Conduct an analysis of the cognitive task example and commment on the results produced by each code chunk.
dta8 <- read.table("cognitive_task.txt", h=T)
str(dta8)
## 'data.frame': 32 obs. of 5 variables:
## $ ID : chr "S01" "S02" "S03" "S04" ...
## $ Score : int 3 6 3 3 1 2 2 2 5 6 ...
## $ Method: chr "I1" "I1" "I1" "I1" ...
## $ Class : chr "C1" "C1" "C1" "C1" ...
## $ Klass : chr "K1" "K1" "K1" "K1" ...
head(dta8)
## ID Score Method Class Klass
## 1 S01 3 I1 C1 K1
## 2 S02 6 I1 C1 K1
## 3 S03 3 I1 C1 K1
## 4 S04 3 I1 C1 K1
## 5 S05 1 I1 C2 K2
## 6 S06 2 I1 C2 K2
#
VCA::varPlot(Score ~ Method/Class/ID,
Data=dta8,
keep.order = T,
Points = list(pch=1, cex=1, col="gray"),
YLabel=list(text="Score", side=2, cex=1),
MeanLine=list(var=c("Method", "Class"),
col=c("deepskyblue4", "salmon"),
lwd=c(1, 2)))
## Warning in min(x): min 中沒有無漏失的引數; 回傳 Inf
## Warning in max(x): max 中沒有無漏失的引數;回傳 -Inf
#Class as the random effects
m0 <- aov(Score ~ Method + Error(Class), data=dta8)
summary(m0)
##
## Error: Class
## Df Sum Sq Mean Sq F value Pr(>F)
## Method 1 112.5 112.50 6.459 0.044 *
## Residuals 6 104.5 17.42
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 24 18.5 0.7708
#Method as the random effects
m01 <- aov(Score ~ Method + Error(Method/Klass), data=dta8)
summary(m01)
##
## Error: Method
## Df Sum Sq Mean Sq
## Method 1 112.5 112.5
##
## Error: Method:Klass
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 6 104.5 17.42
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 24 18.5 0.7708
## random effect term: Class
m1 <- lme4::lmer(Score ~ Method + (1 | Class), data=dta8)
summary(m1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Score ~ Method + (1 | Class)
## Data: dta8
##
## REML criterion at convergence: 101.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.3028 -0.8416 -0.0126 0.3150 2.5753
##
## Random effects:
## Groups Name Variance Std.Dev.
## Class (Intercept) 4.1615 2.040
## Residual 0.7708 0.878
## Number of obs: 32, groups: Class, 8
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3.500 1.043 3.355
## MethodI2 3.750 1.475 2.542
##
## Correlation of Fixed Effects:
## (Intr)
## MethodI2 -0.707
lme4::ranef(m1)
## $Class
## (Intercept)
## C1 0.2389354
## C2 -1.6725478
## C3 1.9114833
## C4 -0.4778708
## C5 -0.2389354
## C6 -3.1061603
## C7 0.7168062
## C8 2.6282895
##
## with conditional variances for "Class"
## random effect term: Method
m11 <- lme4::lmer(Score ~ Method + (1 | Method:Klass), data=dta8)
summary(m11)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Score ~ Method + (1 | Method:Klass)
## Data: dta8
##
## REML criterion at convergence: 101.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.3028 -0.8416 -0.0126 0.3150 2.5753
##
## Random effects:
## Groups Name Variance Std.Dev.
## Method:Klass (Intercept) 4.1615 2.040
## Residual 0.7708 0.878
## Number of obs: 32, groups: Method:Klass, 8
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3.500 1.043 3.355
## MethodI2 3.750 1.475 2.542
##
## Correlation of Fixed Effects:
## (Intr)
## MethodI2 -0.707
lme4::ranef(m11)
## $`Method:Klass`
## (Intercept)
## I1:K1 0.2389354
## I1:K2 -1.6725478
## I1:K3 1.9114833
## I1:K4 -0.4778708
## I2:K1 -0.2389354
## I2:K2 -3.1061603
## I2:K3 0.7168062
## I2:K4 2.6282895
##
## with conditional variances for "Method:Klass"
#computes confidence intervals for parameters in m1 by bootstrap
confint(m1, method="boot")
## Computing bootstrap confidence intervals ...
##
## 1 message(s): boundary (singular) fit: see ?isSingular
## 2.5 % 97.5 %
## .sig01 0.8734703 3.242560
## .sigma 0.6535771 1.121005
## (Intercept) 1.1862798 5.515181
## MethodI2 0.9172204 6.752496