load package
library(nlme)
descriptive statistc
# mean by Type
aggregate(ergoStool[,1], list(ergoStool$Type), mean)
## Group.1 x
## 1 T1 8.555556
## 2 T2 12.444444
## 3 T3 10.777778
## 4 T4 9.222222
# mean by Subject
aggregate(ergoStool[,1], list(ergoStool$Subject), mean)
## Group.1 x
## 1 8 8.25
## 2 5 8.50
## 3 4 9.25
## 4 9 10.00
## 5 6 10.25
## 6 3 10.75
## 7 7 10.75
## 8 1 12.25
## 9 2 12.25
Linear mixed-effects model fit by REML
library(lme4)
## Loading required package: Matrix
##
## Attaching package: 'lme4'
## The following object is masked from 'package:nlme':
##
## lmList
summary(m0 <- lmer(effort ~ Type + (1 | Subject), data = ergoStool))
## Linear mixed model fit by REML ['lmerMod']
## Formula: effort ~ Type + (1 | Subject)
## Data: ergoStool
##
## REML criterion at convergence: 121.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.80200 -0.64317 0.05783 0.70100 1.63142
##
## Random effects:
## Groups Name Variance Std.Dev.
## Subject (Intercept) 1.775 1.332
## Residual 1.211 1.100
## Number of obs: 36, groups: Subject, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 8.5556 0.5760 14.853
## TypeT2 3.8889 0.5187 7.498
## TypeT3 2.2222 0.5187 4.284
## TypeT4 0.6667 0.5187 1.285
##
## Correlation of Fixed Effects:
## (Intr) TypeT2 TypeT3
## TypeT2 -0.450
## TypeT3 -0.450 0.500
## TypeT4 -0.450 0.500 0.500
# fix effect 有 p 值的寫法
summary(m1 <- nlme::lme(effort ~ Type, random = ~ 1 | Subject, data=ergoStool, method="REML") )
## Linear mixed-effects model fit by REML
## Data: ergoStool
## AIC BIC logLik
## 133.1308 141.9252 -60.56539
##
## Random effects:
## Formula: ~1 | Subject
## (Intercept) Residual
## StdDev: 1.332465 1.100295
##
## Fixed effects: effort ~ Type
## Value Std.Error DF t-value p-value
## (Intercept) 8.555556 0.5760123 24 14.853079 0.0000
## TypeT2 3.888889 0.5186838 24 7.497610 0.0000
## TypeT3 2.222222 0.5186838 24 4.284348 0.0003
## TypeT4 0.666667 0.5186838 24 1.285304 0.2110
## Correlation:
## (Intr) TypeT2 TypeT3
## TypeT2 -0.45
## TypeT3 -0.45 0.50
## TypeT4 -0.45 0.50 0.50
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -1.80200345 -0.64316591 0.05783115 0.70099706 1.63142054
##
## Number of Observations: 36
## Number of Groups: 9
Approximate 95% confidence intervals
# 有fix and random coef est, 2.5%, 7.5%值
nlme::intervals(m1)
## Approximate 95% confidence intervals
##
## Fixed effects:
## lower est. upper
## (Intercept) 7.3667247 8.5555556 9.744386
## TypeT2 2.8183781 3.8888889 4.959400
## TypeT3 1.1517114 2.2222222 3.292733
## TypeT4 -0.4038442 0.6666667 1.737177
## attr(,"label")
## [1] "Fixed effects:"
##
## Random Effects:
## Level: Subject
## lower est. upper
## sd((Intercept)) 0.749509 1.332465 2.368835
##
## Within-group standard error:
## lower est. upper
## 0.8292494 1.1002946 1.4599324
# 有fix and random 但無coef est值
confint(m0, method="boot")
## Computing bootstrap confidence intervals ...
##
## 3 message(s): boundary (singular) fit: see ?isSingular
## 2.5 % 97.5 %
## .sig01 0.4667008 2.135507
## .sigma 0.7535712 1.388692
## (Intercept) 7.4232996 9.714995
## TypeT2 2.8897877 4.935881
## TypeT3 1.1884255 3.313800
## TypeT4 -0.2838185 1.812693