cargar packages

library(googlesheets4)
library(ggplot2)

Los datos están en el archivo Regres_datos

Caso1

Copiar el siguiente código, tal y como está

Leyendo datos

gs4_deauth()
ss= "https://docs.google.com/spreadsheets/d/1Oo4bO83z8MyTvxyXSAbC6ucVuLPOjBw0ZYRnXTM87G4/edit?usp=sharing"
hoja= "Hoja1"
rango = "A1:D18"
caso1 <- read_sheet(ss,
                    sheet= hoja,
                    range= rango,
                    col_names= TRUE
                    )

explorando datos

modelo respuesta -> species predictora -> latitude

head(caso1)
## # A tibble: 6 x 4
##   town              state latitude species
##   <chr>             <chr>    <dbl>   <dbl>
## 1 Bombay Hook       DE        39.2     128
## 2 Cape Henlopen     DE        38.8     137
## 3 Middletown        DE        39.5     108
## 4 Milford           DE        39.0     118
## 5 Rehoboth          DE        38.6     135
## 6 Seaford-Nanticoke DE        38.6      94
summary(caso1)
##      town              state              latitude        species   
##  Length:17          Length:17          Min.   :37.20   Min.   : 94  
##  Class :character   Class :character   1st Qu.:38.32   1st Qu.:108  
##  Mode  :character   Mode  :character   Median :38.60   Median :118  
##                                        Mean   :38.64   Mean   :120  
##                                        3rd Qu.:39.13   3rd Qu.:128  
##                                        Max.   :39.73   Max.   :157
# plot
plot(data=caso1, species ~ latitude, pch=20, cex=1.5)

regresión

reg1 <- lm(data=caso1, species ~ latitude)
summary(reg1)
## 
## Call:
## lm(formula = species ~ latitude, data = caso1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -26.635 -11.198  -1.993  14.569  28.162 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  585.145    230.024   2.544   0.0225 *
## latitude     -12.039      5.953  -2.022   0.0613 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16.37 on 15 degrees of freedom
## Multiple R-squared:  0.2143, Adjusted R-squared:  0.1619 
## F-statistic:  4.09 on 1 and 15 DF,  p-value: 0.06134
#### ggplot
ggplot(data= caso1, aes(x=latitude, y= species)) +
  geom_point(size=2) + 
  geom_smooth(method="lm")

==========================================

Caso2

Copiar el siguiente código, tal y como está

Leyendo datos

gs4_deauth()
ss= "https://docs.google.com/spreadsheets/d/1Oo4bO83z8MyTvxyXSAbC6ucVuLPOjBw0ZYRnXTM87G4/edit?usp=sharing"
hoja= "Hoja2"
rango = "A1:B19"
caso2 <- read_sheet(ss,
                    sheet= hoja,
                    range= rango,
                    col_names= TRUE
                    )

explorando datos

modelo respuesta -> pitch predictora -> volume

head(caso2)
## # A tibble: 6 x 2
##   volume pitch
##    <dbl> <dbl>
## 1   1760   529
## 2   2040   566
## 3   2440   473
## 4   2550   461
## 5   2730   465
## 6   2740   532
summary(caso2)
##      volume         pitch      
##  Min.   :1760   Min.   :389.0  
##  1st Qu.:2732   1st Qu.:437.8  
##  Median :3555   Median :470.5  
##  Mean   :4192   Mean   :471.7  
##  3rd Qu.:5308   3rd Qu.:487.2  
##  Max.   :7960   Max.   :566.0
# plot
plot(data=caso2, pitch ~ volume, pch=20, cex=1.5)

regresión

** Aquí no se muestra el resultado del análisis **

reg1 <- lm(data=caso2, pitch ~ volume)
summary(reg1)

ggplot

ggplot(data= caso2, aes(x=volume, y= pitch)) +
  geom_point(size=2) + 
  geom_smooth(method="lm")

=====================================

caso3

Copiar el siguiente código, tal y como está

Leyendo datos

gs4_deauth()
ss= "https://docs.google.com/spreadsheets/d/1Oo4bO83z8MyTvxyXSAbC6ucVuLPOjBw0ZYRnXTM87G4/edit?usp=sharing"
hoja= "Hoja3"
rango = "A1:C32"
caso3 <- read_sheet(ss,
                    sheet= hoja,
                    range= rango,
                    col_names= TRUE
                    )

explorando datos

modelo respuesta -> Pulse predictora -> Temp

head(caso3)
## # A tibble: 6 x 3
##   Species  Temp Pulse
##   <chr>   <dbl> <dbl>
## 1 ex       20.8  67.9
## 2 ex       20.8  65.1
## 3 ex       24    77.3
## 4 ex       24    78.7
## 5 ex       24    79.4
## 6 ex       24    80.4
summary(caso3)
##    Species               Temp           Pulse       
##  Length:31          Min.   :17.20   Min.   : 44.30  
##  Class :character   1st Qu.:20.80   1st Qu.: 59.45  
##  Mode  :character   Median :24.00   Median : 76.20  
##                     Mean   :23.76   Mean   : 72.89  
##                     3rd Qu.:26.35   3rd Qu.: 85.25  
##                     Max.   :30.40   Max.   :101.70
# plot
plot(data=caso3, Pulse ~ Temp, pch=20, cex=1.5)

regresión

** Aquí no se muestra el resultado del análisis **

reg1 <- lm(data=caso3, Pulse ~ Temp)
summary(reg1)

ggplot

ggplot(data= caso3, aes(x=Temp, y= Pulse)) +
  geom_point(size=2) + 
  geom_smooth(method="lm")

========================================================

caso4

Copiar el siguiente código, tal y como está

Leyendo datos

gs4_deauth()
ss= "https://docs.google.com/spreadsheets/d/1CMPY0Bjm6Kc3XUq0mZtgIoyXAacdWVkv2KONh0T-inU/edit?usp=sharing"
hoja= "bird"
rango = "A1:O27"
bird <- read_sheet(ss,
                    sheet= hoja,
                    range= rango,
                    col_names= TRUE,
                   na = "NA"
                    )

explorando datos

modelo respuesta -> Mass predictora -> Length

head(bird)
## # A tibble: 6 x 15
##   Species Status Length   Mass Range  Migr Insect  Diet Clutch Broods  Wood
##   <chr>    <dbl>  <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl>  <dbl>  <dbl> <dbl>
## 1 Bra_sa~      0     50 1930    0.01     1      0     1      4      2     0
## 2 Cer_no~      1    870 3360    0.07     1      0     1      4      1     0
## 3 Pad_or~      0    160   NA    0.09     1      0     1      5     NA     0
## 4 Cyg_at~      1   1250 5000    0.56     1      0     1      6      1     0
## 5 Ocy_lo~      0    330  205    0.76     1      0     1      2      7     1
## 6 Lon_pu~      0    110   13.5  1.06     1      0     1      5      3     0
## # ... with 4 more variables: Upland <dbl>, Water <dbl>, Release <dbl>,
## #   Indiv <dbl>
tail(bird)
## # A tibble: 6 x 15
##   Species Status Length  Mass Range  Migr Insect  Diet Clutch Broods  Wood
##   <chr>    <dbl>  <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl>  <dbl>  <dbl> <dbl>
## 1 Tet_te~      0    470 900    4.17     1      3     1    7.9      1     1
## 2 Car_sp~      0    117  12    2.09     3      3     1    4        2     1
## 3 Lon_ca~      0    100  NA    0.13     1      4     1    5       NA     0
## 4 Emb_gu~      0    120  19    0.15     1      4     1    5        3     0
## 5 Tym_cu~      0    435 770    0.26     1      4     1   12        1     0
## 6 Poe_gu~      0    100  12.4  0.75     1      4     1    4.7      3     0
## # ... with 4 more variables: Upland <dbl>, Water <dbl>, Release <dbl>,
## #   Indiv <dbl>
# plot
plot(data=bird, Mass ~ Length, pch=20, cex=1.5)

regresión

** Aquí no se muestra el resultado del análisis **

reg1 <- lm(data=bird, Mass ~ Length)
summary(reg1)

ggplot

ggplot(data= bird, aes(x=Length, y= Mass)) +
  geom_point(size=2) + 
  geom_smooth(method="lm")
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing missing values (geom_point).