library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
head(trees)
## Girth Height Volume
## 1 8.3 70 10.3
## 2 8.6 65 10.3
## 3 8.8 63 10.2
## 4 10.5 72 16.4
## 5 10.7 81 18.8
## 6 10.8 83 19.7
glimpse(trees)
## Rows: 31
## Columns: 3
## $ Girth <dbl> 8.3, 8.6, 8.8, 10.5, 10.7, 10.8, 11.0, 11.0, 11.1, 11.2, 11....
## $ Height <dbl> 70, 65, 63, 72, 81, 83, 66, 75, 80, 75, 79, 76, 76, 69, 75, ...
## $ Volume <dbl> 10.3, 10.3, 10.2, 16.4, 18.8, 19.7, 15.6, 18.2, 22.6, 19.9, ...
summary(trees)
## Girth Height Volume
## Min. : 8.30 Min. :63 Min. :10.20
## 1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40
## Median :12.90 Median :76 Median :24.20
## Mean :13.25 Mean :76 Mean :30.17
## 3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30
## Max. :20.60 Max. :87 Max. :77.00
pairs(trees)
cor(trees)
## Girth Height Volume
## Girth 1.0000000 0.5192801 0.9671194
## Height 0.5192801 1.0000000 0.5982497
## Volume 0.9671194 0.5982497 1.0000000
cor.test(x = trees$Girth, y = trees$Volume, method = "pearson", digits= 3)
##
## Pearson's product-moment correlation
##
## data: trees$Girth and trees$Volume
## t = 20.478, df = 29, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9322519 0.9841887
## sample estimates:
## cor
## 0.9671194
library(GGally)
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
ggpairs(trees, lower = list( continuous = "smooth"), diag = list(continuous = "bar"), axisLabels = "none")
## Warning in check_and_set_ggpairs_defaults("diag", diag, continuous =
## "densityDiag", : Changing diag$continuous from 'bar' to 'barDiag'
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
De lo hasta ahora analizado, podemos concluir que:
Observando los diagramas de dispersion notamos que: la variable de diametro (girth) y volumen (volume) estan relacionadas.
El coeficiente de correlacion de pearson es bastante alto (r =0.9671194) y tenemos un valor de P significativo (p-value < 2.2e-16). Esto significa que hay una intensa correlacion entre ambas variables.
¿La correlacion implica causalidad?
modelo.lineal <- lm(Volume ~ Girth, data = trees)
summary(modelo.lineal)
##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
EcuaciOn de la recta de mInimos cuadrados
\[ y = -36.9535 + 5.0659x \]
confint(modelo.lineal)
## 2.5 % 97.5 %
## (Intercept) -43.825953 -30.060965
## Girth 4.559914 5.571799
Investigacion acerca de:
Prueba de Pearson: La función de la correlación de Pearson es determinar si existe una relación lineal entre dos variables a nivel intervalar y que esta relación no sea debida al azar; es decir, que la relación sea estadísticamente significativa.
Intervalo de confianza:Un intervalo de confianza es un rango de valores, derivado de los estadísticos de la muestra, que posiblemente incluya el valor de un parámetro de población desconocido. Debido a su naturaleza aleatoria, es poco probable que dos muestras de una población en particular produzcan intervalos de confianza idénticos. Sin embargo, si usted repitiera muchas veces su muestra, un determinado porcentaje de los intervalos de confianza resultantes incluiría el parámetro de población desconocido.
Valor de P:Es la probabilidad mínima definida por la distribución con la que podemos rechazar la hipótesis nula (H0) sin necesidad de definir a priori el nivel de significación para el contraste.