## Warning: package 'dplyr' was built under R version 3.6.2
## Warning: package 'nlme' was built under R version 3.6.2
## Warning: package 'lme4' was built under R version 3.6.2
## Warning: package 'ggplot2' was built under R version 3.6.2
## Warning: package 'tibble' was built under R version 3.6.2
## Warning: package 'tidyr' was built under R version 3.6.2
## Warning: package 'purrr' was built under R version 3.6.2

Summary table

## table of Age:
## 
## 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 68 
##  2  4  2  4 18 24 26 22 16 18 20 24 30 14  4  2  2
## table of categorical Age:
## 
##   7   8   9  10  11 
##   8 110 110   2   2
## ratio of data with missingness:
## [1] 0.09745763
## table of HT:
## 
##  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
## 95  6 20  6 10  2  7  1  8  2  4  3  5  2  5  4  5  4  7  5  5
## table of HTKS:
## 
##  0  1  2  3  4  5  6  7  8 10 11 12 13 14 16 17 18 19 20 21 22 23 26 27 29 30 
## 95  6 20  5  6  1  3  1  8  4  1  4  2  7  4  2  2  2  3  2  4  1  1  1  2  2 
## 31 32 34 37 38 40 43 46 47 48 52 
##  1  1  2  3  1  2  2  1  2  1  1
## table of HT_P:
## 
##  0  1  2  3  4  5  6  7  8  9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 27 
## 34 10 22  8 30  7  7  3  4  4  6  2  5  5  3  1  3  5  3  5  2  3  2  6  5  4 
## 28 29 30 31 32 
##  2  4  4  4  3
## table of HTKS_P:
## 
##  0  1  2  3  4  5  6  7  8  9 10 11 14 15 16 17 19 20 22 24 25 26 28 29 30 33 
## 34 10 22  8 29  7  5  3  5  3  6  1  1  2  1  2  1  3  6  1  2  2  5  1  1  3 
## 34 36 37 38 39 40 41 42 44 47 50 52 54 56 57 59 60 61 63 65 67 68 71 75 76 77 
##  3  3  1  1  1  1  2  3  1  3  1  2  3  1  1  1  1  1  2  1  1  2  1  1  2  1 
## 84 
##  1
## Warning: `group_by_()` is deprecated as of dplyr 0.7.0.
## Please use `group_by()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
## Warning: `summarise_()` is deprecated as of dplyr 0.7.0.
## Please use `summarise()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
## Warning: `fun.y` is deprecated. Use `fun` instead.

## Warning: `fun.y` is deprecated. Use `fun` instead.

## Warning: `fun.y` is deprecated. Use `fun` instead.

## Warning: `fun.y` is deprecated. Use `fun` instead.

Outcome1 : Random effect model: Does treatment have effect on HT?

We consider negetaive binomial, poisson, quasi-poisson models, if not inluded, then it doesn’t converge.

Zero Inflated effect model: Full Model

## full model
##  Family: nbinom2  ( log )
## Formula:          
## HT ~ age + I(age^2) + as.factor(Qual_Visit) + Treatment + Receive_Treatment *  
##     as.factor(Sex) + as.factor(Race_Ethn) + as.factor(Time) +  
##     (1 | Child_ID)
## Zero inflation:      
## ~age + I(age^2) + Treatment + Receive_Treatment * as.factor(Sex) + 
##     as.factor(Race_Ethn) + as.factor(Time) + (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##    983.2   1069.8   -465.6    931.2      180 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.2299   0.4794  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.2059   0.4538  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Overdispersion parameter for nbinom2 family (): 5.02 
## 
## Conditional model:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        1.510663   0.248376   6.082 1.19e-09 ***
## age                                0.043942   0.036620   1.200  0.23015    
## I(age^2)                           0.003866   0.006532   0.592  0.55388    
## as.factor(Qual_Visit)2             0.081875   0.191580   0.427  0.66911    
## Treatment                          0.297941   0.258072   1.154  0.24830    
## Receive_Treatment                 -0.282794   0.309378  -0.914  0.36068    
## as.factor(Sex)2                    0.302454   0.230474   1.312  0.18942    
## as.factor(Race_Ethn)4              0.112887   0.352363   0.320  0.74869    
## as.factor(Race_Ethn)6              0.275433   0.263880   1.044  0.29659    
## as.factor(Race_Ethn)7             -0.816554   0.308583  -2.646  0.00814 ** 
## as.factor(Time)2                   0.536338   0.236318   2.270  0.02323 *  
## Receive_Treatment:as.factor(Sex)2  0.117131   0.286158   0.409  0.68230    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                        0.30957    0.43305   0.715   0.4747  
## age                               -0.12980    0.07800  -1.664   0.0961 .
## I(age^2)                          -0.03226    0.01504  -2.146   0.0319 *
## Treatment                         -0.12080    0.46854  -0.258   0.7965  
## Receive_Treatment                 -1.30011    0.72989  -1.781   0.0749 .
## as.factor(Sex)2                    0.39454    0.41117   0.960   0.3373  
## as.factor(Race_Ethn)4             -0.52294    0.65919  -0.793   0.4276  
## as.factor(Race_Ethn)6             -0.16257    0.50243  -0.324   0.7463  
## as.factor(Race_Ethn)7             -0.10100    0.53990  -0.187   0.8516  
## as.factor(Time)2                  -0.13324    0.49887  -0.267   0.7894  
## Receive_Treatment:as.factor(Sex)2  0.95652    0.75650   1.264   0.2061  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##  Family: poisson  ( log )
## Formula:          
## HT ~ age + I(age^2) + as.factor(Qual_Visit) + Treatment + Receive_Treatment *  
##     as.factor(Sex) + as.factor(Race_Ethn) + as.factor(Time) +  
##     (1 | Child_ID)
## Zero inflation:      
## ~age + I(age^2) + as.factor(Qual_Visit) + Treatment + Receive_Treatment * 
##     as.factor(Sex) + as.factor(Race_Ethn) + as.factor(Time) +     (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##    993.8   1080.3   -470.9    941.8      180 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.4094   0.6399  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.2163   0.4651  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Conditional model:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        1.467416   0.218802   6.707 1.99e-11 ***
## age                                0.047310   0.037750   1.253  0.21011    
## I(age^2)                           0.006138   0.006659   0.922  0.35672    
## as.factor(Qual_Visit)2            -0.022183   0.133025  -0.167  0.86756    
## Treatment                          0.266823   0.227124   1.175  0.24008    
## Receive_Treatment                 -0.166524   0.197568  -0.843  0.39930    
## as.factor(Sex)2                    0.310444   0.220515   1.408  0.15919    
## as.factor(Race_Ethn)4              0.107209   0.352455   0.304  0.76099    
## as.factor(Race_Ethn)6              0.326314   0.273615   1.193  0.23303    
## as.factor(Race_Ethn)7             -0.836547   0.321238  -2.604  0.00921 ** 
## as.factor(Time)2                   0.401267   0.150361   2.669  0.00761 ** 
## Receive_Treatment:as.factor(Sex)2  0.001828   0.175278   0.010  0.99168    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                        0.28319    0.43956   0.644   0.5194  
## age                               -0.12932    0.07797  -1.659   0.0972 .
## I(age^2)                          -0.03230    0.01501  -2.152   0.0314 *
## as.factor(Qual_Visit)2             0.21431    0.40477   0.530   0.5965  
## Treatment                         -0.15587    0.46574  -0.335   0.7379  
## Receive_Treatment                 -1.29967    0.72802  -1.785   0.0742 .
## as.factor(Sex)2                    0.41185    0.41324   0.997   0.3189  
## as.factor(Race_Ethn)4             -0.50993    0.65833  -0.775   0.4386  
## as.factor(Race_Ethn)6             -0.14727    0.49880  -0.295   0.7678  
## as.factor(Race_Ethn)7             -0.09750    0.53778  -0.181   0.8561  
## as.factor(Time)2                  -0.13434    0.49713  -0.270   0.7870  
## Receive_Treatment:as.factor(Sex)2  0.93813    0.75489   1.243   0.2140  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Zero Inflated Random effect model: Reduced Model

## reduced model
##  Family: nbinom2  ( log )
## Formula:          
## HT ~ age + I(age^2) + Receive_Treatment * as.factor(Sex) + as.factor(Time) +  
##     (1 | Child_ID)
## Zero inflation:      
## ~age + I(age^2) + Receive_Treatment + as.factor(Sex) + as.factor(Time) + 
##     (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##    977.6   1030.9   -472.8    945.6      190 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.3133   0.5597  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.1891   0.4348  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Overdispersion parameter for nbinom2 family ():  4.9 
## 
## Conditional model:
##                                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                       1.614502   0.179023   9.018   <2e-16 ***
## age                               0.042714   0.037713   1.133   0.2574    
## I(age^2)                          0.004906   0.006712   0.731   0.4648    
## Receive_Treatment                 0.035794   0.240230   0.149   0.8816    
## as.factor(Sex)2                   0.396148   0.233311   1.698   0.0895 .  
## as.factor(Time)2                  0.337106   0.200267   1.683   0.0923 .  
## Receive_Treatment:as.factor(Sex)2 0.071788   0.296982   0.242   0.8090    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)        0.09399    0.28038   0.335   0.7374  
## age               -0.11080    0.07611  -1.456   0.1454  
## I(age^2)          -0.02989    0.01485  -2.012   0.0442 *
## Receive_Treatment -1.00335    0.47876  -2.096   0.0361 *
## as.factor(Sex)2    0.60853    0.34773   1.750   0.0801 .
## as.factor(Time)2  -0.09917    0.41327  -0.240   0.8103  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation
## Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-definite
## Hessian matrix. See vignette('troubleshooting')
## Warning in fitTMB(TMBStruc): Model convergence problem; false convergence (8).
## See vignette('troubleshooting')
##  Family: poisson  ( log )
## Formula:          
## HT ~ age + I(age^2) + Receive_Treatment * as.factor(Sex) + as.factor(Time) +  
##     (1 | Child_ID)
## Zero inflation:      
## ~age + I(age^2) + Receive_Treatment + as.factor(Sex) + as.factor(Time) + 
##     (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##       NA       NA       NA       NA      191 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.8311   0.9117  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.4584   0.6771  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Conditional model:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        1.226557   0.124332   9.865  < 2e-16 ***
## age                                0.020136   0.015411   1.307   0.1913    
## I(age^2)                           0.008692   0.002014   4.317 1.59e-05 ***
## Receive_Treatment                  0.020851   0.188151   0.111   0.9118    
## as.factor(Sex)2                    0.185815   0.165080   1.126   0.2603    
## as.factor(Time)2                   0.298772   0.143178   2.087   0.0369 *  
## Receive_Treatment:as.factor(Sex)2 -0.064997   0.148672  -0.437   0.6620    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       -0.16862    0.31598  -0.534    0.594    
## age               -0.24566    0.02531  -9.708  < 2e-16 ***
## I(age^2)          -0.04865    0.01209  -4.025 5.69e-05 ***
## Receive_Treatment -0.52575    0.51778  -1.015    0.310    
## as.factor(Sex)2    0.28642    0.31381   0.913    0.361    
## as.factor(Time)2  -0.49417    0.51898  -0.952    0.341    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation
## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation
## Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-definite
## Hessian matrix. See vignette('troubleshooting')
## Warning in fitTMB(TMBStruc): Model convergence problem; false convergence (8).
## See vignette('troubleshooting')
##  Family: nbinom1  ( log )
## Formula:          
## HT ~ age + I(age^2) + Receive_Treatment * as.factor(Sex) + as.factor(Time) +  
##     (1 | Child_ID)
## Zero inflation:      
## ~age + I(age^2) + Receive_Treatment + as.factor(Sex) + as.factor(Time) + 
##     (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##       NA       NA       NA       NA      190 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.654    0.8087  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.1097   0.3311  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Overdispersion parameter for nbinom1 family (): 1.18 
## 
## Conditional model:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        1.556233   0.177371   8.774   <2e-16 ***
## age                                0.048942   0.023212   2.108    0.035 *  
## I(age^2)                           0.008726   0.007647   1.141    0.254    
## Receive_Treatment                  0.115753   0.239926   0.482    0.629    
## as.factor(Sex)2                    0.181026   0.409372   0.442    0.658    
## as.factor(Time)2                   0.215642   0.198478   1.086    0.277    
## Receive_Treatment:as.factor(Sex)2 -0.096110   0.632726  -0.152    0.879    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)        0.001387   0.269985   0.005   0.9959  
## age               -0.159863   0.119492  -1.338   0.1809  
## I(age^2)          -0.034336   0.021960  -1.563   0.1179  
## Receive_Treatment -1.367650   0.663211  -2.062   0.0392 *
## as.factor(Sex)2    0.205546   0.437136   0.470   0.6382  
## as.factor(Time)2  -0.035536   0.478748  -0.074   0.9408  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Random effect model: Binary Model

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00443251 (tol = 0.002, component 1)
##                           Estimate Std. Error    z value   Pr(>|z|) p.value
## (Intercept)            -0.27886715 0.41174346 -0.6772837 0.49822595   0.741
## as.factor(Qual_Visit)2 -0.21038291 0.38561636 -0.5455757 0.58535764   0.818
## as.factor(Sex)2        -0.60977439 0.35284152 -1.7281821 0.08395559   0.073
## age                     0.12615674 0.07588085  1.6625636 0.09639982   0.093
## I(age^2)                0.03200379 0.01478862  2.1640820 0.03045806   0.010
## as.factor(Race_Ethn)4   0.49227044 0.64964109  0.7577575 0.44859614   0.686
## as.factor(Race_Ethn)6   0.13765101 0.48587198  0.2833072 0.77694138   0.924
## as.factor(Race_Ethn)7  -0.17635269 0.47098724 -0.3744320 0.70808295   0.895
## Treatment               0.16579101 0.44590377  0.3718089 0.71003511   0.896
## Receive_Treatment       0.86452299 0.62098955  1.3921700 0.16387094   0.216
## as.factor(Time)2        0.20647059 0.48007348  0.4300812 0.66713656   0.873
## Data: dat
## Models:
## model0: I(HT != 0) ~ as.factor(Qual_Visit) + as.factor(Sex) + as.factor(Race_Ethn) + 
## model0:     (1 | Child_ID) + Treatment + Receive_Treatment + as.factor(Time)
## model1: I(HT != 0) ~ as.factor(Qual_Visit) + as.factor(Sex) + (age) + 
## model1:     as.factor(Race_Ethn) + (1 | Child_ID) + Treatment + Receive_Treatment + 
## model1:     as.factor(Time)
## model2: I(HT != 0) ~ as.factor(Qual_Visit) + as.factor(Sex) + (age) + 
## model2:     I(age^2) + as.factor(Race_Ethn) + (1 | Child_ID) + Treatment + 
## model2:     Receive_Treatment + as.factor(Time)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)  
## model0   10 290.44 323.72 -135.22   270.44                       
## model1   11 292.44 329.05 -135.22   270.44 0.0003  1    0.98606  
## model2   12 289.14 329.07 -132.57   265.14 5.3078  1    0.02123 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: dat
## Models:
## model3: I(HT != 0) ~ as.factor(Sex) + (age) + I(age^2) + (1 | Child_ID) + 
## model3:     Receive_Treatment + as.factor(Time)
## model4: I(HT != 0) ~ as.factor(Sex) + (age) + I(age^2) + (1 | Child_ID) + 
## model4:     Treatment + Receive_Treatment + as.factor(Time)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## model3    7 280.43 303.72 -133.21   266.43                     
## model4    8 282.31 308.94 -133.16   266.31 0.1146  1     0.7349
##                      Estimate Std. Error    z value   Pr(>|z|) p.value
## (Intercept)       -0.22299214 0.26520177 -0.8408396 0.40043783   0.625
## as.factor(Sex)2   -0.52906666 0.33663716 -1.5716229 0.11603804   0.126
## age                0.11880038 0.07445296  1.5956434 0.11056844   0.117
## I(age^2)           0.03081625 0.01455145  2.1177453 0.03419665   0.013
## Receive_Treatment  0.98623380 0.45978718  2.1449789 0.03195453   0.011
## as.factor(Time)2   0.13922908 0.40026545  0.3478419 0.72795894   0.904

Treatment, “the treatment & sex”, “the treatment & categorical age” have no significant influence.

Outcome 2: Random effect model: Does treatment have effect on HTKS?

Zero Inflated effect model: Full Model

We consider negetaive binomial, poisson, quasi-poisson models, if not inluded, then it doesn’t converge.

## full model
##  Family: nbinom2  ( log )
## Formula:          
## HTKS ~ age + I(age^2) + as.factor(Qual_Visit) + Treatment + Receive_Treatment *  
##     as.factor(Sex) + as.factor(Race_Ethn) + as.factor(Time) +  
##     (1 | Child_ID)
## Zero inflation:        
## ~age + I(age^2) + Treatment + Receive_Treatment * as.factor(Sex) + 
##     as.factor(Race_Ethn) + as.factor(Time) + (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##   1098.1   1184.6   -523.0   1046.1      180 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.471    0.6863  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.2154   0.4641  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Overdispersion parameter for nbinom2 family (): 2.51 
## 
## Conditional model:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        1.712934   0.326228   5.251 1.52e-07 ***
## age                                0.066670   0.050130   1.330   0.1835    
## I(age^2)                           0.005830   0.008877   0.657   0.5114    
## as.factor(Qual_Visit)2             0.064155   0.253879   0.253   0.8005    
## Treatment                          0.287278   0.342411   0.839   0.4015    
## Receive_Treatment                 -0.259775   0.398238  -0.652   0.5142    
## as.factor(Sex)2                    0.312444   0.316258   0.988   0.3232    
## as.factor(Race_Ethn)4             -0.032379   0.486988  -0.066   0.9470    
## as.factor(Race_Ethn)6              0.444681   0.365304   1.217   0.2235    
## as.factor(Race_Ethn)7             -0.770613   0.401156  -1.921   0.0547 .  
## as.factor(Time)2                   0.641397   0.303548   2.113   0.0346 *  
## Receive_Treatment:as.factor(Sex)2  0.486362   0.367556   1.323   0.1858    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                        0.26772    0.44438   0.602   0.5469  
## age                               -0.12659    0.07959  -1.591   0.1117  
## I(age^2)                          -0.03209    0.01542  -2.081   0.0374 *
## Treatment                         -0.13767    0.48324  -0.285   0.7757  
## Receive_Treatment                 -1.34402    0.76779  -1.750   0.0800 .
## as.factor(Sex)2                    0.40701    0.42294   0.962   0.3359  
## as.factor(Race_Ethn)4             -0.53025    0.67996  -0.780   0.4355  
## as.factor(Race_Ethn)6             -0.14873    0.51551  -0.288   0.7730  
## as.factor(Race_Ethn)7             -0.09500    0.55214  -0.172   0.8634  
## as.factor(Time)2                  -0.12472    0.50920  -0.245   0.8065  
## Receive_Treatment:as.factor(Sex)2  1.04140    0.78607   1.325   0.1852  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Zero Inflated Random effect model: Reduced Model

## reduced model
##  Family: nbinom2  ( log )
## Formula:          HTKS ~ age + I(age^2) + Receive_Treatment * as.factor(Sex) +  
##     as.factor(Time) + (1 | Child_ID)
## Zero inflation:        
## ~age + I(age^2) + Receive_Treatment + as.factor(Sex) + as.factor(Time) + 
##     (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##   1088.6   1141.9   -528.3   1056.6      190 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.5446   0.738   
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.1904   0.4364  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Overdispersion parameter for nbinom2 family ():  2.4 
## 
## Conditional model:
##                                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                       1.827079   0.226394   8.070 7.01e-16 ***
## age                               0.069730   0.049550   1.407   0.1593    
## I(age^2)                          0.006496   0.008791   0.739   0.4600    
## Receive_Treatment                 0.049833   0.312835   0.159   0.8734    
## as.factor(Sex)2                   0.432536   0.305524   1.416   0.1569    
## as.factor(Time)2                  0.467626   0.261496   1.788   0.0737 .  
## Receive_Treatment:as.factor(Sex)2 0.414647   0.372859   1.112   0.2661    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)        0.02992    0.29218   0.102   0.9184  
## age               -0.10606    0.07748  -1.369   0.1710  
## I(age^2)          -0.02981    0.01525  -1.955   0.0506 .
## Receive_Treatment -1.00247    0.49121  -2.041   0.0413 *
## as.factor(Sex)2    0.64775    0.35798   1.809   0.0704 .
## as.factor(Time)2  -0.08014    0.42320  -0.189   0.8498  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##  Family: nbinom1  ( log )
## Formula:          HTKS ~ age + I(age^2) + Receive_Treatment * as.factor(Sex) +  
##     as.factor(Time) + (1 | Child_ID)
## Zero inflation:        
## ~age + I(age^2) + Receive_Treatment + as.factor(Sex) + as.factor(Time) + 
##     (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##   1078.8   1132.0   -523.4   1046.8      190 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.521    0.7218  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.3065   0.5536  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Overdispersion parameter for nbinom1 family (): 5.12 
## 
## Conditional model:
##                                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                       1.821505   0.217508   8.374   <2e-16 ***
## age                               0.047796   0.050521   0.946   0.3441    
## I(age^2)                          0.003563   0.008441   0.422   0.6729    
## Receive_Treatment                 0.076588   0.279428   0.274   0.7840    
## as.factor(Sex)2                   0.382016   0.318488   1.199   0.2303    
## as.factor(Time)2                  0.445403   0.248577   1.792   0.0732 .  
## Receive_Treatment:as.factor(Sex)2 0.271226   0.338785   0.801   0.4234    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)       -0.22164    0.36698  -0.604   0.5459  
## age               -0.09543    0.08687  -1.099   0.2720  
## I(age^2)          -0.02991    0.01717  -1.742   0.0816 .
## Receive_Treatment -1.00067    0.55183  -1.813   0.0698 .
## as.factor(Sex)2    0.79625    0.47185   1.688   0.0915 .
## as.factor(Time)2  -0.03809    0.48873  -0.078   0.9379  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Random effect model: Binary Model

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00443251 (tol = 0.002, component 1)
##                           Estimate Std. Error    z value   Pr(>|z|) p.value
## (Intercept)            -0.27886715 0.41174346 -0.6772837 0.49822595   0.741
## as.factor(Qual_Visit)2 -0.21038291 0.38561636 -0.5455757 0.58535764   0.818
## as.factor(Sex)2        -0.60977439 0.35284152 -1.7281821 0.08395559   0.073
## age                     0.12615674 0.07588085  1.6625636 0.09639982   0.093
## I(age^2)                0.03200379 0.01478862  2.1640820 0.03045806   0.010
## as.factor(Race_Ethn)4   0.49227044 0.64964109  0.7577575 0.44859614   0.686
## as.factor(Race_Ethn)6   0.13765101 0.48587198  0.2833072 0.77694138   0.924
## as.factor(Race_Ethn)7  -0.17635269 0.47098724 -0.3744320 0.70808295   0.895
## Treatment               0.16579101 0.44590377  0.3718089 0.71003511   0.896
## Receive_Treatment       0.86452299 0.62098955  1.3921700 0.16387094   0.216
## as.factor(Time)2        0.20647059 0.48007348  0.4300812 0.66713656   0.873
## Data: dat
## Models:
## model0: I(HTKS != 0) ~ as.factor(Qual_Visit) + as.factor(Sex) + as.factor(Race_Ethn) + 
## model0:     (1 | Child_ID) + Treatment + Receive_Treatment + as.factor(Time)
## model1: I(HTKS != 0) ~ as.factor(Qual_Visit) + as.factor(Sex) + (age) + 
## model1:     as.factor(Race_Ethn) + (1 | Child_ID) + Treatment + Receive_Treatment + 
## model1:     as.factor(Time)
## model2: I(HTKS != 0) ~ as.factor(Qual_Visit) + as.factor(Sex) + (age) + 
## model2:     I(age^2) + as.factor(Race_Ethn) + (1 | Child_ID) + Treatment + 
## model2:     Receive_Treatment + as.factor(Time)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)  
## model0   10 290.44 323.72 -135.22   270.44                       
## model1   11 292.44 329.05 -135.22   270.44 0.0003  1    0.98606  
## model2   12 289.14 329.07 -132.57   265.14 5.3078  1    0.02123 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: dat
## Models:
## model3: I(HTKS != 0) ~ as.factor(Sex) + (age) + I(age^2) + (1 | Child_ID) + 
## model3:     Receive_Treatment + as.factor(Time)
## model4: I(HTKS != 0) ~ as.factor(Sex) + (age) + I(age^2) + (1 | Child_ID) + 
## model4:     Treatment + Receive_Treatment + as.factor(Time)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## model3    7 280.43 303.72 -133.21   266.43                     
## model4    8 282.31 308.94 -133.16   266.31 0.1146  1     0.7349
##                      Estimate Std. Error    z value   Pr(>|z|) p.value
## (Intercept)       -0.22299214 0.26520177 -0.8408396 0.40043783   0.625
## as.factor(Sex)2   -0.52906666 0.33663716 -1.5716229 0.11603804   0.126
## age                0.11880038 0.07445296  1.5956434 0.11056844   0.117
## I(age^2)           0.03081625 0.01455145  2.1177453 0.03419665   0.013
## Receive_Treatment  0.98623380 0.45978718  2.1449789 0.03195453   0.011
## as.factor(Time)2   0.13922908 0.40026545  0.3478419 0.72795894   0.904

Outcome3 : Random effect model: Does treatment have effect on HT_P?

Zero Inflated effect model: Full Model

## full model
## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation

## Warning in (function (start, objective, gradient = NULL, hessian = NULL, : NA/
## NaN function evaluation
## Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-definite
## Hessian matrix. See vignette('troubleshooting')
## Warning in fitTMB(TMBStruc): Model convergence problem; false convergence (8).
## See vignette('troubleshooting')
##  Family: nbinom2  ( log )
## Formula:          
## HT_P ~ age + I(age^2) + as.factor(Qual_Visit) + Treatment + Receive_Treatment *  
##     as.factor(Sex) + as.factor(Race_Ethn) + as.factor(Time) +  
##     (1 | Child_ID)
## Zero inflation:        
## ~age + I(age^2) + Treatment + Receive_Treatment * as.factor(Sex) + 
##     as.factor(Race_Ethn) + as.factor(Time) + (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##       NA       NA       NA       NA      180 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.5312   0.7288  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.3047   0.552   
## Number of obs: 206, groups:  Child_ID, 103
## 
## Overdispersion parameter for nbinom2 family (): 4.45 
## 
## Conditional model:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        1.595466   0.217360   7.340 2.13e-13 ***
## age                                0.079635   0.046065   1.729  0.08385 .  
## I(age^2)                           0.017216   0.009837   1.750  0.08009 .  
## as.factor(Qual_Visit)2            -0.171973   0.158202  -1.087  0.27702    
## Treatment                          0.345099   0.306786   1.125  0.26064    
## Receive_Treatment                 -0.069936   0.285114  -0.245  0.80623    
## as.factor(Sex)2                   -0.025724   0.224462  -0.115  0.90876    
## as.factor(Race_Ethn)4              0.178528   0.349568   0.511  0.60955    
## as.factor(Race_Ethn)6              0.408517   0.274475   1.488  0.13666    
## as.factor(Race_Ethn)7             -0.519971   1.508401  -0.345  0.73031    
## as.factor(Time)2                   0.549963   0.201027   2.736  0.00622 ** 
## Receive_Treatment:as.factor(Sex)2 -0.022404   0.243334  -0.092  0.92664    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                       -2.504581   0.713084  -3.512 0.000444 ***
## age                               -0.005113   0.115733  -0.044 0.964763    
## I(age^2)                           0.001300   0.018598   0.070 0.944277    
## Treatment                          0.335844   0.753957   0.445 0.656001    
## Receive_Treatment                 -1.807761   2.403924  -0.752 0.452049    
## as.factor(Sex)2                   -0.213682   0.514236  -0.416 0.677752    
## as.factor(Race_Ethn)4              0.884418   0.897059   0.986 0.324178    
## as.factor(Race_Ethn)6              1.296004   0.617292   2.100 0.035773 *  
## as.factor(Race_Ethn)7              0.888718   3.143708   0.283 0.777409    
## as.factor(Time)2                   0.620372   0.888166   0.698 0.484873    
## Receive_Treatment:as.factor(Sex)2  0.232914   1.848805   0.126 0.899747    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Zero Inflated Random effect model: Reduced Model

## reduced model
## Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-definite
## Hessian matrix. See vignette('troubleshooting')
## Warning in fitTMB(TMBStruc): Model convergence problem; false convergence (8).
## See vignette('troubleshooting')
##  Family: nbinom2  ( log )
## Formula:          HT_P ~ age + I(age^2) + Receive_Treatment * as.factor(Sex) +  
##     as.factor(Time) + (1 | Child_ID)
## Zero inflation:        
## ~age + I(age^2) + Receive_Treatment + as.factor(Sex) + as.factor(Time) + 
##     (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##       NA       NA       NA       NA      190 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.6217   0.7885  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.7753   0.8805  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Overdispersion parameter for nbinom2 family (): 3.91 
## 
## Conditional model:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        1.773268   0.164202  10.799  < 2e-16 ***
## age                                0.108179   0.046859   2.309  0.02097 *  
## I(age^2)                           0.022332   0.007521   2.969  0.00299 ** 
## Receive_Treatment                  0.190610   0.267347   0.713  0.47587    
## as.factor(Sex)2                   -0.112851   0.441929  -0.255  0.79844    
## as.factor(Time)2                   0.341087   0.220499   1.547  0.12189    
## Receive_Treatment:as.factor(Sex)2 -0.034334   0.700206  -0.049  0.96089    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       -1.933080   0.383221  -5.044 4.55e-07 ***
## age                0.103445   0.102771   1.007   0.3141    
## I(age^2)           0.010309   0.019969   0.516   0.6057    
## Receive_Treatment -1.434151   0.582117  -2.464   0.0138 *  
## as.factor(Sex)2    0.003785   0.428096   0.009   0.9929    
## as.factor(Time)2   0.384759   0.595367   0.646   0.5181    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-definite
## Hessian matrix. See vignette('troubleshooting')

## Warning in fitTMB(TMBStruc): Model convergence problem; false convergence (8).
## See vignette('troubleshooting')
##  Family: nbinom1  ( log )
## Formula:          HT_P ~ age + I(age^2) + Receive_Treatment * as.factor(Sex) +  
##     as.factor(Time) + (1 | Child_ID)
## Zero inflation:        
## ~age + I(age^2) + Receive_Treatment + as.factor(Sex) + as.factor(Time) + 
##     (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##       NA       NA       NA       NA      190 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.451    0.6716  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.2425   0.4924  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Overdispersion parameter for nbinom1 family (): 2.61 
## 
## Conditional model:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        1.724067   0.140869  12.239   <2e-16 ***
## age                                0.052298   0.034116   1.533   0.1253    
## I(age^2)                           0.014095   0.006655   2.118   0.0342 *  
## Receive_Treatment                  0.147181   0.202262   0.728   0.4668    
## as.factor(Sex)2                    0.267979   0.192093   1.395   0.1630    
## as.factor(Time)2                   0.320474   0.164944   1.943   0.0520 .  
## Receive_Treatment:as.factor(Sex)2 -0.010927   0.134021  -0.082   0.9350    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       -2.338662   0.491494  -4.758 1.95e-06 ***
## age                0.024992   0.109060   0.229   0.8187    
## I(age^2)           0.008616   0.015046   0.573   0.5669    
## Receive_Treatment -1.241055   0.577358  -2.150   0.0316 *  
## as.factor(Sex)2    0.442203   0.517677   0.854   0.3930    
## as.factor(Time)2   0.419607   0.534867   0.785   0.4327    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Random effect model: Binary Model

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0813713 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.123917 (tol = 0.002, component 1)
##                            Estimate Std. Error    z value    Pr(>|z|) p.value
## (Intercept)             1.999299989 0.65002680  3.0757193 0.002099954   0.000
## as.factor(Qual_Visit)2  0.736267749 0.60979499  1.2074021 0.227277328   0.339
## as.factor(Sex)2        -0.168855304 0.45010415 -0.3751472 0.707551007   0.894
## age                     0.039304707 0.10220509  0.3845670 0.700558229   0.891
## I(age^2)                0.003181186 0.01872112  0.1699250 0.865069130   0.952
## as.factor(Race_Ethn)4  -0.511748614 0.81737630 -0.6260869 0.531257929   0.773
## as.factor(Race_Ethn)6  -0.993509107 0.60104383 -1.6529728 0.098336395   0.096
## as.factor(Race_Ethn)7  -0.790579101 0.58985047 -1.3403043 0.180146443   0.248
## Treatment              -0.196019157 0.58352370 -0.3359232 0.736928772   0.908
## Receive_Treatment       1.189840391 0.82752709  1.4378265 0.150483284   0.191
## as.factor(Time)2       -0.297976708 0.59960613 -0.4969541 0.619221442   0.843
## Data: dat
## Models:
## model0: I(HT_P != 0) ~ as.factor(Qual_Visit) + as.factor(Sex) + as.factor(Race_Ethn) + 
## model0:     (1 | Child_ID) + Treatment + Receive_Treatment + as.factor(Time)
## model1: I(HT_P != 0) ~ as.factor(Qual_Visit) + as.factor(Sex) + (age) + 
## model1:     as.factor(Race_Ethn) + (1 | Child_ID) + Treatment + Receive_Treatment + 
## model1:     as.factor(Time)
## model2: I(HT_P != 0) ~ as.factor(Qual_Visit) + as.factor(Sex) + (age) + 
## model2:     I(age^2) + as.factor(Race_Ethn) + (1 | Child_ID) + Treatment + 
## model2:     Receive_Treatment + as.factor(Time)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## model0   10 193.33 226.60 -86.663   173.33                     
## model1   11 195.17 231.78 -86.584   173.17 0.1574  1     0.6916
## model2   12 197.13 237.06 -86.565   173.13 0.0394  1     0.8426
## Data: dat
## Models:
## model3: I(HT_P != 0) ~ as.factor(Sex) + (age) + I(age^2) + (1 | Child_ID) + 
## model3:     Receive_Treatment + as.factor(Time)
## model4: I(HT_P != 0) ~ as.factor(Sex) + (age) + I(age^2) + (1 | Child_ID) + 
## model4:     Treatment + Receive_Treatment + as.factor(Time)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## model3    7 192.68 215.97 -89.338   178.68                     
## model4    8 194.67 221.29 -89.334   178.67 0.0076  1     0.9304
##                       Estimate Std. Error    z value     Pr(>|z|) p.value
## (Intercept)        1.814284766 0.47196602  3.8441004 0.0001209955   0.000
## as.factor(Sex)2   -0.352011566 0.46062957 -0.7641966 0.4447500759   0.681
## age                0.048137616 0.10422774  0.4618503 0.6441886709   0.859
## I(age^2)           0.009718066 0.01931425  0.5031553 0.6148550885   0.840
## Receive_Treatment  1.178592652 0.64502752  1.8271975 0.0676700857   0.049
## as.factor(Time)2  -0.325604098 0.50288567 -0.6474714 0.5173268909   0.760

Outcome4 : Random effect model: Does treatment have effect on HTKS_P?

Zero Inflated effect model: Full Model

## full model
## Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-definite
## Hessian matrix. See vignette('troubleshooting')
## Warning in fitTMB(TMBStruc): Model convergence problem; false convergence (8).
## See vignette('troubleshooting')
##  Family: poisson  ( log )
## Formula:          
## HTKS_P ~ age + I(age^2) + as.factor(Qual_Visit) + Treatment +  
##     Receive_Treatment * as.factor(Sex) + as.factor(Race_Ethn) +  
##     as.factor(Time) + (1 | Child_ID)
## Zero inflation:          
## ~age + I(age^2) + Treatment + Receive_Treatment * as.factor(Sex) + 
##     as.factor(Race_Ethn) + as.factor(Time) + (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##       NA       NA       NA       NA      181 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 1.211    1.101   
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.7055   0.84    
## Number of obs: 206, groups:  Child_ID, 103
## 
## Conditional model:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        1.740528   0.242440   7.179 7.01e-13 ***
## age                                0.090669   0.051418   1.763 0.077840 .  
## I(age^2)                           0.022010   0.009327   2.360 0.018287 *  
## as.factor(Qual_Visit)2            -0.262957   0.070627  -3.723 0.000197 ***
## Treatment                          0.222053   0.239885   0.926 0.354621    
## Receive_Treatment                 -0.023688   0.107619  -0.220 0.825788    
## as.factor(Sex)2                    0.187423   0.232663   0.806 0.420498    
## as.factor(Race_Ethn)4              0.108875   0.458765   0.237 0.812408    
## as.factor(Race_Ethn)6              0.540365   0.365466   1.479 0.139257    
## as.factor(Race_Ethn)7             -0.533422   0.266062  -2.005 0.044976 *  
## as.factor(Time)2                   0.619235   0.088204   7.021 2.21e-12 ***
## Receive_Treatment:as.factor(Sex)2  0.063712   0.092328   0.690 0.490157    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                       -1.999509   0.461896  -4.329  1.5e-05 ***
## age                                0.025015   0.106580   0.235    0.814    
## I(age^2)                           0.006551   0.018912   0.346    0.729    
## Treatment                         -0.402058   0.567460  -0.709    0.479    
## Receive_Treatment                 -0.667694   0.816506  -0.818    0.414    
## as.factor(Sex)2                    0.294784   0.525106   0.561    0.575    
## as.factor(Race_Ethn)4              0.204733   0.784017   0.261    0.794    
## as.factor(Race_Ethn)6              0.981787   0.636930   1.541    0.123    
## as.factor(Race_Ethn)7              0.314459   0.599973   0.524    0.600    
## as.factor(Time)2                  -0.055249   0.063567  -0.869    0.385    
## Receive_Treatment:as.factor(Sex)2  0.193924   1.004581   0.193    0.847    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Zero Inflated Random effect model: Reduced Model

## reduced model
## Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-definite
## Hessian matrix. See vignette('troubleshooting')
## Warning in fitTMB(TMBStruc): Model convergence problem; false convergence (8).
## See vignette('troubleshooting')
##  Family: nbinom2  ( log )
## Formula:          
## HTKS_P ~ age + I(age^2) + Receive_Treatment * as.factor(Sex) +  
##     as.factor(Time) + (1 | Child_ID)
## Zero inflation:          
## ~age + I(age^2) + Receive_Treatment + as.factor(Sex) + as.factor(Time) + 
##     (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##       NA       NA       NA       NA      190 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.6723   0.8199  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 2.603    1.613   
## Number of obs: 206, groups:  Child_ID, 103
## 
## Overdispersion parameter for nbinom2 family (): 0.892 
## 
## Conditional model:
##                                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                       1.949716   0.174795  11.154   <2e-16 ***
## age                               0.107428   0.052685   2.039   0.0414 *  
## I(age^2)                          0.018813   0.009463   1.988   0.0468 *  
## Receive_Treatment                 0.312599   0.339883   0.920   0.3577    
## as.factor(Sex)2                   0.039089   0.280863   0.139   0.8893    
## as.factor(Time)2                  0.578750   0.261820   2.210   0.0271 *  
## Receive_Treatment:as.factor(Sex)2 0.175951   0.419638   0.419   0.6750    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         -4.146      1.389  -2.985 0.002835 ** 
## age                 -3.333      2.766  -1.205 0.228179    
## I(age^2)            -2.411      1.682  -1.434 0.151571    
## Receive_Treatment   -4.600      1.388  -3.315 0.000917 ***
## as.factor(Sex)2      1.059      1.744   0.607 0.543570    
## as.factor(Time)2     3.702      1.363   2.717 0.006585 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-definite
## Hessian matrix. See vignette('troubleshooting')

## Warning in fitTMB(TMBStruc): Model convergence problem; false convergence (8).
## See vignette('troubleshooting')
##  Family: nbinom1  ( log )
## Formula:          
## HTKS_P ~ age + I(age^2) + Receive_Treatment * as.factor(Sex) +  
##     as.factor(Time) + (1 | Child_ID)
## Zero inflation:          
## ~age + I(age^2) + Receive_Treatment + as.factor(Sex) + as.factor(Time) + 
##     (1 | Child_ID)
## Data: dat
## 
##      AIC      BIC   logLik deviance df.resid 
##       NA       NA       NA       NA      190 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.667    0.8167  
## Number of obs: 206, groups:  Child_ID, 103
## 
## Zero-inflation model:
##  Groups   Name        Variance Std.Dev.
##  Child_ID (Intercept) 0.6289   0.793   
## Number of obs: 206, groups:  Child_ID, 103
## 
## Overdispersion parameter for nbinom1 family (): 7.76 
## 
## Conditional model:
##                                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                       1.985724   0.204202   9.724   <2e-16 ***
## age                               0.063411   0.047773   1.327   0.1844    
## I(age^2)                          0.019490   0.009475   2.057   0.0397 *  
## Receive_Treatment                 0.151842   0.375730   0.404   0.6861    
## as.factor(Sex)2                   0.158892   0.427585   0.372   0.7102    
## as.factor(Time)2                  0.401972   0.209148   1.922   0.0546 .  
## Receive_Treatment:as.factor(Sex)2 0.088453   0.344725   0.257   0.7975    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Zero-inflation model:
##                   Estimate Std. Error z value Pr(>|z|)   
## (Intercept)       -2.40042    0.73592  -3.262  0.00111 **
## age                0.09747    0.11798   0.826  0.40874   
## I(age^2)           0.02824    0.01812   1.559  0.11911   
## Receive_Treatment -1.42640    0.59736  -2.388  0.01695 * 
## as.factor(Sex)2   -0.01465    1.00078  -0.015  0.98832   
## as.factor(Time)2   0.14314    0.66739   0.214  0.83018   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Random effect model: Binary Model

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0813713 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.123917 (tol = 0.002, component 1)
##                            Estimate Std. Error    z value    Pr(>|z|) p.value
## (Intercept)             1.999299989 0.65002680  3.0757193 0.002099954   0.000
## as.factor(Qual_Visit)2  0.736267749 0.60979499  1.2074021 0.227277328   0.339
## as.factor(Sex)2        -0.168855304 0.45010415 -0.3751472 0.707551007   0.894
## age                     0.039304707 0.10220509  0.3845670 0.700558229   0.891
## I(age^2)                0.003181186 0.01872112  0.1699250 0.865069130   0.952
## as.factor(Race_Ethn)4  -0.511748614 0.81737630 -0.6260869 0.531257929   0.773
## as.factor(Race_Ethn)6  -0.993509107 0.60104383 -1.6529728 0.098336395   0.096
## as.factor(Race_Ethn)7  -0.790579101 0.58985047 -1.3403043 0.180146443   0.248
## Treatment              -0.196019157 0.58352370 -0.3359232 0.736928772   0.908
## Receive_Treatment       1.189840391 0.82752709  1.4378265 0.150483284   0.191
## as.factor(Time)2       -0.297976708 0.59960613 -0.4969541 0.619221442   0.843
## Data: dat
## Models:
## model0: I(HTKS_P != 0) ~ as.factor(Qual_Visit) + as.factor(Sex) + as.factor(Race_Ethn) + 
## model0:     (1 | Child_ID) + Treatment + Receive_Treatment + as.factor(Time)
## model1: I(HTKS_P != 0) ~ as.factor(Qual_Visit) + as.factor(Sex) + (age) + 
## model1:     as.factor(Race_Ethn) + (1 | Child_ID) + Treatment + Receive_Treatment + 
## model1:     as.factor(Time)
## model2: I(HTKS_P != 0) ~ as.factor(Qual_Visit) + as.factor(Sex) + (age) + 
## model2:     I(age^2) + as.factor(Race_Ethn) + (1 | Child_ID) + Treatment + 
## model2:     Receive_Treatment + as.factor(Time)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## model0   10 193.33 226.60 -86.663   173.33                     
## model1   11 195.17 231.78 -86.584   173.17 0.1574  1     0.6916
## model2   12 197.13 237.06 -86.565   173.13 0.0394  1     0.8426
## Data: dat
## Models:
## model3: I(HTKS_P != 0) ~ as.factor(Sex) + (age) + I(age^2) + (1 | Child_ID) + 
## model3:     Receive_Treatment + as.factor(Time)
## model4: I(HTKS_P != 0) ~ as.factor(Sex) + (age) + I(age^2) + (1 | Child_ID) + 
## model4:     Treatment + Receive_Treatment + as.factor(Time)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## model3    7 192.68 215.97 -89.338   178.68                     
## model4    8 194.67 221.29 -89.334   178.67 0.0076  1     0.9304
##                       Estimate Std. Error    z value     Pr(>|z|) p.value
## (Intercept)        1.814284766 0.47196602  3.8441004 0.0001209955   0.000
## as.factor(Sex)2   -0.352011566 0.46062957 -0.7641966 0.4447500759   0.681
## age                0.048137616 0.10422774  0.4618503 0.6441886709   0.859
## I(age^2)           0.009718066 0.01931425  0.5031553 0.6148550885   0.840
## Receive_Treatment  1.178592652 0.64502752  1.8271975 0.0676700857   0.049
## as.factor(Time)2  -0.325604098 0.50288567 -0.6474714 0.5173268909   0.760