dta <- read.table("cognitive_task.txt", h=T)
str(dta)
## 'data.frame': 32 obs. of 5 variables:
## $ ID : chr "S01" "S02" "S03" "S04" ...
## $ Score : int 3 6 3 3 1 2 2 2 5 6 ...
## $ Method: chr "I1" "I1" "I1" "I1" ...
## $ Class : chr "C1" "C1" "C1" "C1" ...
## $ Klass : chr "K1" "K1" "K1" "K1" ...
head(dta)
## ID Score Method Class Klass
## 1 S01 3 I1 C1 K1
## 2 S02 6 I1 C1 K1
## 3 S03 3 I1 C1 K1
## 4 S04 3 I1 C1 K1
## 5 S05 1 I1 C2 K2
## 6 S06 2 I1 C2 K2
VCA::varPlot(Score ~ Method/Class/ID,
Data=dta,
YLabel=list(text="Score", side=2, cex=1),
MeanLine=list(var=c("Method", "Class"),
col=c("darkred", "salmon"), lwd=c(1, 2)))
## Warning in min(x): min 中沒有無漏失的引數; 回傳 Inf
## Warning in max(x): max 中沒有無漏失的引數;回傳 -Inf
結果圖顯示method l1平均分數低於l2。
class c1至c8的平均分數落於2至10分,具有明顯的變異
# error class
m0 <- aov(Score ~ Method + Error(Class), data=dta)
#鑲嵌在 Klass 中的 Method error
m01 <- aov(Score ~ Method + Error(Method/Klass), data=dta)
#
summary(m0)
##
## Error: Class
## Df Sum Sq Mean Sq F value Pr(>F)
## Method 1 112.5 112.50 6.459 0.044 *
## Residuals 6 104.5 17.42
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 24 18.5 0.7708
#
summary(m01)
##
## Error: Method
## Df Sum Sq Mean Sq
## Method 1 112.5 112.5
##
## Error: Method:Klass
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 6 104.5 17.42
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 24 18.5 0.7708
#未鑲嵌在 Klass 中的 Method error
m02 <- aov(Score ~ Method + Error(Method), data=dta)
summary(m02)
##
## Error: Method
## Df Sum Sq Mean Sq
## Method 1 112.5 112.5
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 30 123 4.1
method 對分數的變異量112.5,且不同的方法其平均分數有顯著差異(p=0.044)
class 對分數的變異量104.5
個人間分數變異量18.5
m0和m01兩個model結果相同
Error(Method/Klass)與Error(class)意義相同
m1 <- lme4::lmer(Score ~ Method + (1 | Class), data=dta)
#
m11 <- lme4::lmer(Score ~ Method + (1 | Method:Klass), data=dta)
#
summary(m1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Score ~ Method + (1 | Class)
## Data: dta
##
## REML criterion at convergence: 101.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.3028 -0.8416 -0.0126 0.3150 2.5753
##
## Random effects:
## Groups Name Variance Std.Dev.
## Class (Intercept) 4.1615 2.040
## Residual 0.7708 0.878
## Number of obs: 32, groups: Class, 8
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3.500 1.043 3.355
## MethodI2 3.750 1.475 2.542
##
## Correlation of Fixed Effects:
## (Intr)
## MethodI2 -0.707
#
summary(m11)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Score ~ Method + (1 | Method:Klass)
## Data: dta
##
## REML criterion at convergence: 101.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.3028 -0.8416 -0.0126 0.3150 2.5753
##
## Random effects:
## Groups Name Variance Std.Dev.
## Method:Klass (Intercept) 4.1615 2.040
## Residual 0.7708 0.878
## Number of obs: 32, groups: Method:Klass, 8
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3.500 1.043 3.355
## MethodI2 3.750 1.475 2.542
##
## Correlation of Fixed Effects:
## (Intr)
## MethodI2 -0.707
#
confint(m1, method="boot")
## Computing bootstrap confidence intervals ...
## 2.5 % 97.5 %
## .sig01 0.8170788 3.241563
## .sigma 0.6094929 1.129447
## (Intercept) 1.4478796 5.640406
## MethodI2 0.8609712 6.887529
# The end
m1與m11的結果相同。
score的截距為3.5
method l2的fix effect為3.75
class/Method:Klass random effect 4.16, residual 0.77
MethodI2 95CI:0.856~6.766