9 9 6 6 ...
##  - attr(*, "formula")=Class 'formula'  language effort ~ Type | Subject
##   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##  - attr(*, "labels")=List of 2
##   ..$ x: chr "Type of stool"
##   ..$ y: chr "Effort required to arise"
##  - attr(*, "units")=List of 1
##   ..$ y: chr "(Borg scale)"
##  - attr(*, "FUN")=function (x)  
##   ..- attr(*, "source")= chr "function (x) mean(x, na.rm = TRUE)"
##  - attr(*, "order.groups")= logi TRUE
## starting httpd help server ...
##  done
type mean
T1 8.555556
T2 12.444444
T3 10.777778
T4 9.222222
subjects mean
8 8.25
5 8.50
4 9.25
9 10.00
6 10.25
3 10.75
7 10.75
1 12.25
2 12.25
## Fixed Effects:
##             coef.est coef.se
## (Intercept) 8.56     0.58   
## TypeT2      3.89     0.52   
## TypeT3      2.22     0.52   
## TypeT4      0.67     0.52   
## 
## Random Effects:
##  Groups   Name        Std.Dev.
##  Subject  (Intercept) 1.33    
##  Residual             1.10    
## ---
## number of obs: 36, groups: Subject, 9
## AIC = 133.1, DIC = 123.2
## deviance = 122.1
## Fixed Effects:
##        coef.est coef.se
## TypeT1  8.56     0.58  
## TypeT2 12.44     0.58  
## TypeT3 10.78     0.58  
## TypeT4  9.22     0.58  
## 
## Random Effects:
##  Groups   Name        Std.Dev.
##  Subject  (Intercept) 1.33    
##  Residual             1.10    
## ---
## number of obs: 36, groups: Subject, 9
## AIC = 133.1, DIC = 123.2
## deviance = 122.1
## Linear mixed-effects model fit by REML
##  Data: ergoStool 
##        AIC      BIC    logLik
##   133.1308 141.9252 -60.56539
## 
## Random effects:
##  Formula: ~1 | Subject
##         (Intercept) Residual
## StdDev:    1.332465 1.100295
## 
## Fixed effects: effort ~ Type 
##                Value Std.Error DF   t-value p-value
## (Intercept) 8.555556 0.5760123 24 14.853079  0.0000
## TypeT2      3.888889 0.5186838 24  7.497610  0.0000
## TypeT3      2.222222 0.5186838 24  4.284348  0.0003
## TypeT4      0.666667 0.5186838 24  1.285304  0.2110
##  Correlation: 
##        (Intr) TypeT2 TypeT3
## TypeT2 -0.45               
## TypeT3 -0.45   0.50        
## TypeT4 -0.45   0.50   0.50 
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -1.80200345 -0.64316591  0.05783115  0.70099706  1.63142054 
## 
## Number of Observations: 36
## Number of Groups: 9
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                  lower      est.    upper
## (Intercept)  7.3667247 8.5555556 9.744386
## TypeT2       2.8183781 3.8888889 4.959400
## TypeT3       1.1517114 2.2222222 3.292733
## TypeT4      -0.4038442 0.6666667 1.737177
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: Subject 
##                    lower     est.    upper
## sd((Intercept)) 0.749509 1.332465 2.368835
## 
##  Within-group standard error:
##     lower      est.     upper 
## 0.8292494 1.1002946 1.4599324

3 Homework3

##   ID   Ch3   Ch4   Ch5  Ch6   Ch7  Ch8  Ch17 Ch18  Ch19
## 1  1 -3.54 -3.11 -0.24 0.42 -0.49 2.13 -4.15 2.87  1.34
## 2  2  5.72  5.07  6.87 5.96  8.20 4.87  5.48 5.57  6.33
## 3  3  0.52 -0.18  0.90 0.60  1.27 1.28 -0.95 1.74  0.79
## 4  4  0.00  0.74  1.10 0.13  0.19 0.07  0.80 0.25 -0.66
## 5  5  2.07  0.76  3.51 0.60  3.71 1.86  1.49 3.11  1.80
## 6  6  1.67  4.18  2.77 4.55  1.80 4.79  4.51 3.24  3.99
## 'data.frame':    19 obs. of  10 variables:
##  $ ID  : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Ch3 : num  -3.54 5.72 0.52 0 2.07 1.67 9.13 -0.43 -0.56 1.28 ...
##  $ Ch4 : num  -3.11 5.07 -0.18 0.74 0.76 ...
##  $ Ch5 : num  -0.24 6.87 0.9 1.1 3.51 2.77 3.44 -0.31 -1.22 1.89 ...
##  $ Ch6 : num  0.42 5.96 0.6 0.13 0.6 4.55 4.8 -0.61 0.67 1.77 ...
##  $ Ch7 : num  -0.49 8.2 1.27 0.19 3.71 1.8 0.48 -1.04 -0.97 1.83 ...
##  $ Ch8 : num  2.13 4.87 1.28 0.07 1.86 4.79 1.63 -0.13 -0.98 0.91 ...
##  $ Ch17: num  -4.15 5.48 -0.95 0.8 1.49 4.51 9.94 -0.61 0 1.4 ...
##  $ Ch18: num  2.87 5.57 1.74 0.25 3.11 3.24 1.34 -0.61 -1.22 1.1 ...
##  $ Ch19: num  1.34 6.33 0.79 -0.66 1.8 3.99 1.53 -0.43 -0.91 -0.12 ...
## Note: model has only an intercept; equivalent type-III tests substituted.
## 
## Type III Repeated Measures MANOVA Tests:
## 
## ------------------------------------------
##  
## Term: (Intercept) 
## 
##  Response transformation matrix:
##      (Intercept)
## Ch3            1
## Ch4            1
## Ch5            1
## Ch6            1
## Ch7            1
## Ch8            1
## Ch17           1
## Ch18           1
## Ch19           1
## 
## Sum of squares and products for the hypothesis:
##             (Intercept)
## (Intercept)    1761.616
## 
## Multivariate Tests: (Intercept)
##                  Df test stat approx F num Df den Df   Pr(>F)  
## Pillai            1 0.2035907 4.601445      1     18 0.045839 *
## Wilks             1 0.7964093 4.601445      1     18 0.045839 *
## Hotelling-Lawley  1 0.2556358 4.601445      1     18 0.045839 *
## Roy               1 0.2556358 4.601445      1     18 0.045839 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ------------------------------------------
##  
## Term: newhw3 
## 
##  Response transformation matrix:
##      newhw31 newhw32 newhw33 newhw34 newhw35 newhw36 newhw37 newhw38
## Ch3        0       0       0       1       0       0       0       0
## Ch4        0       0       0       0       1       0       0       0
## Ch5        0       0       0       0       0       1       0       0
## Ch6        0       0       0       0       0       0       1       0
## Ch7        0       0       0       0       0       0       0       1
## Ch8       -1      -1      -1      -1      -1      -1      -1      -1
## Ch17       1       0       0       0       0       0       0       0
## Ch18       0       1       0       0       0       0       0       0
## Ch19       0       0       1       0       0       0       0       0
## 
## Sum of squares and products for the hypothesis:
##         newhw31       newhw32      newhw33      newhw34     newhw35
## newhw31  5.7475  1.650000e-02  1.485000000  0.506000000  7.70000000
## newhw32  0.0165  4.736842e-05  0.004263158  0.001452632  0.02210526
## newhw33  1.4850  4.263158e-03  0.383684211  0.130736842  1.98947368
## newhw34  0.5060  1.452632e-03  0.130736842  0.044547368  0.67789474
## newhw35  7.7000  2.210526e-02  1.989473684  0.677894737 10.31578947
## newhw36  1.9305  5.542105e-03  0.498789474  0.169957895  2.58631579
## newhw37  3.0635  8.794737e-03  0.791526316  0.269705263  4.10421053
## newhw38 -0.0165 -4.736842e-05 -0.004263158 -0.001452632 -0.02210526
##              newhw36      newhw37       newhw38
## newhw31  1.930500000  3.063500000 -1.650000e-02
## newhw32  0.005542105  0.008794737 -4.736842e-05
## newhw33  0.498789474  0.791526316 -4.263158e-03
## newhw34  0.169957895  0.269705263 -1.452632e-03
## newhw35  2.586315789  4.104210526 -2.210526e-02
## newhw36  0.648426316  1.028984211 -5.542105e-03
## newhw37  1.028984211  1.632889474 -8.794737e-03
## newhw38 -0.005542105 -0.008794737  4.736842e-05
## 
## Multivariate Tests: newhw3
##                  Df test stat approx F num Df den Df  Pr(>F)
## Pillai            1 0.5243665 1.515882      8     11 0.25588
## Wilks             1 0.4756335 1.515882      8     11 0.25588
## Hotelling-Lawley  1 1.1024593 1.515882      8     11 0.25588
## Roy               1 1.1024593 1.515882      8     11 0.25588
## 
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
## 
##              Sum Sq num Df Error SS den Df F value  Pr(>F)  
## (Intercept) 195.735      1   765.68     18  4.6014 0.04584 *
## newhw3       10.702      8   389.31    144  0.4948 0.85840  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Mauchly Tests for Sphericity
## 
##        Test statistic    p-value
## newhw3     0.00037434 9.7367e-11
## 
## 
## Greenhouse-Geisser and Huynh-Feldt Corrections
##  for Departure from Sphericity
## 
##         GG eps Pr(>F[GG])
## newhw3 0.31531     0.6559
## 
##           HF eps Pr(>F[HF])
## newhw3 0.3709213  0.6854028
## 'data.frame':    171 obs. of  3 variables:
##  $ ID     : Factor w/ 19 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ channel: Factor w/ 9 levels "Ch17","Ch18",..: 4 4 4 4 4 4 4 4 4 4 ...
##  $ EMG    : num  -3.54 5.72 0.52 0 2.07 1.67 9.13 -0.43 -0.56 1.28 ...

## 
## Error: ID
##           Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 18  765.7   42.54               
## 
## Error: ID:channel
##            Df Sum Sq Mean Sq F value Pr(>F)
## channel     8   10.7   1.338   0.495  0.858
## Residuals 144  389.3   2.704
## Tables of means
## Grand mean
##          
## 1.069883 
## 
##  channel 
## channel
##   Ch17   Ch18   Ch19    Ch3    Ch4    Ch5    Ch6    Ch7    Ch8 
## 1.4026 0.8542 0.9947 0.9011 1.5895 1.0374 1.1458 0.8511 0.8526
## Tables of effects
## 
##  channel 
## channel
##    Ch17    Ch18    Ch19     Ch3     Ch4     Ch5     Ch6     Ch7     Ch8 
##  0.3327 -0.2157 -0.0751 -0.1688  0.5196 -0.0325  0.0759 -0.2188 -0.2173 
## 
## Standard errors of effects
##         channel
##          0.3772
## replic.      19

## Linear mixed model fit by REML ['lmerMod']
## Formula: EMG ~ channel + (1 | ID)
##    Data: dta3L
## 
## REML criterion at convergence: 697
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6502 -0.3882 -0.0002  0.4215  4.6394 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 4.426    2.104   
##  Residual             2.704    1.644   
## Number of obs: 171, groups:  ID, 19
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   1.4026     0.6126   2.290
## channelCh18  -0.5484     0.5335  -1.028
## channelCh19  -0.4079     0.5335  -0.765
## channelCh3   -0.5016     0.5335  -0.940
## channelCh4    0.1868     0.5335   0.350
## channelCh5   -0.3653     0.5335  -0.685
## channelCh6   -0.2568     0.5335  -0.481
## channelCh7   -0.5516     0.5335  -1.034
## channelCh8   -0.5500     0.5335  -1.031
## 
## Correlation of Fixed Effects:
##             (Intr) chnC18 chnC19 chnnC3 chnnC4 chnnC5 chnnC6 chnnC7
## channelCh18 -0.435                                                 
## channelCh19 -0.435  0.500                                          
## channelCh3  -0.435  0.500  0.500                                   
## channelCh4  -0.435  0.500  0.500  0.500                            
## channelCh5  -0.435  0.500  0.500  0.500  0.500                     
## channelCh6  -0.435  0.500  0.500  0.500  0.500  0.500              
## channelCh7  -0.435  0.500  0.500  0.500  0.500  0.500  0.500       
## channelCh8  -0.435  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## Computing profile confidence intervals ...
##                  2.5 %    97.5 %
## .sig01       1.4944091 2.9720041
## .sigma       1.4360421 1.7986384
## (Intercept)  0.2052226 2.6000405
## channelCh18 -1.5725629 0.4757208
## channelCh19 -1.4320366 0.6162471
## channelCh3  -1.5257208 0.5225629
## channelCh4  -0.8372997 1.2109839
## channelCh5  -1.3894050 0.6588787
## channelCh6  -1.2809839 0.7672997
## channelCh7  -1.5757208 0.4725629
## channelCh8  -1.5741418 0.4741418
## $ID
##    (Intercept)
## 1  -1.49820132
## 2   4.62406329
## 3  -0.38071115
## 4  -0.72927652
## 5   0.96568763
## 6   2.27566913
## 7   3.70218592
## 8  -1.60121019
## 9  -1.44617664
## 10  0.14057617
## 11  1.24662091
## 12  0.11560432
## 13 -2.64586581
## 14 -1.24848285
## 15 -1.24744236
## 16  2.16017433
## 17 -0.09977786
## 18 -2.34100118
## 19 -1.99243581
## 
## with conditional variances for "ID"

##   channel ID   EMG var_chan
## 1    Ch17  1 -4.15 10.73875
## 2    Ch17  2  5.48 10.73875
## 3    Ch17  3 -0.95 10.73875
## 4    Ch17  4  0.80 10.73875
## 5    Ch17  5  1.49 10.73875
## 6    Ch17  6  4.51 10.73875
## Linear mixed model fit by REML ['lmerMod']
## Formula: EMG ~ channel + (1 | ID)
##    Data: dta3L2
## Weights: 1/var_chan
## 
## REML criterion at convergence: 683.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8607 -0.4157 -0.0211  0.4295  4.0287 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 3.9833   1.9958  
##  Residual             0.3712   0.6093  
## Number of obs: 171, groups:  ID, 19
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   1.4026     0.6477   2.166
## channelCh18  -0.5484     0.5849  -0.938
## channelCh19  -0.4079     0.5644  -0.723
## channelCh3   -0.5016     0.6154  -0.815
## channelCh4    0.1868     0.6716   0.278
## channelCh5   -0.3653     0.5643  -0.647
## channelCh6   -0.2568     0.5558  -0.462
## channelCh7   -0.5516     0.5577  -0.989
## channelCh8   -0.5500     0.5417  -1.015
## 
## Correlation of Fixed Effects:
##             (Intr) chnC18 chnC19 chnnC3 chnnC4 chnnC5 chnnC6 chnnC7
## channelCh18 -0.554                                                 
## channelCh19 -0.574  0.636                                          
## channelCh3  -0.526  0.583  0.604                                   
## channelCh4  -0.482  0.534  0.553  0.508                            
## channelCh5  -0.574  0.636  0.659  0.604  0.554                     
## channelCh6  -0.583  0.645  0.669  0.613  0.562  0.669              
## channelCh7  -0.581  0.643  0.667  0.611  0.560  0.667  0.677       
## channelCh8  -0.598  0.662  0.686  0.629  0.577  0.686  0.697  0.694

4 Homework4

## Warning in min(x): min 中沒有無漏失的引數; 回傳 Inf
## Warning in max(x): max 中沒有無漏失的引數;回傳 -Inf

## 
## Error: Class
##           Df Sum Sq Mean Sq F value Pr(>F)  
## Method     1  112.5  112.50   6.459  0.044 *
## Residuals  6  104.5   17.42                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Error: Within
##           Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 24   18.5  0.7708
## 
## Error: Method
##        Df Sum Sq Mean Sq
## Method  1  112.5   112.5
## 
## Error: Method:Klass
##           Df Sum Sq Mean Sq F value Pr(>F)
## Residuals  6  104.5   17.42               
## 
## Error: Within
##           Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 24   18.5  0.7708
## Computing bootstrap confidence intervals ...
## 
## 3 warning(s): Model failed to converge with max|grad| = 0.00211488 (tol = 0.002, component 1) (and others)
##                 2.5 %   97.5 %
## .sig01      0.8016683 3.299184
## .sigma      0.6328451 1.114697
## (Intercept) 1.5741244 5.804193
## MethodI2    0.9221775 6.606790