#Nested designs An experiment on a cognitive task was conducted. The design involved 4 classes nested within two methods of instruction. Thirty-two subjects were randomly assigned to one of the eight conditions. The score was the number of correct responses on the post-treatment test. Source: Kirk, R. (1982). Experimental Designs: Procedures for the Behavioral Sciences. p. 460.
#input data
dta <- read.table("C:/Users/Ching-Fang Wu/Documents/data/cognitive_task.txt", h=T)
str(dta)
## 'data.frame': 32 obs. of 5 variables:
## $ ID : chr "S01" "S02" "S03" "S04" ...
## $ Score : int 3 6 3 3 1 2 2 2 5 6 ...
## $ Method: chr "I1" "I1" "I1" "I1" ...
## $ Class : chr "C1" "C1" "C1" "C1" ...
## $ Klass : chr "K1" "K1" "K1" "K1" ...
#first 6 lines
head(dta)
## ID Score Method Class Klass
## 1 S01 3 I1 C1 K1
## 2 S02 6 I1 C1 K1
## 3 S03 3 I1 C1 K1
## 4 S04 3 I1 C1 K1
## 5 S05 1 I1 C2 K2
## 6 S06 2 I1 C2 K2
VCA::varPlot(Score ~ Method/Class/ID,
Data=dta,
YLabel=list(text="Score", side=2, cex=1),
MeanLine=list(var=c("Method", "Class"),
col=c("darkred", "salmon"), lwd=c(1, 2)))
## Warning in min(x): min 中沒有無漏失的引數; 回傳 Inf
## Warning in max(x): max 中沒有無漏失的引數;回傳 -Inf
教學法2的平均分數高於教學法1
#ANOVA approach
m0 <- aov(Score ~ Method + Error(Class), data=dta)
m01 <- aov(Score ~ Method + Error(Method/Klass), data=dta)
summary(m0)
##
## Error: Class
## Df Sum Sq Mean Sq F value Pr(>F)
## Method 1 112.5 112.50 6.459 0.044 *
## Residuals 6 104.5 17.42
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 24 18.5 0.7708
summary(m01)
##
## Error: Method
## Df Sum Sq Mean Sq
## Method 1 112.5 112.5
##
## Error: Method:Klass
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 6 104.5 17.42
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 24 18.5 0.7708
#Mixed effect approach
m1 <- lme4::lmer(Score ~ Method + (1 | Class), data=dta)
#Mixed effect approach
m11 <- lme4::lmer(Score ~ Method + (1 | Method:Klass), data=dta)
confint(m1, method="boot")
## Computing bootstrap confidence intervals ...
## 2.5 % 97.5 %
## .sig01 0.8273623 3.289616
## .sigma 0.6127138 1.105241
## (Intercept) 1.4981560 5.708186
## MethodI2 0.6890050 6.563107