Timing MAPpoly examples and tests

Timing examples

flz<-list.files(path = "~/repos/MAPpoly/man", full.names = T)
names(flz) <- list.files(path = "~/repos/MAPpoly/man/", full.names = F)
require(mappoly)
require(stringr)
#> Loading required package: stringr
sentinel0 <- yz <- NULL
for(iz in 1:length(flz)){
  tools::Rd2ex(Rd = flz[iz], out = "~/temp.R", commentDonttest = F)
  sentinel1 <- scan(file = "~/temp.R", what = "character")
  if(identical(sentinel0, sentinel1)){
    yz <- rbind(yz, data.frame(func = str_remove(string = names(flz[iz]), pattern = ".Rd"), 
                               time = 0, row.names = NULL, example = "no", donttest = NA, 
                               passed = NA))
    next()
  }
  tz <- grepl(pattern = "No test:",  paste(sentinel1, collapse = " "))
  if(grepl(pattern = "inter",  paste(sentinel1, collapse = " ")))
    system(paste("sed -i 's|inter = TRUE|inter = FALSE|g'", "~/temp.R"))
  if(grepl(pattern = "inter",  paste(sentinel1, collapse = " ")))
    system(paste("sed -i 's|inter=TRUE|inter = FALSE|g'", "~/temp.R"))
  xe <- tryCatch(xz <- system.time(source("~/temp.R")), error = function(e) e)
  if(inherits(xe, "error"))
  {
    yz <- rbind(yz, data.frame(func = str_remove(string = names(flz[iz]), pattern = ".Rd"), 
                               time = xz[3], row.names = NULL, example = "yes", donttest = tz, 
                               passed = FALSE))
  }
  yz <- rbind(yz, data.frame(func = str_remove(string = names(flz[iz]), pattern = ".Rd"), 
                             time = xz[3], row.names = NULL, example = "yes", donttest = tz,  
                             passed = TRUE))
  print(yz)
  sentinel0 <- sentinel1
}
#> 
#>     You selected: reestimate.rf = FALSE
#>     -----------------------------------------
#>     The recombination fractions provided were
#>     obtained using the marker positions in the 
#>     input map; For accurate values, plese 
#>     reestimate the map using functions 'reest_rf', 
#>     'est_full_hmm_with_global_error' or 
#>     'est_full_hmm_with_prior_prob'
#> 
#>     INFO:
#>     -----------------------------------------
#>     The recombination fractions provided were
#>     obtained using the marker positions in the 
#>     input map; For accurate values, plese 
#>     reestimate the map using functions 'reest_rf', 
#>     'est_full_hmm_with_global_error' or 
#>     'est_full_hmm_with_prior_prob'
#> 
#>     INFO:
#>     -----------------------------------------
#>     The recombination fractions provided were
#>     obtained using the marker positions in the 
#>     input map; For accurate values, plese 
#>     reestimate the map using functions 'reest_rf', 
#>     'est_full_hmm_with_global_error' or 
#>     'est_full_hmm_with_prior_prob'
#> `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#> 
#>     You selected: reestimate.rf = FALSE
#>     -----------------------------------------
#>     The recombination fractions provided were
#>     obtained using the marker positions in the 
#>     input map; For accurate values, plese 
#>     reestimate the map using functions 'reest_rf', 
#>     'est_full_hmm_with_global_error' or 
#>     'est_full_hmm_with_prior_prob'
#> 
#>     INFO:
#>     -----------------------------------------
#>     The recombination fractions provided were
#>     obtained using the marker positions in the 
#>     input map; For accurate values, plese 
#>     reestimate the map using functions 'reest_rf', 
#>     'est_full_hmm_with_global_error' or 
#>     'est_full_hmm_with_prior_prob'
#> ════════════════════════════════════════════════════════════════════════════════════════════ Initial sequence ══
#> ══════════════════════════════════════════════════════════════════════════════════ Done with initial sequence ══
#> ══════════════════════════════════════════════════════════════════ Reestimating final recombination fractions ══
#> ════════════════════════════════════════════════════════════════════════════════════════════════════════════════
#> Loading required package: polymapR
#> ════════════════════════════════════════════════════════════════════════════════════════════ Initial sequence ══
#> ══════════════════════════════════════════════════════════════════════════════════ Done with initial sequence ══
#> ══════════════════════════════════════════════════════════════════ Reestimating final recombination fractions ══
#> ════════════════════════════════════════════════════════════════════════════════════════════════════════════════
#> 
#>     You selected: reestimate.rf = FALSE
#>     -----------------------------------------
#>     The recombination fractions provided were
#>     obtained using the marker positions in the 
#>     input map; For accurate values, plese 
#>     reestimate the map using functions 'reest_rf', 
#>     'est_full_hmm_with_global_error' or 
#>     'est_full_hmm_with_prior_prob'
#> Registered S3 method overwritten by 'vegan':
#>   method     from      
#>   rev.hclust dendextend
#> 
#>     You selected: reestimate.rf = FALSE
#>     -----------------------------------------
#>     The recombination fractions provided were
#>     obtained using the marker positions in the 
#>     input map; For accurate values, plese 
#>     reestimate the map using functions 'reest_rf', 
#>     'est_full_hmm_with_global_error' or 
#>     'est_full_hmm_with_prior_prob'
#> 
#> Your dataset contains removed (redundant) markers. Once finished the map, remember to add them back with the function 'update_map'.
#> 
#> Your dataset contains removed (redundant) markers. Once finished the map, remember to add them back with the function 'update_map'.
#> 
#> 
#> Your dataset contains removed (redundant) markers. Once finished the map, remember to add them back with the function 'update_map'.
yz<-yz[order(yz$time, decreasing = T), ]
colnames(yz) <- c("func","time","example","donttest","passed" )
yz <- rbind(yz, data.frame(func = "Total", time = sum(yz$time), row.names = NULL, 
                           example = "--", donttest = tz, passed = all(yz$passed, na.rm = T)))
library(formattable)
formattable::formattable(yz)

func

time

example

donttest

passed

32

est_rf_hmm_sequential

16.542

yes

TRUE

TRUE

131

update_missing

11.865

yes

TRUE

TRUE

20

dist_prob_to_class

11.404

yes

TRUE

TRUE

8

calc_homoprob

10.693

yes

TRUE

TRUE

33

est_rf_hmm_single

9.599

yes

TRUE

TRUE

76

loglike_hmm

8.968

yes

TRUE

TRUE

35

export_data_to_polymapR

8.848

yes

TRUE

TRUE

110

read_geno

8.817

yes

TRUE

TRUE

108

read_geno_csv

8.028

yes

TRUE

TRUE

9

calc_prefpair_profiles

7.946

yes

TRUE

TRUE

1

add_marker

7.490

yes

TRUE

TRUE

5

calc_genoprob_error

5.796

yes

TRUE

TRUE

62

get_submap

5.667

yes

TRUE

TRUE

73

import_from_updog

4.997

yes

TRUE

TRUE

79

make_pairs_mappoly

2.775

yes

FALSE

TRUE

83

merge_datasets

2.726

yes

TRUE

TRUE

84

merge_maps

2.709

yes

TRUE

TRUE

34

est_rf_hmm

2.666

yes

FALSE

TRUE

4

calc_genoprob_dist

1.620

yes

FALSE

TRUE

67

hexafake.geno.dist

1.619

yes

FALSE

TRUE

27

est_full_hmm_with_global_error

1.608

yes

FALSE

TRUE

111

read_vcf

1.606

yes

TRUE

TRUE

66

group_mappoly

1.605

yes

FALSE

TRUE

74

import_phased_maplist_from_polymapR

1.449

yes

FALSE

TRUE

77

ls_linkage_phases

1.302

yes

FALSE

TRUE

3

cache_counts_twopt

1.036

yes

FALSE

TRUE

28

est_full_hmm_with_prior_prob

0.837

yes

FALSE

TRUE

109

read_geno_prob

0.682

yes

TRUE

TRUE

82

mds_mappoly

0.681

yes

FALSE

TRUE

72

import_data_from_polymapR

0.672

yes

FALSE

TRUE

31

est_pairwise_rf

0.631

yes

FALSE

TRUE

78

make_mat_mappoly

0.616

yes

FALSE

TRUE

126

split_and_rephase

0.600

yes

FALSE

TRUE

115

rf_snp_filter

0.486

yes

FALSE

TRUE

114

rf_list_to_matrix

0.468

yes

FALSE

TRUE

102

poly_cross_simulate

0.452

yes

FALSE

TRUE

97

plot_map_list

0.448

yes

FALSE

TRUE

98

plot_mrk_info

0.413

yes

FALSE

TRUE

41

filter_missing

0.291

yes

FALSE

TRUE

42

filter_non_conforming_classes

0.287

yes

FALSE

TRUE

26

elim_redundant

0.252

yes

FALSE

TRUE

7

calc_genoprob

0.242

yes

FALSE

TRUE

130

update_map

0.202

yes

FALSE

TRUE

80

make_seq_mappoly

0.102

yes

FALSE

TRUE

96

plot_genome_vs_map

0.097

yes

FALSE

TRUE

23

drop_marker

0.076

yes

FALSE

TRUE

127

summary_maps

0.042

yes

FALSE

TRUE

37

extract_map

0.029

yes

FALSE

TRUE

13

check_data_sanity

0.022

yes

FALSE

TRUE

113

rev_map

0.018

yes

FALSE

TRUE

117

segreg_poly

0.016

yes

FALSE

TRUE

36

export_map_list

0.012

yes

FALSE

TRUE

106

print_mrk

0.012

yes

FALSE

TRUE

43

filter_segregation

0.004

yes

FALSE

TRUE

121

sim_homologous

0.003

yes

FALSE

TRUE

44

format_rf

0.002

yes

FALSE

TRUE

54

get_genomic_order

0.002

yes

FALSE

TRUE

2

add_mrk_at_tail_ph_list

0.000

no

NA

NA

6

calc_genoprob_haplo

0.000

no

NA

NA

10

cat_phase

0.000

no

NA

NA

11

check_data_dist_sanity

0.000

no

NA

NA

12

check_data_dose_sanity

0.000

no

NA

NA

14

check_ls_phase

0.000

no

NA

NA

15

check_pairwise

0.000

no

NA

NA

16

compare_haplotypes

0.000

no

NA

NA

17

concatenate_new_marker

0.000

no

NA

NA

18

concatenate_ph_list

0.000

no

NA

NA

19

create_map

0.000

no

NA

NA

21

draw_cross

0.000

no

NA

NA

22

draw_phases

0.000

no

NA

NA

24

elim_conf_using_two_pts

0.000

no

NA

NA

25

elim_equiv

0.000

no

NA

NA

29

est_haplo_hmm

0.000

no

NA

NA

30

est_map_haplo_given_genoprob

0.000

no

NA

NA

38

filter_map_at_hmm_thres

0.000

no

NA

NA

39

filter_missing_ind

0.000

no

NA

NA

40

filter_missing_mrk

0.000

no

NA

NA

45

generate_all_link_phase_elim_equivalent

0.000

no

NA

NA

46

generate_all_link_phases_elim_equivalent_haplo

0.000

no

NA

NA

47

genotyping_global_error

0.000

no

NA

NA

48

get_cache_two_pts_from_web

0.000

no

NA

NA

49

get_counts_all_phases

0.000

no

NA

NA

50

get_counts_one_parent

0.000

no

NA

NA

51

get_counts_two_parents

0.000

no

NA

NA

52

get_counts

0.000

no

NA

NA

53

get_full_info_tail

0.000

no

NA

NA

55

get_ij

0.000

no

NA

NA

56

get_indices_from_selected_phases

0.000

no

NA

NA

57

get_LOD

0.000

no

NA

NA

58

get_ph_conf_ret_sh

0.000

no

NA

NA

59

get_ph_list_subset

0.000

no

NA

NA

60

get_rf_from_list

0.000

no

NA

NA

61

get_rf_from_mat

0.000

no

NA

NA

63

get_tab_mrks

0.000

no

NA

NA

64

get_w_m

0.000

no

NA

NA

65

gg_color_hue

0.000

no

NA

NA

68

hexafake

0.000

no

NA

NA

69

imf_h

0.000

no

NA

NA

70

imf_k

0.000

no

NA

NA

71

imf_m

0.000

no

NA

NA

75

is.prob.data

0.000

no

NA

NA

81

maps.hexafake

0.000

no

NA

NA

85

mf_h

0.000

no

NA

NA

86

mf_k

0.000

no

NA

NA

87

mf_m

0.000

no

NA

NA

88

mrk_chisq_test

0.000

no

NA

NA

89

msg

0.000

no

NA

NA

90

paralell_pairwise

0.000

no

NA

NA

91

perm_pars

0.000

no

NA

NA

92

perm_tot

0.000

no

NA

NA

93

ph_list_to_matrix

0.000

no

NA

NA

94

ph_matrix_to_list

0.000

no

NA

NA

95

plot_compare_haplotypes

0.000

no

NA

NA

99

plot_one_map

0.000

no

NA

NA

100

plot.mappoly.homoprob

0.000

no

NA

NA

101

plot.mappoly.prefpair.profiles

0.000

no

NA

NA

103

poly_hmm_est

0.000

no

NA

NA

104

pos_twopt_est

0.000

no

NA

NA

105

prepare_map

0.000

no

NA

NA

107

print_ph

0.000

no

NA

NA

112

reest_rf

0.000

no

NA

NA

116

sample_data

0.000

no

NA

NA

118

select_rf

0.000

no

NA

NA

119

sim_cross_one_informative_parent

0.000

no

NA

NA

120

sim_cross_two_informative_parents

0.000

no

NA

NA

122

solcap.dose.map

0.000

no

NA

NA

123

solcap.err.map

0.000

no

NA

NA

124

solcap.mds.map

0.000

no

NA

NA

125

solcap.prior.map

0.000

no

NA

NA

128

tetra.solcap.geno.dist

0.000

no

NA

NA

129

tetra.solcap

0.000

no

NA

NA

132

update_ph_list_at_hmm_thres

0.000

no

NA

NA

133

Total

158.078

TRUE

TRUE

Timing tests

x <- devtools::test(pkg = "~/repos/MAPpoly/")
#> Loading mappoly
#> ==============================
#> MAPpoly Package [Version 0.2.0]
#> More information: https://github.com/mmollina/MAPpoly
#> ==============================
#> Testing mappoly
#> ✓ |  OK F W S | Context
#> ⠏ |   0       | Two point estimates⠙ |   2       | Two point estimatesINFO: Going singlemode. Using one CPU for calculation.
#> ⠸ |   4       | Two point estimatesINFO: Going singlemode. Using one CPU.
#> Stress: 0.30318
#> Mean Nearest Neighbour Fit: 618.15365⠴ |   6       | Two point estimates

#> INFO: Using  2  CPUs for calculation.
#> INFO: Done with 2701  pairs of markers 
#> INFO: Calculation took: 3.879 seconds
#> ⠇ |   9       | Two point estimates✓ |  11       | Two point estimates [8.5 s]
#> ⠏ |   0       | Compute genotype counts
#>    Caching the following dosage combination: 
#>        P.k P.k+1 Q.k Q.k+1
#> Conf.1   3     0   2     1
#> Conf.2   3     3   2     2
#> Conf.3   3     4   2     3
#> Conf.4   4     0   3     1
#> Conf.5   4     3   3     2
#> Conf.6   4     4   3     3
#> INFO: Going singlemode. Using one Core/CPU/PC for calculation.
#> INFO: Done with 6 phase configurations
#> INFO: Calculation took: 0.482 seconds
#> ⠋ |   1       | Compute genotype counts  This is an object of class 'cache.info'
#>   -----------------------------------------------------
#>   Ploidy level:                                4 
#>   No. marker combinations:                     625 
#>   -----------------------------------------------------
#> ⠹ |   3       | Compute genotype counts✓ |   3       | Compute genotype counts [0.7 s]
#> ⠏ |   0       | Conditional probabilities    Ploidy level: 4
#>  Number of markers: 20
#>  Number of individuals: 160
#>  ..................................................
#>  ..................................................
#>  ..................................................
#>  ..........
#> Ploidy level:4
#> Number of individuals:160
#>  ..................................................
#>  ..................................................
#>  ..................................................
#>  ..........
#> ⠙ |   2       | Conditional probabilitiesPloidy level:4
#> Number of individuals:160
#>  ..................................................
#>  ..................................................
#>  ..................................................
#>  ..........
#> ⠸ |   4       | Conditional probabilities✓ |   4       | Conditional probabilities [1.3 s]
#> ⠏ |   0       | Estimate HMM mapINFO: Going singlemode. Using one CPU for calculation.
#> Also, number of markers is too small to perform parallel computation.
#> ⠋ |   1       | Estimate HMM mapINFO: Going singlemode. Using one CPU for calculation.
#> Also, number of markers is too small to perform parallel computation.
#> This is an object of class 'mappoly.map'
#>     Ploidy level:     4 
#>     No. individuals:  160 
#>     No. markers:  5 
#>     No. linkage phases:   1 
#> 
#>     ---------------------------------------------
#>     Linkage phase configuration:  1
#>        log-likelihood:    -123.7037
#>        LOD:       0
#> 
#>                           a b c d         e f g h   
#>       solcap_snp_c2_4408      o o o o         o o o |      0.0 
#>       solcap_snp_c2_21332     o o o |         o o | |      0.7 
#>       solcap_snp_c2_21314     o o o o         o o o |      0.8 
#>       solcap_snp_c2_4437      o o o |         o o | |      0.9 
#>       solcap_snp_c2_6674      | | | |         | | | o      0.9 
#>  ⠦ |   7       | Estimate HMM map⠋ |  11       | Estimate HMM map

#> ⠹ |  13       | Estimate HMM map

#> ⠦ |  17       | Estimate HMM mapINFO: Going singlemode. Using one CPU for calculation.
#> Also, number of markers is too small to perform parallel computation.
#> INFO: Going singlemode. Using one CPU for calculation.
#> Also, number of markers is too small to perform parallel computation.
#> ⠙ |  22       | Estimate HMM mapNumber of markers: 5
#> 4 markers...
#> ●    Trying sequence: 1 2 3 4 :
#>        1 phase(s): . 
#> 5/5:(100%)   7: 1 ph     (1/1)       -- tail: 4 |||| |||●                     
#> Markers in the initial sequence: 5
#> Mapped markers                  : 5 (100%)
#> Number of markers: 5
#> 4 markers...
#> ●    Trying sequence: 1 2 3 4 :
#>        1 phase(s): . 
#> 5/5:(100%)   7: 1 ph     (1/1)       -- tail: 4 |||| |||●                     
#> Markers in the initial sequence: 5
#> Mapped markers                  : 5 (100%)
#> ⠸ |  24       | Estimate HMM map✓ |  28       | Estimate HMM map [2.4 s]
#> ⠏ |   0       | Estimate map with probabilities  Ploidy level: 4
#>  Rec. Frac. Limit: 0.5
#>  Number of markers: 5
#>  Number of individuals: 160
#>  
#>  Init. values:   0.001 0.001 0.001 0.001     
#>  Iter: 1 0.019 0.007 0.012 0.007     
#>  Iter: 2 0.028 0.006 0.015 0.008     
#>  Iter: 3 0.032 0.005 0.016 0.009     
#>  Iter: 4 0.034 0.005 0.017 0.010     
#>  Iter: 5 0.036 0.004 0.017 0.011     
#>  Iter: 6 0.036 0.004 0.017 0.011     
#>  Iter: 7 0.037 0.003 0.017 0.012     
#>  Iter: 8 0.037 0.003 0.017 0.013     
#>  Iter: 9 0.037 0.003 0.016 0.013     
#>  Iter: 10    0.037 0.002 0.016 0.014     
#>  Iter: 11    0.037 0.002 0.016 0.014     
#>  Iter: 12    0.037 0.002 0.016 0.014     
#>  Iter: 13    0.037 0.002 0.016 0.015     
#>  Iter: 14    0.038 0.002 0.016 0.015     
#>  Iter: 15    0.038 0.002 0.016 0.015     
#>  Iter: 16    0.038 0.002 0.016 0.015     
#>  Iter: 17    0.038 0.002 0.016 0.016     
#>  Iter: 18    0.038 0.002 0.016 0.016     
#>  Iter: 19    0.038 0.002 0.016 0.016     
#>  Iter: 20    0.038 0.002 0.016 0.016 
#> ⠋ |   1       | Estimate map with probabilities  Ploidy level: 4
#>  Rec. Frac. Limit: 0.500
#>  Number of markers: 5
#>  Number of individuals: 160
#>  
#>  Init. values:   0.001 0.001 0.001 0.001     
#>  Iter: 1 0.016 0.001 0.001 0.005     
#>  Iter: 2 0.024 0.000 0.001 0.007     
#>  Iter: 3 0.028 0.000 0.000 0.008     
#>  Iter: 4 0.030 0.000 0.000 0.008     
#>  Iter: 5 0.030 0.000 0.000 0.008     
#>  Iter: 6 0.031 0.000 0.000 0.008     
#>  Iter: 7 0.031 0.000 0.000 0.008     
#>  Iter: 8 0.031 0.000 0.000 0.008 
#> ✓ |   4       | Estimate map with probabilities [0.9 s]
#> ⠏ |   0       | Export map list"Marker Name","LG","Ref Chrom","Ref Position","Ref Allele","Alt Allele","Map Position","Dosage in P","Dosage in Q","ph.P.a","ph.P.b","ph.P.c","ph.P.d","ph.Q.e","ph.Q.f","ph.Q.g","ph.Q.h"
#> "solcap_snp_c2_51460",1,"1",  151147,NA,NA,  0.00,2,3,1,1,0,0,1,1,1,0
#> "solcap_snp_c2_36608",1,"1",  251032,NA,NA,  3.20,3,2,1,0,1,1,1,0,0,1
#> "solcap_snp_c2_36615",1,"1",  252977,NA,NA,  3.21,3,2,1,0,1,1,1,0,0,1
#> "solcap_snp_c2_36658",1,"1",  269300,NA,NA,  3.22,2,1,0,0,1,1,0,0,0,1
#> "solcap_snp_c1_10930",1,"1",  309242,NA,NA,  3.92,2,1,0,0,1,1,0,0,0,1
#> "solcap_snp_c2_36629",1,"1",  433701,NA,NA,  4.62,2,1,0,0,1,1,0,0,0,1
#> "solcap_snp_c1_10915",1,"1",  481195,NA,NA,  5.56,2,3,1,1,0,0,1,1,1,0
#> "solcap_snp_c1_10918",1,"1",  496966,NA,NA,  6.18,1,2,0,1,0,0,0,1,1,0
#> "solcap_snp_c2_36650",1,"1",  507322,NA,NA,  7.67,1,2,0,1,0,0,0,1,1,0
#> "solcap_snp_c2_36643",1,"1",  508489,NA,NA,  8.71,2,2,0,0,1,1,1,0,0,1
#> "solcap_snp_c2_36660",1,"1",  534726,NA,NA,  9.12,2,3,1,1,0,0,1,1,1,0
#> "solcap_snp_c2_36664",1,"1",  535354,NA,NA,  9.40,3,3,0,1,1,1,0,1,1,1
#> "solcap_snp_c2_36686",1,"1",  601257,NA,NA,  9.41,3,4,0,1,1,1,1,1,1,1
#> "solcap_snp_c2_54803",1,"1",  811809,NA,NA,  9.92,1,1,1,0,0,0,1,0,0,0
#> "solcap_snp_c2_54800",1,"1",  813297,NA,NA,  9.93,1,1,1,0,0,0,1,0,0,0
#> "solcap_snp_c2_54797",1,"1",  817305,NA,NA, 10.46,3,2,1,0,1,1,1,0,0,1
#> "solcap_snp_c2_56714",1,"1",  931273,NA,NA, 10.47,3,4,0,1,1,1,1,1,1,1
#> "solcap_snp_c2_6865",1,"1", 1513756,NA,NA, 12.72,0,1,0,0,0,0,0,0,0,1
#> "solcap_snp_c2_6683",1,"1", 1828357,NA,NA, 15.31,2,2,0,1,1,0,0,1,1,0
#> "solcap_snp_c1_2417",1,"1", 1838764,NA,NA, 15.32,2,2,0,1,1,0,0,1,1,0
#> "solcap_snp_c2_6713",1,"1", 2068205,NA,NA, 15.58,2,2,0,1,1,0,0,1,1,0
#> "solcap_snp_c2_21098",1,"1", 2589396,NA,NA, 17.78,2,2,0,1,1,0,0,1,1,0
#> "solcap_snp_c2_21100",1,"1", 2591241,NA,NA, 19.16,2,2,0,1,1,0,0,1,1,0
#> "solcap_snp_c2_21233",1,"1", 2956217,NA,NA, 21.10,2,1,0,1,0,1,0,1,0,0
#> "solcap_snp_c1_6704",1,"1", 2957498,NA,NA, 21.20,1,2,0,0,1,0,0,1,1,0
#> "solcap_snp_c2_21236",1,"1", 2958510,NA,NA, 22.07,3,2,0,1,1,1,0,1,1,0
#> "solcap_snp_c1_6123",1,"1", 3296081,NA,NA, 25.79,2,2,1,0,1,0,0,1,1,0
#> "solcap_snp_c1_6114",1,"1", 3693321,NA,NA, 25.97,1,0,0,0,1,0,0,0,0,0
#> "solcap_snp_c1_6109",1,"1", 3716835,NA,NA, 26.67,3,4,1,1,0,1,1,1,1,1
#> "solcap_snp_c2_51791",1,"1", 4309511,NA,NA, 31.96,0,1,0,0,0,0,0,0,0,1
#> "solcap_snp_c2_49938",1,"1", 4597936,NA,NA, 31.97,3,4,1,1,1,0,1,1,1,1
#> "solcap_snp_c2_56125",1,"1", 5291666,NA,NA, 34.56,2,0,0,1,1,0,0,0,0,0
#> "solcap_snp_c2_45058",1,"1", 5347412,NA,NA, 35.15,3,4,1,0,1,1,1,1,1,1
#> "solcap_snp_c2_45071",1,"1", 5386765,NA,NA, 36.19,3,1,1,1,0,1,1,0,0,0
#> "solcap_snp_c2_45064",1,"1", 5502148,NA,NA, 36.69,2,0,0,1,1,0,0,0,0,0
#> "solcap_snp_c1_13289",1,"1", 5504921,NA,NA, 36.70,2,3,1,0,0,1,0,1,1,1
#> "solcap_snp_c1_13293",1,"1", 5505413,NA,NA, 36.71,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c2_27877",1,"1", 6071274,NA,NA, 38.46,3,4,1,1,1,0,1,1,1,1
#> "solcap_snp_c2_27878",1,"1", 6071298,NA,NA, 38.47,1,1,0,0,0,1,1,0,0,0
#> "solcap_snp_c2_27882",1,"1", 6071676,NA,NA, 38.73,3,1,0,1,1,1,1,0,0,0
#> "solcap_snp_c2_27884",1,"1", 6071778,NA,NA, 38.74,3,1,0,1,1,1,1,0,0,0
#> "solcap_snp_c2_27885",1,"1", 6071817,NA,NA, 39.13,0,3,0,0,0,0,0,1,1,1
#> "solcap_snp_c2_27903",1,"1", 6295642,NA,NA, 40.12,2,3,0,1,0,1,0,1,1,1
#> "solcap_snp_c2_27918",1,"1", 6587772,NA,NA, 40.56,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c2_48155",1,"1", 7165330,NA,NA, 41.98,2,0,1,0,1,0,0,0,0,0
#> "solcap_snp_c2_48154",1,"1", 7165840,NA,NA, 42.33,2,3,0,1,0,1,0,1,1,1
#> "solcap_snp_c2_50011",1,"1", 7446981,NA,NA, 42.34,2,3,1,0,1,0,0,1,1,1
#> "solcap_snp_c1_16312",1,"1", 7641280,NA,NA, 43.72,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c2_52709",1,"1", 8645609,NA,NA, 44.63,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c2_52712",1,"1", 8645693,NA,NA, 44.64,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c2_52705",1,"1", 8653609,NA,NA, 45.12,2,1,0,1,0,1,0,1,0,0
#> "solcap_snp_c2_48549",1,"1",10570936,NA,NA, 52.54,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_48563",1,"1",10573573,NA,NA, 52.55,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_55639",1,"1",11235975,NA,NA, 52.56,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_56356",1,"1",11737675,NA,NA, 52.57,0,1,0,0,0,0,0,0,1,0
#> "solcap_snp_c2_56359",1,"1",11742617,NA,NA, 52.81,4,3,1,1,1,1,1,1,0,1
#> "solcap_snp_c2_57284",1,"1",11774518,NA,NA, 53.18,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_45637",1,"1",12022263,NA,NA, 53.55,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_55008",1,"1",12994177,NA,NA, 57.69,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_53521",1,"1",13266849,NA,NA, 57.70,2,2,0,1,0,1,0,0,1,1
#> "solcap_snp_c2_43984",1,"1",13369857,NA,NA, 57.71,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c1_12938",1,"1",13392343,NA,NA, 58.21,2,1,1,0,1,0,0,1,0,0
#> "solcap_snp_c2_43970",1,"1",13545289,NA,NA, 59.61,1,1,0,1,0,0,0,0,1,0
#> "solcap_snp_c2_43973",1,"1",13547044,NA,NA, 60.07,3,2,1,1,1,0,0,1,1,0
#> "solcap_snp_c1_8908",1,"1",13656016,NA,NA, 60.91,2,1,1,0,1,0,0,1,0,0
#> "solcap_snp_c2_54355",1,"1",13740719,NA,NA, 63.95,2,2,1,0,1,0,0,1,0,1
#> "solcap_snp_c2_54353",1,"1",13747285,NA,NA, 66.18,0,1,0,0,0,0,0,0,0,1
#> "solcap_snp_c2_49867",1,"1",16399117,NA,NA, 66.19,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c2_48568",1,"1",17370536,NA,NA, 66.20,0,3,0,0,0,0,1,0,1,1
#> "solcap_snp_c1_8593",1,"1",17664021,NA,NA, 66.21,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_53759",1,"1",18753871,NA,NA, 66.22,0,1,0,0,0,0,0,0,0,1
#> "solcap_snp_c2_56842",1,"1",18925684,NA,NA, 66.23,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c1_16421",1,"1",18926984,NA,NA, 66.59,0,2,0,0,0,0,0,0,1,1
#> "solcap_snp_c1_14663",1,"1",19664067,NA,NA, 66.71,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c2_49326",1,"1",20549734,NA,NA, 68.28,0,2,0,0,0,0,1,0,1,0
#> "solcap_snp_c1_5477",1,"1",23657080,NA,NA, 68.29,0,2,0,0,0,0,1,0,1,0
#> "solcap_snp_c2_43643",1,"1",29180891,NA,NA, 69.23,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_22549",1,"1",29678234,NA,NA, 69.24,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_22546",1,"1",29679750,NA,NA, 69.25,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c1_7136",1,"1",30125081,NA,NA, 69.59,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c1_11066",1,"1",32091982,NA,NA, 69.93,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c1_9378",1,"1",34098178,NA,NA, 70.23,0,1,0,0,0,0,0,0,0,1
#> "solcap_snp_c2_27683",1,"1",37067385,NA,NA, 70.27,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_27677",1,"1",37071329,NA,NA, 70.59,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_42829",1,"1",38478335,NA,NA, 71.26,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c1_15714",1,"1",39325633,NA,NA, 71.51,0,3,0,0,0,0,1,0,1,1
#> "solcap_snp_c2_45395",1,"1",39529256,NA,NA, 71.81,4,3,1,1,1,1,1,1,0,1
#> "solcap_snp_c2_49732",1,"1",41859322,NA,NA, 73.88,0,1,0,0,0,0,0,0,0,1
#> "solcap_snp_c1_14648",1,"1",41947283,NA,NA, 73.89,4,1,1,1,1,1,0,1,0,0
#> "solcap_snp_c1_14654",1,"1",41979022,NA,NA, 73.90,4,1,1,1,1,1,0,1,0,0
#> "solcap_snp_c2_32111",1,"1",42197632,NA,NA, 73.91,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c2_32112",1,"1",42197668,NA,NA, 74.94,2,1,1,0,1,0,0,1,0,0
#> "solcap_snp_c2_50028",1,"1",43180567,NA,NA, 76.56,2,1,1,0,1,0,0,1,0,0
#> "solcap_snp_c2_50023",1,"1",43196126,NA,NA, 77.18,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_49042",1,"1",43330828,NA,NA, 78.19,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c1_16169",1,"1",44194024,NA,NA, 81.89,4,2,1,1,1,1,0,1,0,1
#> "solcap_snp_c1_14248",1,"1",44696488,NA,NA, 81.90,2,1,1,0,1,0,0,1,0,0
#> "solcap_snp_c1_14249",1,"1",44696500,NA,NA, 82.40,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c1_14259",1,"1",44700858,NA,NA, 82.41,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c1_14261",1,"1",44702300,NA,NA, 82.42,4,2,1,1,1,1,0,1,0,1
#> "solcap_snp_c2_53708",1,"1",44890351,NA,NA, 83.08,0,2,0,0,0,0,0,0,1,1
#> "solcap_snp_c2_40131",1,"1",45751390,NA,NA, 83.09,0,2,0,0,0,0,1,0,1,0
#> "solcap_snp_c2_54811",1,"1",46271054,NA,NA, 83.10,4,2,1,1,1,1,0,1,0,1
#> "solcap_snp_c1_15855",1,"1",46323471,NA,NA, 83.11,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c2_35220",1,"1",47299682,NA,NA, 83.12,0,3,0,0,0,0,1,0,1,1
#> "solcap_snp_c2_35218",1,"1",47300005,NA,NA, 83.13,0,3,0,0,0,0,1,0,1,1
#> "solcap_snp_c2_35601",1,"1",50791085,NA,NA, 85.14,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c2_694",1,"1",51290105,NA,NA, 85.74,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c2_686",1,"1",51324458,NA,NA, 85.80,4,2,1,1,1,1,0,1,0,1
#> "solcap_snp_c2_57898",1,"1",51736618,NA,NA, 85.81,0,1,0,0,0,0,0,0,0,1
#> "solcap_snp_c1_880",1,"1",54480981,NA,NA, 86.14,4,3,1,1,1,1,1,1,1,0
#> "solcap_snp_c2_55113",1,"1",54580381,NA,NA, 86.15,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c2_2874",1,"1",55163851,NA,NA, 86.16,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c2_55621",1,"1",55427211,NA,NA, 86.17,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c2_55618",1,"1",55427602,NA,NA, 86.35,0,2,0,0,0,0,1,0,1,0
#> "solcap_snp_c1_14633",1,"1",57931788,NA,NA, 91.38,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_2721",1,"1",58197548,NA,NA, 91.39,1,1,0,0,0,1,1,0,0,0
#> "solcap_snp_c2_2653",1,"1",58737622,NA,NA, 92.93,0,2,0,0,0,0,1,0,1,0
#> "solcap_snp_c2_2591",1,"1",58985511,NA,NA, 93.92,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c1_13430",1,"1",59363361,NA,NA, 95.09,1,3,0,1,0,0,1,0,1,1
#> "solcap_snp_c2_46523",1,"1",59973949,NA,NA, 95.82,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_46521",1,"1",59974282,NA,NA, 95.83,2,3,1,0,1,0,1,1,1,0
#> "solcap_snp_c2_46520",1,"1",59974316,NA,NA, 95.84,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_53347",1,"1",60026944,NA,NA, 96.47,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_35511",1,"1",60433785,NA,NA, 96.48,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_35518",1,"1",60512480,NA,NA, 96.49,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_35520",1,"1",60513199,NA,NA, 96.50,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_35536",1,"1",60515867,NA,NA, 97.95,1,2,1,0,0,0,0,1,1,0
#> "solcap_snp_c2_35537",1,"1",60516874,NA,NA, 97.96,1,2,1,0,0,0,0,1,1,0
#> "solcap_snp_c2_43926",1,"1",60887837,NA,NA, 98.27,2,2,0,1,0,1,1,0,0,1
#> "solcap_snp_c2_56267",1,"1",60919490,NA,NA, 99.07,3,2,1,1,1,0,0,1,1,0
#> "solcap_snp_c2_20798",1,"1",60951573,NA,NA, 99.08,2,2,1,1,0,0,0,1,1,0
#> "solcap_snp_c2_20799",1,"1",60951606,NA,NA, 99.29,2,2,0,0,1,1,1,0,0,1
#> "solcap_snp_c2_20803",1,"1",60987155,NA,NA, 99.52,1,2,0,0,0,1,1,0,0,1
#> "solcap_snp_c2_20890",1,"1",61310805,NA,NA,101.03,3,3,1,1,1,0,1,1,1,0
#> "solcap_snp_c2_50903",1,"1",61774492,NA,NA,101.77,0,2,0,0,0,0,1,0,0,1
#> "solcap_snp_c2_38428",1,"1",62058660,NA,NA,102.74,1,1,0,0,0,1,0,0,0,1
#> "solcap_snp_c2_38406",1,"1",62144916,NA,NA,103.16,3,4,1,1,1,0,1,1,1,1
#> "solcap_snp_c2_38404",1,"1",62148178,NA,NA,103.17,3,2,1,1,1,0,0,1,1,0
#> "solcap_snp_c2_38448",1,"1",62289476,NA,NA,104.71,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c1_12106",1,"1",62802674,NA,NA,106.27,1,3,0,0,0,1,1,0,1,1
#> "solcap_snp_c2_41337",1,"1",62930793,NA,NA,106.84,1,3,0,0,0,1,1,0,1,1
#> "solcap_snp_c2_32359",1,"1",63208419,NA,NA,108.73,0,2,0,0,0,0,0,0,1,1
#> "solcap_snp_c1_9679",1,"1",63338027,NA,NA,110.16,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c1_12057",1,"1",63596472,NA,NA,111.12,4,2,1,1,1,1,1,1,0,0
#> "solcap_snp_c1_13686",1,"1",64120988,NA,NA,113.01,2,3,0,0,1,1,1,0,1,1
#> "solcap_snp_c2_46195",1,"1",64259858,NA,NA,113.66,2,2,0,0,1,1,0,0,1,1
#> "solcap_snp_c2_13751",1,"1",64614114,NA,NA,113.95,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c1_4415",1,"1",65036984,NA,NA,116.70,1,2,0,0,1,0,0,0,1,1
#> "solcap_snp_c2_13675",1,"1",65036993,NA,NA,116.94,1,0,0,1,0,0,0,0,0,0
#> "solcap_snp_c2_13676",1,"1",65054301,NA,NA,116.95,3,4,1,0,1,1,1,1,1,1
#> "solcap_snp_c2_13671",1,"1",65062849,NA,NA,116.96,2,2,1,1,0,0,1,1,0,0
#> "solcap_snp_c2_13653",1,"1",65270150,NA,NA,117.37,2,2,1,1,0,0,1,1,0,0
#> "solcap_snp_c2_13650",1,"1",65277543,NA,NA,117.38,1,0,0,1,0,0,0,0,0,0
#> "solcap_snp_c1_4744",1,"1",65472678,NA,NA,118.20,1,0,0,1,0,0,0,0,0,0
#> "solcap_snp_c2_14467",1,"1",65694581,NA,NA,118.81,1,2,0,0,0,1,0,0,1,1
#> "solcap_snp_c2_14470",1,"1",65697018,NA,NA,118.83,2,4,1,0,0,1,1,1,1,1
#> "solcap_snp_c1_4706",1,"1",65780052,NA,NA,119.64,1,2,0,0,0,1,0,0,1,1
#> "solcap_snp_c2_14487",1,"1",65780861,NA,NA,119.65,1,2,0,0,0,1,0,0,1,1
#> "solcap_snp_c2_14489",1,"1",65781907,NA,NA,119.66,1,2,0,0,0,1,0,0,1,1
#> "solcap_snp_c2_14491",1,"1",65782311,NA,NA,119.69,2,0,0,1,1,0,0,0,0,0
#> "solcap_snp_c2_14492",1,"1",65782372,NA,NA,119.70,2,0,0,1,1,0,0,0,0,0
#> "solcap_snp_c2_14493",1,"1",65782860,NA,NA,120.27,1,2,0,0,0,1,0,0,1,1
#> "solcap_snp_c1_4745",1,"1",66094082,NA,NA,123.09,2,2,1,0,0,1,1,1,0,0
#> "solcap_snp_c1_4748",1,"1",66259325,NA,NA,123.10,2,0,1,0,0,1,0,0,0,0
#> "solcap_snp_c2_14589",1,"1",66283156,NA,NA,123.23,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_37564",1,"1",66307265,NA,NA,123.24,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_14595",1,"1",66307870,NA,NA,123.66,2,0,1,0,0,1,0,0,0,0
#> "solcap_snp_c2_37566",1,"1",66307870,NA,NA,123.67,2,0,1,0,0,1,0,0,0,0
#> "solcap_snp_c1_4752",1,"1",66336597,NA,NA,124.20,2,0,1,0,0,1,0,0,0,0
#> "solcap_snp_c2_14608",1,"1",66349497,NA,NA,124.47,2,0,0,1,1,0,0,0,0,0
#> "solcap_snp_c1_4757",1,"1",66354237,NA,NA,124.83,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c1_4763",1,"1",66376115,NA,NA,124.84,4,2,1,1,1,1,0,0,1,1
#> "solcap_snp_c1_5150",1,"1",66675718,NA,NA,127.51,2,0,1,0,0,1,0,0,0,0
#> "solcap_snp_c2_58099",1,"1",66845540,NA,NA,127.69,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c1_5145",1,"1",66904071,NA,NA,127.70,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_20569",1,"1",67013419,NA,NA,132.36,3,1,1,1,1,0,0,0,1,0
#> "solcap_snp_c2_20501",1,"1",67211402,NA,NA,136.36,3,3,0,1,1,1,0,1,1,1
#> "solcap_snp_c2_20502",1,"1",67221811,NA,NA,137.02,1,2,1,0,0,0,1,1,0,0
#> "solcap_snp_c2_20505",1,"1",67223365,NA,NA,138.09,3,2,0,1,1,1,0,0,1,1
#> "solcap_snp_c2_20506",1,"1",67223618,NA,NA,139.27,3,3,0,1,1,1,1,0,1,1
#> "solcap_snp_c2_20508",1,"1",67224636,NA,NA,139.92,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_20513",1,"1",67277917,NA,NA,140.32,2,0,0,1,1,0,0,0,0,0
#> "solcap_snp_c2_20521",1,"1",67293276,NA,NA,140.85,3,2,1,1,1,0,1,1,0,0
#> "solcap_snp_c2_20522",1,"1",67294203,NA,NA,141.34,2,0,0,1,1,0,0,0,0,0
#> "solcap_snp_c1_6501",1,"1",67459562,NA,NA,142.30,1,0,0,0,1,0,0,0,0,0
#> "solcap_snp_c1_6518",1,"1",67605601,NA,NA,142.31,2,2,0,1,0,1,0,0,1,1
#> "solcap_snp_c2_13766",1,"1",67896690,NA,NA,142.32,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c2_52492",1,"1",67969508,NA,NA,143.43,3,2,1,1,0,1,0,0,1,1
#> "solcap_snp_c2_52484",1,"1",68069976,NA,NA,144.07,1,2,0,0,1,0,1,1,0,0
#> "solcap_snp_c2_49451",1,"1",68416146,NA,NA,145.42,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c1_14044",1,"1",68529607,NA,NA,146.51,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c2_51055",1,"1",68950490,NA,NA,147.79,0,2,0,0,0,0,1,1,0,0
#> "solcap_snp_c1_11769",1,"1",69200071,NA,NA,148.59,2,2,0,1,0,1,1,1,0,0
#> "solcap_snp_c2_39834",1,"1",69381232,NA,NA,149.22,2,2,1,0,1,0,0,0,1,1
#> "solcap_snp_c2_17592",1,"1",69809943,NA,NA,150.28,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c2_17529",1,"1",69902111,NA,NA,150.29,2,2,0,1,0,1,1,1,0,0
#> "solcap_snp_c2_17531",1,"1",70016341,NA,NA,151.13,2,2,1,0,1,0,0,0,1,1
#> "solcap_snp_c2_17537",1,"1",70097616,NA,NA,151.14,2,2,1,0,1,0,0,0,1,1
#> "solcap_snp_c1_15579",1,"1",70341165,NA,NA,151.68,1,2,0,0,1,0,0,0,1,1
#> "solcap_snp_c1_15580",1,"1",70341195,NA,NA,151.91,1,2,0,0,1,0,0,0,1,1
#> "solcap_snp_c2_53380",1,"1",70371798,NA,NA,152.63,3,2,0,1,1,1,0,0,1,1
#> "solcap_snp_c2_53381",1,"1",70372029,NA,NA,153.40,1,2,1,0,0,0,1,1,0,0
#> "solcap_snp_c2_17191",1,"1",70474751,NA,NA,153.41,2,0,0,1,0,1,0,0,0,0
#> "solcap_snp_c1_5657",1,"1",70560319,NA,NA,154.13,3,4,1,1,1,0,1,1,1,1
#> "solcap_snp_c1_5656",1,"1",70562884,NA,NA,154.14,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c1_5653",1,"1",70697401,NA,NA,154.15,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c1_3860",1,"1",71009488,NA,NA,155.37,2,2,0,1,0,1,1,1,0,0
#> "solcap_snp_c1_3863",1,"1",71009686,NA,NA,156.05,2,2,1,0,1,0,0,0,1,1
#> "solcap_snp_c2_12076",1,"1",71090664,NA,NA,156.55,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c1_3867",1,"1",71239298,NA,NA,157.43,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c1_3868",1,"1",71239559,NA,NA,157.65,3,2,1,0,1,1,0,0,1,1
#> "solcap_snp_c1_3876",1,"1",71278255,NA,NA,158.09,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c2_12106",1,"1",71298195,NA,NA,158.31,3,2,1,0,1,1,0,0,1,1
#> "solcap_snp_c1_3894",1,"1",71421320,NA,NA,158.74,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c2_12126",1,"1",71450592,NA,NA,159.39,2,2,0,1,0,1,1,1,0,0
#> "solcap_snp_c2_12216",1,"1",72051429,NA,NA,160.94,2,0,1,1,0,0,0,0,0,0
#> "solcap_snp_c2_12217",1,"1",72051456,NA,NA,160.97,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c1_3848",1,"1",72108418,NA,NA,160.98,3,4,0,1,1,1,1,1,1,1
#> "solcap_snp_c1_3851",1,"1",72112064,NA,NA,160.99,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c1_9565",1,"1",72320561,NA,NA,162.31,3,4,0,1,1,1,1,1,1,1
#> "solcap_snp_c1_9566",1,"1",72320582,NA,NA,162.32,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c1_9573",1,"1",72504567,NA,NA,162.33,2,2,0,1,1,0,0,0,1,1
#> "solcap_snp_c2_31820",1,"1",72528671,NA,NA,163.44,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c2_31821",1,"1",72531263,NA,NA,163.45,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c1_9583",1,"1",72540600,NA,NA,163.66,1,2,1,0,0,0,1,1,0,0
#> "solcap_snp_c1_9587",1,"1",72541075,NA,NA,163.67,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c2_14274",1,"1",74061621,NA,NA,166.55,3,4,1,0,1,1,1,1,1,1
#> "solcap_snp_c1_4617",1,"1",74355434,NA,NA,168.09,0,2,0,0,0,0,1,1,0,0
#> "solcap_snp_c2_14365",1,"1",74688262,NA,NA,168.11,2,0,1,0,0,1,0,0,0,0
#> "solcap_snp_c2_14366",1,"1",74688318,NA,NA,168.54,1,2,0,0,1,0,0,0,1,1
#> "solcap_snp_c1_14931",1,"1",75007319,NA,NA,168.55,4,2,1,1,1,1,0,0,1,1
#> "solcap_snp_c2_16369",1,"1",75164058,NA,NA,169.98,0,2,0,0,0,0,1,1,0,0
#> "solcap_snp_c1_5267",1,"1",75333553,NA,NA,170.01,2,0,1,0,0,1,0,0,0,0
#> "solcap_snp_c1_5281",1,"1",75441912,NA,NA,170.02,2,0,1,0,0,1,0,0,0,0
#> "solcap_snp_c1_5286",1,"1",75477570,NA,NA,170.90,3,4,1,1,0,1,1,1,1,1
#> "solcap_snp_c2_16424",1,"1",75478258,NA,NA,171.43,2,0,1,0,0,1,0,0,0,0
#> "solcap_snp_c2_16425",1,"1",75485276,NA,NA,171.73,2,0,1,0,0,1,0,0,0,0
#> "solcap_snp_c2_16466",1,"1",75749019,NA,NA,171.74,2,4,0,1,1,0,1,1,1,1
#> "solcap_snp_c1_5346",1,"1",75789912,NA,NA,172.18,1,0,0,0,1,0,0,0,0,0
#> "solcap_snp_c1_16435",1,"1",76304406,NA,NA,172.61,1,0,0,0,1,0,0,0,0,0
#> "solcap_snp_c2_2509",1,"1",76406745,NA,NA,172.62,4,2,1,1,1,1,0,0,1,1
#> "solcap_snp_c2_2291",1,"1",76480645,NA,NA,173.91,1,2,0,1,0,0,0,0,1,1
#> "solcap_snp_c1_641",1,"1",76511147,NA,NA,173.93,2,0,1,0,0,1,0,0,0,0
#> "solcap_snp_c2_2420",1,"1",76953005,NA,NA,175.04,3,2,1,0,1,1,1,1,0,0
#> "solcap_snp_c2_2423",1,"1",76958677,NA,NA,175.41,2,3,0,1,1,0,0,1,1,1
#> "solcap_snp_c2_2424",1,"1",76960116,NA,NA,176.33,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c2_2427",1,"1",76960344,NA,NA,177.73,1,0,0,0,1,0,0,0,0,0
#> "solcap_snp_c2_2450",1,"1",77056087,NA,NA,177.96,2,2,0,1,1,0,1,1,0,0
#> "solcap_snp_c2_2463",1,"1",77190863,NA,NA,178.95,2,2,0,1,1,0,1,1,0,0
#> "solcap_snp_c2_2464",1,"1",77190891,NA,NA,178.96,2,2,0,1,1,0,1,1,0,0
#> "solcap_snp_c2_2466",1,"1",77191250,NA,NA,179.19,2,2,0,1,1,0,1,1,0,0
#> "solcap_snp_c2_2505",1,"1",77350779,NA,NA,179.67,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c2_2508",1,"1",77353050,NA,NA,180.18,2,2,0,1,1,0,1,1,0,0
#> "solcap_snp_c1_758",1,"1",77526728,NA,NA,180.52,1,1,0,0,1,0,0,1,0,0
#> "solcap_snp_c2_2201",1,"1",77738922,NA,NA,180.88,2,2,0,1,1,0,1,1,0,0
#> "solcap_snp_c1_601",1,"1",78168030,NA,NA,182.58,3,4,0,1,1,1,1,1,1,1
#> "solcap_snp_c1_607",1,"1",78176086,NA,NA,182.59,2,2,0,1,1,0,1,1,0,0
#> "solcap_snp_c2_2299",1,"1",78192398,NA,NA,183.05,2,2,1,0,0,1,0,0,1,1
#> "solcap_snp_c2_2354",1,"1",78430745,NA,NA,183.73,2,2,1,0,0,1,0,0,1,1
#> "solcap_snp_c2_50486",1,"1",78756800,NA,NA,184.18,2,2,0,1,1,0,1,1,0,0
#> "solcap_snp_c2_50484",1,"1",78757017,NA,NA,184.41,2,2,0,1,1,0,1,1,0,0
#> "solcap_snp_c2_50483",1,"1",78757327,NA,NA,184.64,2,2,0,1,1,0,1,1,0,0
#> "solcap_snp_c2_50502",1,"1",78809381,NA,NA,184.88,2,2,1,0,0,1,0,0,1,1
#> "solcap_snp_c1_15872",1,"1",78928170,NA,NA,185.35,2,2,0,1,1,0,1,1,0,0
#> "solcap_snp_c2_7007",1,"1",79083850,NA,NA,189.67,2,2,1,0,1,0,0,1,1,0
#> "solcap_snp_c1_2484",1,"1",79157311,NA,NA,193.43,3,4,1,1,1,0,1,1,1,1
#> "solcap_snp_c2_7094",1,"1",79187093,NA,NA,193.46,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c2_7193",1,"1",79391798,NA,NA,193.94,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c2_7208",1,"1",79456001,NA,NA,197.09,3,2,1,1,1,0,1,1,0,0
#> "solcap_snp_c1_2519",1,"1",79487369,NA,NA,197.10,1,1,0,1,0,0,1,0,0,0
#> "solcap_snp_c1_2520",1,"1",79487485,NA,NA,197.40,1,1,0,0,1,0,0,1,0,0
#> "solcap_snp_c2_7241",1,"1",79678600,NA,NA,197.59,3,3,1,1,0,1,1,0,1,1
#> "solcap_snp_c2_7242",1,"1",79679061,NA,NA,197.60,3,2,1,1,1,0,1,1,0,0
#> "solcap_snp_c2_7245",1,"1",79679433,NA,NA,197.96,1,1,0,0,1,0,0,1,0,0
#> "solcap_snp_c2_7246",1,"1",79679919,NA,NA,198.32,1,1,0,0,1,0,0,1,0,0
#> "solcap_snp_c1_2531",1,"1",79711129,NA,NA,198.33,1,2,0,0,0,1,0,0,1,1
#> "solcap_snp_c2_7328",1,"1",79955769,NA,NA,199.81,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c2_6990",1,"1",80077222,NA,NA,200.92,2,3,1,0,0,1,0,1,1,1
#> "solcap_snp_c1_2458",1,"1",80121157,NA,NA,200.93,2,2,1,0,0,1,0,0,1,1
#> "solcap_snp_c2_7053",1,"1",80228512,NA,NA,202.00,2,2,0,0,1,1,0,0,1,1
#> "solcap_snp_c2_7055",1,"1",80229751,NA,NA,203.13,2,2,0,0,1,1,0,0,1,1
#> "solcap_snp_c2_7056",1,"1",80229823,NA,NA,203.59,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c2_7061",1,"1",80230621,NA,NA,204.94,2,2,0,0,1,1,0,0,1,1
#> "solcap_snp_c2_7062",1,"1",80230636,NA,NA,204.95,2,2,1,1,0,0,1,1,0,0
#> "solcap_snp_c1_1853",1,"1",80429124,NA,NA,205.22,1,2,0,0,0,1,0,0,1,1
#> "solcap_snp_c2_5091",1,"1",80558977,NA,NA,206.13,2,2,0,1,1,0,1,1,0,0
#> "solcap_snp_c2_5077",1,"1",80591992,NA,NA,207.68,1,1,1,0,0,0,0,1,0,0
#> "solcap_snp_c2_5078",1,"1",80592039,NA,NA,208.01,1,1,0,0,1,0,0,1,0,0
#> "solcap_snp_c2_5039",1,"1",80669402,NA,NA,209.26,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c2_9727",1,"1",80833354,NA,NA,209.27,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c2_9726",1,"1",80833555,NA,NA,209.28,2,2,0,1,0,1,1,1,0,0
#> "solcap_snp_c2_9722",1,"1",80835882,NA,NA,209.91,2,2,1,0,1,0,0,0,1,1
#> "solcap_snp_c2_9988",1,"1",81013079,NA,NA,212.06,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c2_9925",1,"1",81410356,NA,NA,212.44,3,4,1,1,0,1,1,1,1,1
#> "solcap_snp_c2_9892",1,"1",81567397,NA,NA,215.81,3,4,1,1,1,0,1,1,1,1
#> "solcap_snp_c2_9864",1,"1",81615881,NA,NA,215.82,3,3,0,1,1,1,0,1,1,1
#> "solcap_snp_c1_3275",1,"1",81750527,NA,NA,217.23,0,2,0,0,0,0,0,0,1,1
#> "solcap_snp_c1_3255",1,"1",81795335,NA,NA,217.88,1,1,1,0,0,0,1,0,0,0
#> "solcap_snp_c1_3241",1,"1",81924813,NA,NA,219.27,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c1_3234",1,"1",81927346,NA,NA,219.38,4,2,1,1,1,1,1,1,0,0
#> "solcap_snp_c2_47360",1,"1",82220028,NA,NA,221.34,3,4,1,1,1,0,1,1,1,1
#> "solcap_snp_c2_4896",1,"1",82628961,NA,NA,222.55,1,2,0,0,0,1,0,0,1,1
#> "solcap_snp_c2_4799",1,"1",82927941,NA,NA,222.86,1,2,0,0,0,1,0,0,1,1
#> "solcap_snp_c1_1638",1,"1",82935846,NA,NA,222.87,1,2,0,0,0,1,0,0,1,1
#> "solcap_snp_c1_1653",1,"1",83012188,NA,NA,225.35,1,1,0,1,0,0,1,0,0,0
#> "solcap_snp_c1_1683",1,"1",83059366,NA,NA,226.88,2,0,1,0,1,0,0,0,0,0
#> "solcap_snp_c2_4844",1,"1",83060466,NA,NA,227.75,1,1,0,1,0,0,1,0,0,0
#> "solcap_snp_c2_4845",1,"1",83060720,NA,NA,229.69,2,0,1,0,1,0,0,0,0,0
#> "solcap_snp_c2_4860",1,"1",83130390,NA,NA,229.71,0,2,0,0,0,0,0,0,1,1
#> "solcap_snp_c2_4864",1,"1",83138355,NA,NA,230.11,2,4,0,1,0,1,1,1,1,1
#> "solcap_snp_c2_4875",1,"1",83177618,NA,NA,231.71,3,1,1,1,1,0,1,0,0,0
#> "solcap_snp_c2_4884",1,"1",83186994,NA,NA,232.67,3,2,1,1,1,0,1,1,0,0
#> "solcap_snp_c2_4885",1,"1",83187000,NA,NA,232.90,3,2,1,1,1,0,1,1,0,0
#> "solcap_snp_c2_4898",1,"1",83283573,NA,NA,232.91,3,4,1,1,1,0,1,1,1,1
#> "solcap_snp_c2_4904",1,"1",83416355,NA,NA,234.34,2,0,1,0,1,0,0,0,0,0
#> "solcap_snp_c2_4907",1,"1",83418574,NA,NA,236.34,3,4,1,1,1,0,1,1,1,1
#> "solcap_snp_c2_4910",1,"1",83419340,NA,NA,237.80,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c1_1737",1,"1",83602469,NA,NA,238.45,2,3,0,1,0,1,1,0,1,1
#> "solcap_snp_c1_1739",1,"1",83608625,NA,NA,240.68,3,4,1,1,0,1,1,1,1,1
#> "solcap_snp_c2_4614",1,"1",83843457,NA,NA,240.69,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c2_4664",1,"1",84062694,NA,NA,242.21,1,3,0,0,0,1,0,1,1,1
#> "solcap_snp_c2_4708",1,"1",84214693,NA,NA,244.20,0,2,0,0,0,0,0,0,1,1
#> "solcap_snp_c2_4713",1,"1",84217673,NA,NA,244.21,4,2,1,1,1,1,1,1,0,0
#> "solcap_snp_c2_36495",1,"1",84457206,NA,NA,244.46,0,2,0,0,0,0,0,0,1,1
#> "solcap_snp_c2_34546",1,"1",84727952,NA,NA,246.10,1,3,0,0,0,1,0,1,1,1
#> "solcap_snp_c1_10354",1,"1",84979069,NA,NA,251.03,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c1_22",1,"1",85243830,NA,NA,251.60,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c2_24",1,"1",85323495,NA,NA,255.50,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c2_13385",1,"1",85715515,NA,NA,256.96,3,0,1,0,1,1,0,0,0,0
#> "solcap_snp_c2_46448",1,"1",85760106,NA,NA,256.97,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c2_53075",1,"1",85902499,NA,NA,257.70,3,2,1,0,1,1,0,0,1,1
#> "solcap_snp_c2_42943",1,"1",85953353,NA,NA,258.40,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c2_49917",1,"1",86090288,NA,NA,258.41,1,4,0,1,0,0,1,1,1,1
#> "solcap_snp_c2_49911",1,"1",86095463,NA,NA,258.42,1,4,0,1,0,0,1,1,1,1
#> "solcap_snp_c2_49910",1,"1",86095890,NA,NA,258.43,3,2,1,0,1,1,0,0,1,1
#> "solcap_snp_c2_14839",1,"1",86328984,NA,NA,260.84,0,2,0,0,0,0,0,0,1,1
#> "solcap_snp_c2_14707",1,"1",86355213,NA,NA,260.85,0,2,0,0,0,0,0,0,1,1
#> "solcap_snp_c2_14708",1,"1",86356234,NA,NA,262.85,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c2_14709",1,"1",86356378,NA,NA,262.86,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c1_4796",1,"1",86388041,NA,NA,263.11,3,2,1,0,1,1,0,0,1,1
#> "solcap_snp_c2_14730",1,"1",86441357,NA,NA,266.54,0,2,0,0,0,0,0,0,1,1
#> "solcap_snp_c2_14733",1,"1",86527670,NA,NA,267.31,4,2,1,1,1,1,1,1,0,0
#> "solcap_snp_c1_4799",1,"1",86663770,NA,NA,269.34,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c2_14761",1,"1",86750111,NA,NA,270.26,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c2_14762",1,"1",86750599,NA,NA,270.54,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c2_14763",1,"1",86847560,NA,NA,270.82,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c2_14764",1,"1",86847664,NA,NA,271.20,3,2,1,0,1,1,0,0,1,1
#> "solcap_snp_c2_14772",1,"1",86877778,NA,NA,271.58,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c2_14779",1,"1",86887803,NA,NA,274.05,0,2,0,0,0,0,0,0,1,1
#> "solcap_snp_c1_4803",1,"1",86942483,NA,NA,276.39,3,2,1,0,1,1,0,0,1,1
#> "solcap_snp_c2_14827",1,"1",87096629,NA,NA,277.06,1,2,0,1,0,0,1,1,0,0
#> "solcap_snp_c2_14840",1,"1",87161581,NA,NA,278.23,3,0,1,0,1,1,0,0,0,0
#> "solcap_snp_c2_14841",1,"1",87161695,NA,NA,279.54,3,3,1,0,1,1,0,1,1,1
#> "solcap_snp_c2_14848",1,"1",87196823,NA,NA,280.06,1,1,0,1,0,0,1,0,0,0
#> "solcap_snp_c2_37836",1,"1",87392825,NA,NA,282.11,1,4,0,1,0,0,1,1,1,1
#> "solcap_snp_c2_37820",1,"1",87463711,NA,NA,282.12,3,2,1,0,1,1,0,0,1,1
#> "solcap_snp_c1_11288",1,"1",87558384,NA,NA,282.13,3,2,1,0,1,1,0,0,1,1
#> "solcap_snp_c1_11308",1,"1",87663528,NA,NA,287.31,4,2,1,1,1,1,1,1,0,0
#> "solcap_snp_c2_37850",1,"1",87731594,NA,NA,287.32,4,2,1,1,1,1,1,1,0,0
#> "solcap_snp_c2_37816",1,"1",87746020,NA,NA,288.43,0,2,0,0,0,0,0,0,1,1
#> "solcap_snp_c1_9428",1,"1",87944667,NA,NA,298.18,3,1,1,1,1,0,0,1,0,0
#> "solcap_snp_c1_9430",1,"1",87965033,NA,NA,302.34,4,2,1,1,1,1,1,1,0,0
#> "solcap_snp_c2_22105",1,"1",88057376,NA,NA,306.51,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c1_9413",1,"1",88294049,NA,NA,309.12,4,2,1,1,1,1,1,1,0,0
#> "solcap_snp_c1_9406",1,"1",88347489,NA,NA,309.94,0,2,0,0,0,0,0,0,1,1
#> "solcap_snp_c2_30963",1,"1",88362769,NA,NA,313.20,2,0,1,0,1,0,0,0,0,0
#> "solcap_snp_c2_30961",1,"1",88389459,NA,NA,313.21,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c1_9397",1,"1",88409394,NA,NA,314.43,4,2,1,1,1,1,1,1,0,0
#> "solcap_snp_c1_9392",1,"1",88434818,NA,NA,314.44,4,2,1,1,1,1,1,1,0,0
#> "solcap_snp_c2_30958",1,"1",88451845,NA,NA,316.36,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c2_30956",1,"1",88452032,NA,NA,316.37,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c2_30955",1,"1",88452236,NA,NA,316.38,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c1_1504",2,"2", 4479289,NA,NA,  0.00,2,3,1,1,0,0,1,1,1,0
#> "solcap_snp_c2_4344",2,"2", 4884993,NA,NA,  0.49,0,3,0,0,0,0,1,1,1,0
#> "solcap_snp_c2_4354",2,"2", 5159401,NA,NA,  0.65,2,1,0,0,1,1,0,0,0,1
#> "solcap_snp_c2_48725",2,"2", 5510874,NA,NA,  0.65,2,1,0,0,1,1,0,0,0,1
#> "solcap_snp_c1_3750",2,"2", 6090174,NA,NA,  1.63,2,3,1,1,0,0,1,1,1,0
#> "solcap_snp_c2_11591",2,"2", 6647886,NA,NA,  2.61,2,1,0,0,1,1,0,0,0,1
#> "solcap_snp_c1_3747",2,"2", 7050814,NA,NA,  2.82,2,1,0,0,1,1,0,0,0,1
#> "solcap_snp_c2_4515",2,"2", 8246308,NA,NA,  3.03,2,1,0,0,1,1,0,0,0,1
#> "solcap_snp_c2_14690",2,"2", 8398966,NA,NA,  3.03,2,1,0,0,1,1,0,0,0,1
#> "solcap_snp_c2_14648",2,"2", 8799627,NA,NA,  3.47,2,3,1,1,0,0,1,1,1,0
#> "solcap_snp_c1_4792",2,"2", 8802985,NA,NA,  4.42,2,0,1,1,0,0,0,0,0,0
#> "solcap_snp_c2_14645",2,"2", 9338437,NA,NA,  5.05,2,0,0,0,1,1,0,0,0,0
#> "solcap_snp_c2_730",2,"2",12188889,NA,NA,  5.70,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_41887",2,"2",15292858,NA,NA,  6.44,2,0,1,1,0,0,0,0,0,0
#> "solcap_snp_c2_47096",2,"2",16846846,NA,NA,  8.89,0,3,0,0,0,0,0,1,1,1
#> "solcap_snp_c2_17387",2,"2",20193366,NA,NA,  9.64,4,3,1,1,1,1,1,1,0,1
#> "solcap_snp_c2_17427",2,"2",20681191,NA,NA, 11.77,3,0,1,1,1,0,0,0,0,0
#> "solcap_snp_c2_17428",2,"2",20681220,NA,NA, 12.45,1,3,0,0,0,1,1,1,0,1
#> "solcap_snp_c1_5739",2,"2",20681710,NA,NA, 13.09,3,0,1,1,1,0,0,0,0,0
#> "solcap_snp_c1_11344",2,"2",21725517,NA,NA, 18.09,0,2,0,0,0,0,1,0,1,0
#> "solcap_snp_c2_38022",2,"2",22006999,NA,NA, 18.88,4,2,1,1,1,1,1,0,0,1
#> "solcap_snp_c2_32421",2,"2",22621554,NA,NA, 21.89,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c1_9719",2,"2",22749359,NA,NA, 22.13,0,3,0,0,0,0,1,1,0,1
#> "solcap_snp_c2_39705",2,"2",23426100,NA,NA, 25.47,4,3,1,1,1,1,1,1,0,1
#> "solcap_snp_c2_39677",2,"2",23550342,NA,NA, 26.12,0,1,0,0,0,0,0,0,1,0
#> "solcap_snp_c2_37256",2,"2",23737215,NA,NA, 27.42,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c1_11122",2,"2",23799802,NA,NA, 27.43,0,1,0,0,0,0,0,0,1,0
#> "solcap_snp_c2_33996",2,"2",24149138,NA,NA, 30.38,0,1,0,0,0,0,0,0,0,1
#> "solcap_snp_c2_53818",2,"2",24744880,NA,NA, 30.38,0,1,0,0,0,0,0,0,0,1
#> "solcap_snp_c1_15402",2,"2",24899862,NA,NA, 31.49,4,1,1,1,1,1,0,0,1,0
#> "solcap_snp_c2_52630",2,"2",24910552,NA,NA, 34.48,0,1,0,0,0,0,0,0,1,0
#> "solcap_snp_c2_21752",2,"2",25050163,NA,NA, 36.52,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c1_6841",2,"2",25051854,NA,NA, 37.05,4,1,1,1,1,1,0,0,1,0
#> "solcap_snp_c2_21746",2,"2",25072703,NA,NA, 37.40,0,2,0,0,0,0,1,1,0,0
#> "solcap_snp_c2_21722",2,"2",25322160,NA,NA, 38.34,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_21717",2,"2",25423184,NA,NA, 40.23,4,3,1,1,1,1,1,1,0,1
#> "solcap_snp_c1_9369",2,"2",26798985,NA,NA, 42.18,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c2_45392",2,"2",27065211,NA,NA, 42.79,0,2,0,0,0,0,1,1,0,0
#> "solcap_snp_c2_45307",2,"2",27086772,NA,NA, 43.77,0,1,0,0,0,0,0,0,1,0
#> "solcap_snp_c2_45310",2,"2",27088140,NA,NA, 43.93,3,2,1,0,1,1,1,1,0,0
#> "solcap_snp_c2_45311",2,"2",27088340,NA,NA, 44.25,0,1,0,0,0,0,0,0,1,0
#> "solcap_snp_c1_13459",2,"2",27143875,NA,NA, 45.22,3,3,1,0,1,1,1,1,1,0
#> "solcap_snp_c1_13465",2,"2",27190187,NA,NA, 45.92,3,3,1,0,1,1,1,1,1,0
#> "solcap_snp_c1_12339",2,"2",27411139,NA,NA, 45.94,0,1,0,0,0,0,0,0,1,0
#> "solcap_snp_c1_12345",2,"2",27412322,NA,NA, 46.50,0,1,0,0,0,0,0,0,1,0
#> "solcap_snp_c1_12305",2,"2",27458950,NA,NA, 46.91,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c1_12310",2,"2",27553365,NA,NA, 47.61,3,0,1,0,1,1,0,0,0,0
#> "solcap_snp_c2_41980",2,"2",27557427,NA,NA, 48.15,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c1_12330",2,"2",27618598,NA,NA, 48.15,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_42059",2,"2",27676633,NA,NA, 48.15,4,3,1,1,1,1,1,1,0,1
#> "solcap_snp_c2_38940",2,"2",27856761,NA,NA, 48.63,1,1,0,1,0,0,0,0,0,1
#> "solcap_snp_c2_38938",2,"2",27860023,NA,NA, 49.54,3,0,1,0,1,1,0,0,0,0
#> "solcap_snp_c2_38936",2,"2",27860101,NA,NA, 49.88,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c1_11556",2,"2",28039994,NA,NA, 50.06,3,3,1,0,1,1,1,1,1,0
#> "solcap_snp_c2_38952",2,"2",28230312,NA,NA, 52.01,4,1,1,1,1,1,0,0,0,1
#> "solcap_snp_c2_19692",2,"2",28745987,NA,NA, 54.82,4,2,1,1,1,1,0,1,0,1
#> "solcap_snp_c1_5091",2,"2",28830938,NA,NA, 55.63,3,3,1,0,1,1,1,1,1,0
#> "solcap_snp_c1_5088",2,"2",28832209,NA,NA, 55.63,1,2,0,1,0,0,0,0,1,1
#> "solcap_snp_c2_15749",2,"2",28938673,NA,NA, 56.86,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_48238",2,"2",29093635,NA,NA, 56.86,3,3,1,0,1,1,1,1,1,0
#> "solcap_snp_c2_48237",2,"2",29093750,NA,NA, 56.86,3,3,1,0,1,1,1,1,1,0
#> "solcap_snp_c1_14280",2,"2",29136032,NA,NA, 56.86,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_48195",2,"2",29136966,NA,NA, 58.21,3,1,1,0,1,1,1,0,0,0
#> "solcap_snp_c1_14293",2,"2",29163304,NA,NA, 59.03,3,3,1,0,1,1,1,1,1,0
#> "solcap_snp_c2_39155",2,"2",29312895,NA,NA, 59.03,4,2,1,1,1,1,0,0,1,1
#> "solcap_snp_c2_39135",2,"2",29416066,NA,NA, 61.45,4,3,1,1,1,1,1,1,0,1
#> "solcap_snp_c2_51113",2,"2",29665174,NA,NA, 61.69,3,3,1,0,1,1,1,1,1,0
#> "solcap_snp_c1_13912",2,"2",29883519,NA,NA, 63.21,1,2,0,1,0,0,0,1,0,1
#> "solcap_snp_c2_46903",2,"2",29922714,NA,NA, 63.51,3,3,1,0,1,1,1,1,1,0
#> "solcap_snp_c2_46904",2,"2",29922763,NA,NA, 63.51,3,3,1,0,1,1,1,1,1,0
#> "solcap_snp_c1_13929",2,"2",29928927,NA,NA, 63.80,1,2,0,1,0,0,0,0,1,1
#> "solcap_snp_c2_46909",2,"2",29929969,NA,NA, 64.06,1,1,0,1,0,0,0,0,0,1
#> "solcap_snp_c1_13910",2,"2",29990872,NA,NA, 64.32,1,1,0,1,0,0,0,0,0,1
#> "solcap_snp_c1_13911",2,"2",30022458,NA,NA, 64.32,1,1,0,1,0,0,0,0,0,1
#> "solcap_snp_c2_46885",2,"2",30044742,NA,NA, 64.33,1,1,0,1,0,0,0,0,0,1
#> "solcap_snp_c2_46887",2,"2",30044882,NA,NA, 64.33,3,3,1,0,1,1,1,1,1,0
#> "solcap_snp_c2_46898",2,"2",30147247,NA,NA, 64.62,1,2,0,1,0,0,0,0,1,1
#> "solcap_snp_c1_7469",2,"2",30364207,NA,NA, 65.87,1,2,0,1,0,0,0,0,1,1
#> "solcap_snp_c1_7412",2,"2",30401330,NA,NA, 66.50,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c1_7430",2,"2",30480570,NA,NA, 67.07,1,2,0,1,0,0,0,0,1,1
#> "solcap_snp_c2_23170",2,"2",30785563,NA,NA, 68.54,1,3,0,1,0,0,1,0,1,1
#> "solcap_snp_c2_23188",2,"2",31021446,NA,NA, 69.23,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_23192",2,"2",31060240,NA,NA, 70.07,3,2,1,0,1,1,1,1,0,0
#> "solcap_snp_c2_54732",2,"2",31205330,NA,NA, 70.53,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_41534",2,"2",31571193,NA,NA, 71.69,1,2,0,1,0,0,0,0,1,1
#> "solcap_snp_c1_13236",2,"2",31663185,NA,NA, 71.70,3,1,1,0,1,1,0,1,0,0
#> "solcap_snp_c1_13233",2,"2",31714504,NA,NA, 71.70,1,2,0,1,0,0,0,0,1,1
#> "solcap_snp_c2_39191",2,"2",32084708,NA,NA, 72.91,3,2,1,0,1,1,1,1,0,0
#> "solcap_snp_c1_11581",2,"2",32220207,NA,NA, 74.63,2,2,1,1,0,0,0,0,1,1
#> "solcap_snp_c2_44771",2,"2",32647466,NA,NA, 75.14,2,2,0,0,1,1,1,1,0,0
#> "solcap_snp_c2_44774",2,"2",32668501,NA,NA, 75.61,2,2,1,1,0,0,0,0,1,1
#> "solcap_snp_c2_44776",2,"2",32669850,NA,NA, 75.61,2,2,1,1,0,0,0,0,1,1
#> "solcap_snp_c2_44778",2,"2",32671297,NA,NA, 75.82,2,2,1,1,0,0,0,0,1,1
#> "solcap_snp_c2_44768",2,"2",32806437,NA,NA, 76.46,2,2,0,0,1,1,1,1,0,0
#> "solcap_snp_c2_44769",2,"2",32820718,NA,NA, 76.70,3,3,0,1,1,1,1,1,0,1
#> "solcap_snp_c2_44770",2,"2",32822882,NA,NA, 76.70,1,1,1,0,0,0,0,0,1,0
#> "solcap_snp_c2_13051",2,"2",33076397,NA,NA, 76.70,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c1_4192",2,"2",33204619,NA,NA, 78.22,2,1,0,0,1,1,0,1,0,0
#> "solcap_snp_c2_51998",2,"2",33270668,NA,NA, 78.76,1,1,1,0,0,0,0,0,1,0
#> "solcap_snp_c2_51985",2,"2",33352028,NA,NA, 80.22,2,2,1,1,0,0,0,0,1,1
#> "solcap_snp_c2_51990",2,"2",33357450,NA,NA, 80.23,2,2,0,0,1,1,1,1,0,0
#> "solcap_snp_c2_48784",2,"2",33668370,NA,NA, 82.72,3,3,1,1,1,0,0,1,1,1
#> "solcap_snp_c2_47037",2,"2",33978883,NA,NA, 85.33,2,2,0,0,1,1,1,1,0,0
#> "solcap_snp_c1_12264",2,"2",34171806,NA,NA, 86.01,2,2,1,1,0,0,0,0,1,1
#> "solcap_snp_c2_33141",2,"2",34594739,NA,NA, 88.89,0,1,0,0,0,0,0,0,0,1
#> "solcap_snp_c2_33108",2,"2",34739225,NA,NA, 88.90,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c2_40155",2,"2",35112346,NA,NA, 90.03,2,3,0,0,1,1,1,1,1,0
#> "solcap_snp_c2_50570",2,"2",35399177,NA,NA, 91.75,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c2_50394",2,"2",35549597,NA,NA, 92.94,2,1,1,1,0,0,0,0,0,1
#> "solcap_snp_c2_50391",2,"2",35579108,NA,NA, 93.63,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c2_50412",2,"2",35600542,NA,NA, 93.63,4,3,1,1,1,1,1,1,1,0
#> "solcap_snp_c2_50405",2,"2",35657756,NA,NA, 94.17,1,3,0,0,1,0,1,1,1,0
#> "solcap_snp_c2_27433",2,"2",35990927,NA,NA, 94.67,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c2_27437",2,"2",36019472,NA,NA, 94.67,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c2_17973",2,"2",36229730,NA,NA, 95.07,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c2_17954",2,"2",36329410,NA,NA, 96.17,2,2,1,0,0,1,1,0,1,0
#> "solcap_snp_c2_17938",2,"2",36364347,NA,NA, 96.74,1,2,1,0,0,0,1,0,1,0
#> "solcap_snp_c2_17937",2,"2",36364435,NA,NA, 96.99,3,2,0,1,1,1,0,1,0,1
#> "solcap_snp_c2_17935",2,"2",36364609,NA,NA, 97.09,3,2,0,1,1,1,0,1,0,1
#> "solcap_snp_c2_17932",2,"2",36364767,NA,NA, 97.18,1,2,1,0,0,0,1,0,1,0
#> "solcap_snp_c2_17930",2,"2",36364901,NA,NA, 97.18,1,2,1,0,0,0,1,0,1,0
#> "solcap_snp_c2_17926",2,"2",36365501,NA,NA, 97.38,1,2,1,0,0,0,1,0,1,0
#> "solcap_snp_c2_17925",2,"2",36365552,NA,NA, 97.79,2,2,0,1,1,0,0,1,0,1
#> "solcap_snp_c2_17922",2,"2",36374598,NA,NA, 98.62,1,2,1,0,0,0,1,0,1,0
#> "solcap_snp_c2_17921",2,"2",36375406,NA,NA, 98.62,3,2,0,1,1,1,0,1,0,1
#> "solcap_snp_c2_17914",2,"2",36422560,NA,NA,100.07,2,2,0,1,1,0,0,1,1,0
#> "solcap_snp_c2_17901",2,"2",36454929,NA,NA,101.33,2,1,1,0,0,1,1,0,0,0
#> "solcap_snp_c2_17900",2,"2",36455067,NA,NA,101.95,2,3,0,1,1,0,0,1,1,1
#> "solcap_snp_c2_17899",2,"2",36455154,NA,NA,101.96,2,3,0,1,1,0,0,1,1,1
#> "solcap_snp_c2_17897",2,"2",36455571,NA,NA,101.96,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c2_17896",2,"2",36455607,NA,NA,101.96,2,3,0,1,1,0,0,1,1,1
#> "solcap_snp_c2_17895",2,"2",36455817,NA,NA,103.63,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_17816",2,"2",36728687,NA,NA,103.78,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c2_17809",2,"2",36799097,NA,NA,103.79,3,4,0,1,1,1,1,1,1,1
#> "solcap_snp_c1_5846",2,"2",36959231,NA,NA,104.26,1,0,0,0,0,1,0,0,0,0
#> "solcap_snp_c1_5845",2,"2",36959234,NA,NA,105.32,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c2_49495",2,"2",37017828,NA,NA,105.32,2,4,0,1,1,0,1,1,1,1
#> "solcap_snp_c2_42169",2,"2",37438591,NA,NA,105.32,3,4,0,1,1,1,1,1,1,1
#> "solcap_snp_c2_42172",2,"2",37439183,NA,NA,105.33,2,4,0,1,1,0,1,1,1,1
#> "solcap_snp_c1_16170",2,"2",37474563,NA,NA,105.33,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c2_55632",2,"2",37474656,NA,NA,105.33,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c1_16171",2,"2",37475069,NA,NA,105.33,3,4,0,1,1,1,1,1,1,1
#> "solcap_snp_c1_12373",2,"2",37530401,NA,NA,105.33,3,4,0,1,1,1,1,1,1,1
#> "solcap_snp_c1_12382",2,"2",37654438,NA,NA,105.83,3,4,0,1,1,1,1,1,1,1
#> "solcap_snp_c2_42241",2,"2",37676252,NA,NA,106.32,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c2_35211",2,"2",37831945,NA,NA,106.33,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c1_10494",2,"2",37845965,NA,NA,106.33,3,4,0,1,1,1,1,1,1,1
#> "solcap_snp_c1_10492",2,"2",37890758,NA,NA,106.83,1,1,1,0,0,0,0,1,0,0
#> "solcap_snp_c1_10491",2,"2",37903554,NA,NA,107.24,1,1,1,0,0,0,0,1,0,0
#> "solcap_snp_c2_35165",2,"2",37982943,NA,NA,108.38,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c2_35139",2,"2",38046886,NA,NA,108.38,3,4,0,1,1,1,1,1,1,1
#> "solcap_snp_c2_35113",2,"2",38121156,NA,NA,108.80,1,1,1,0,0,0,0,1,0,0
#> "solcap_snp_c1_15466",2,"2",38386450,NA,NA,109.46,1,1,1,0,0,0,0,1,0,0
#> "solcap_snp_c2_53037",2,"2",38688112,NA,NA,109.46,1,1,1,0,0,0,0,1,0,0
#> "solcap_snp_c2_53036",2,"2",38688195,NA,NA,109.47,1,1,1,0,0,0,0,1,0,0
#> "solcap_snp_c2_53034",2,"2",38688354,NA,NA,109.47,1,1,1,0,0,0,0,1,0,0
#> "solcap_snp_c2_53033",2,"2",38688468,NA,NA,109.88,2,1,1,0,0,1,0,1,0,0
#> "solcap_snp_c1_11955",2,"2",38837510,NA,NA,112.32,2,1,1,1,0,0,0,1,0,0
#> "solcap_snp_c2_40635",2,"2",39073404,NA,NA,113.50,2,2,0,0,1,1,0,0,1,1
#> "solcap_snp_c2_40638",2,"2",39073700,NA,NA,115.75,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_42132",2,"2",39144989,NA,NA,115.75,1,3,0,0,1,0,1,0,1,1
#> "solcap_snp_c2_42133",2,"2",39144999,NA,NA,115.75,1,3,0,0,1,0,1,0,1,1
#> "solcap_snp_c2_42126",2,"2",39369111,NA,NA,115.80,2,0,1,1,0,0,0,0,0,0
#> "solcap_snp_c2_42127",2,"2",39369213,NA,NA,115.80,2,0,1,1,0,0,0,0,0,0
#> "solcap_snp_c1_8113",2,"2",39934151,NA,NA,120.10,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c1_8118",2,"2",39940655,NA,NA,120.12,2,3,0,0,1,1,1,0,1,1
#> "solcap_snp_c1_8125",2,"2",39970010,NA,NA,120.19,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_25892",2,"2",40044441,NA,NA,122.61,4,3,1,1,1,1,0,1,1,1
#> "solcap_snp_c2_25896",2,"2",40132579,NA,NA,122.66,3,3,1,0,1,1,1,0,1,1
#> "solcap_snp_c2_25897",2,"2",40132705,NA,NA,122.66,0,1,0,0,0,0,1,0,0,0
#> "solcap_snp_c2_25179",2,"2",40294633,NA,NA,123.40,2,2,0,1,1,0,1,1,0,0
#> "solcap_snp_c1_7964",2,"2",40294982,NA,NA,126.16,3,3,1,1,1,0,1,1,0,1
#> "solcap_snp_c2_7555",2,"2",41356969,NA,NA,128.16,0,2,0,0,0,0,0,1,1,0
#> "solcap_snp_c2_7558",2,"2",41357718,NA,NA,128.59,0,2,0,0,0,0,0,1,1,0
#> "solcap_snp_c2_7559",2,"2",41357748,NA,NA,128.59,4,2,1,1,1,1,1,0,0,1
#> "solcap_snp_c2_7565",2,"2",41368149,NA,NA,129.00,4,2,1,1,1,1,1,0,0,1
#> "solcap_snp_c1_2632",2,"2",41745246,NA,NA,130.15,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c1_2640",2,"2",41814961,NA,NA,130.65,2,3,0,0,1,1,1,1,1,0
#> "solcap_snp_c1_2641",2,"2",41814973,NA,NA,131.72,2,1,0,0,1,1,1,0,0,0
#> "solcap_snp_c1_2656",2,"2",41911152,NA,NA,133.37,4,3,1,1,1,1,1,1,0,1
#> "solcap_snp_c1_2574",2,"2",42014614,NA,NA,133.68,2,3,1,1,0,0,0,1,1,1
#> "solcap_snp_c2_7401",2,"2",42083055,NA,NA,136.14,3,3,0,1,1,1,1,0,1,1
#> "solcap_snp_c2_7422",2,"2",42178610,NA,NA,137.92,4,2,1,1,1,1,1,0,0,1
#> "solcap_snp_c1_2587",2,"2",42179852,NA,NA,138.59,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c2_7426",2,"2",42180225,NA,NA,139.86,3,3,1,0,1,1,1,1,1,0
#> "solcap_snp_c2_57421",2,"2",42320846,NA,NA,141.09,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c1_16540",2,"2",42320852,NA,NA,141.19,1,1,0,1,0,0,0,0,0,1
#> "solcap_snp_c1_15746",2,"2",42346419,NA,NA,142.45,4,2,1,1,1,1,1,0,0,1
#> "solcap_snp_c2_22939",2,"2",42474531,NA,NA,144.58,2,1,1,1,0,0,0,0,0,1
#> "solcap_snp_c1_7346",2,"2",42597250,NA,NA,146.12,2,2,1,1,0,0,1,0,0,1
#> "solcap_snp_c2_22853",2,"2",42733575,NA,NA,146.95,3,2,0,1,1,1,0,1,1,0
#> "solcap_snp_c1_7325",2,"2",42764357,NA,NA,147.64,1,1,1,0,0,0,0,0,0,1
#> "solcap_snp_c2_27216",2,"2",43804789,NA,NA,152.13,1,1,0,1,0,0,0,0,0,1
#> "solcap_snp_c2_27372",2,"2",44159308,NA,NA,155.23,3,4,1,0,1,1,1,1,1,1
#> "solcap_snp_c2_27270",2,"2",44458161,NA,NA,155.71,1,0,0,1,0,0,0,0,0,0
#> "solcap_snp_c2_27269",2,"2",44458317,NA,NA,155.71,3,4,1,0,1,1,1,1,1,1
#> "solcap_snp_c2_27271",2,"2",44458644,NA,NA,158.41,2,3,0,0,1,1,1,1,0,1
#> "solcap_snp_c1_8490",2,"2",44698531,NA,NA,160.85,1,1,1,0,0,0,0,0,1,0
#> "solcap_snp_c2_43350",2,"2",44773146,NA,NA,162.25,3,2,0,1,1,1,1,0,0,1
#> "solcap_snp_c2_43348",2,"2",44773305,NA,NA,163.47,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c1_12771",2,"2",44810386,NA,NA,164.70,1,2,1,0,0,0,0,1,1,0
#> "solcap_snp_c2_43408",2,"2",44944594,NA,NA,164.70,1,0,0,1,0,0,0,0,0,0
#> "solcap_snp_c1_12509",2,"2",45147157,NA,NA,165.43,3,2,0,1,1,1,1,0,0,1
#> "solcap_snp_c2_42570",2,"2",45147640,NA,NA,165.43,1,2,1,0,0,0,0,1,1,0
#> "solcap_snp_c2_14981",2,"2",45458650,NA,NA,168.41,3,3,0,1,1,1,1,1,0,1
#> "solcap_snp_c1_4826",2,"2",45458875,NA,NA,168.42,1,1,1,0,0,0,0,0,1,0
#> "solcap_snp_c1_4847",2,"2",45616677,NA,NA,168.43,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c2_15018",2,"2",45618297,NA,NA,170.53,3,2,0,1,1,1,1,0,0,1
#> "solcap_snp_c1_4849",2,"2",45618958,NA,NA,170.88,3,2,0,1,1,1,1,0,0,1
#> "solcap_snp_c2_15041",2,"2",45652545,NA,NA,172.61,2,3,0,0,1,1,1,1,0,1
#> "solcap_snp_c2_15042",2,"2",45652553,NA,NA,175.68,1,0,0,1,0,0,0,0,0,0
#> "solcap_snp_c2_15046",2,"2",45652811,NA,NA,175.68,3,3,0,1,1,1,1,1,0,1
#> "solcap_snp_c2_15047",2,"2",45652877,NA,NA,176.03,1,1,0,1,0,0,0,1,0,0
#> "solcap_snp_c2_15048",2,"2",45652958,NA,NA,176.28,3,3,0,1,1,1,1,1,0,1
#> "solcap_snp_c2_15065",2,"2",45694316,NA,NA,176.45,3,4,1,0,1,1,1,1,1,1
#> "solcap_snp_c1_4860",2,"2",45695631,NA,NA,176.60,1,0,0,1,0,0,0,0,0,0
#> "solcap_snp_c2_15066",2,"2",45695637,NA,NA,176.76,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c1_4873",2,"2",45744372,NA,NA,176.88,1,1,1,0,0,0,0,0,1,0
#> "solcap_snp_c1_4881",2,"2",45756458,NA,NA,176.88,1,0,0,1,0,0,0,0,0,0
#> "solcap_snp_c1_7873",2,"2",46195290,NA,NA,177.44,4,3,1,1,1,1,1,0,1,1
#> "solcap_snp_c1_7872",2,"2",46195303,NA,NA,178.19,1,1,1,0,0,0,0,0,1,0
#> "solcap_snp_c1_7867",2,"2",46196437,NA,NA,179.89,3,2,0,1,1,1,1,0,0,1
#> "solcap_snp_c1_7848",2,"2",46291502,NA,NA,179.89,1,2,1,0,0,0,0,1,1,0
#> "solcap_snp_c1_7834",2,"2",46384191,NA,NA,181.66,1,1,1,0,0,0,0,0,1,0
#> "solcap_snp_c2_24869",2,"2",46387342,NA,NA,182.20,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c2_47211",2,"2",46940997,NA,NA,182.20,1,0,0,1,0,0,0,0,0,0
#> "solcap_snp_c2_47197",2,"2",47137310,NA,NA,184.36,3,3,0,1,1,1,1,1,0,1
#> "solcap_snp_c2_47199",2,"2",47137738,NA,NA,184.36,3,3,1,0,1,1,1,0,1,1
#> "solcap_snp_c2_47200",2,"2",47137863,NA,NA,187.30,2,0,0,0,1,1,0,0,0,0
#> "solcap_snp_c2_47201",2,"2",47141179,NA,NA,188.15,1,1,1,0,0,0,0,1,0,0
#> "solcap_snp_c1_10607",2,"2",47182635,NA,NA,189.23,1,1,1,0,0,0,0,0,1,0
#> "solcap_snp_c1_10593",2,"2",47302272,NA,NA,193.87,3,4,1,0,1,1,1,1,1,1
#> "solcap_snp_c2_35686",2,"2",47323948,NA,NA,193.87,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c2_35687",2,"2",47324096,NA,NA,193.87,1,0,1,0,0,0,0,0,0,0
#> "solcap_snp_c2_35690",2,"2",47324235,NA,NA,193.87,0,2,0,0,0,0,1,0,0,1
#> "solcap_snp_c2_35691",2,"2",47324287,NA,NA,194.70,0,3,0,0,0,0,1,1,0,1
#> "solcap_snp_c2_35692",2,"2",47325069,NA,NA,194.70,3,4,0,1,1,1,1,1,1,1
#> "solcap_snp_c2_35697",2,"2",47325513,NA,NA,195.66,0,2,0,0,0,0,1,0,0,1
#> "solcap_snp_c2_35700",2,"2",47326506,NA,NA,196.63,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c2_35701",2,"2",47327334,NA,NA,196.63,0,1,0,0,0,0,0,1,0,0
#> "solcap_snp_c2_35702",2,"2",47327423,NA,NA,196.63,3,4,1,0,1,1,1,1,1,1
#> "solcap_snp_c2_35706",2,"2",47327566,NA,NA,197.84,1,1,0,1,0,0,0,1,0,0
#> "solcap_snp_c1_11458",2,"2",47625835,NA,NA,200.53,0,2,0,0,0,0,1,0,0,1
#> "solcap_snp_c1_11459",2,"2",47625847,NA,NA,201.80,1,0,0,1,0,0,0,0,0,0
#> "solcap_snp_c2_38551",2,"2",47627255,NA,NA,201.81,3,4,1,0,1,1,1,1,1,1
#> "solcap_snp_c2_38552",2,"2",47627384,NA,NA,201.81,3,4,1,0,1,1,1,1,1,1
#> "solcap_snp_c2_38553",2,"2",47627420,NA,NA,201.95,0,2,0,0,0,0,1,0,0,1
#> "solcap_snp_c2_38555",2,"2",47627603,NA,NA,202.72,1,2,0,1,0,0,1,0,0,1
#> "solcap_snp_c1_5931",2,"2",48498256,NA,NA,206.31,2,3,1,1,0,0,1,0,1,1
#> "solcap_snp_c1_5895",2,"2",48565009,NA,NA,206.32,1,1,1,0,0,0,0,0,1,0
#> ✓ |   1       | Export map list
#> ⠏ |   0       | Filter functions⠙ |   2       | Filter functions⠹ |   3       | Filter functions⠼ |   5       | Filter functions✓ |   9       | Filter functions [0.5 s]
#> ⠏ |   0       | Get submap   Ploidy level: 4
#>  Rec. Frac. Limit: 0.500
#>  Number of markers: 5
#>  Number of individuals: 160
#>  
#>  Init. values:   0.001 0.001 0.001 0.001     
#>  Iter: 1 0.016 0.001 0.001 0.005     
#>  Iter: 2 0.024 0.000 0.001 0.007     
#>  Iter: 3 0.028 0.000 0.000 0.008     
#>  Iter: 4 0.030 0.000 0.000 0.008     
#>  Iter: 5 0.030 0.000 0.000 0.008     
#>  Iter: 6 0.031 0.000 0.000 0.008     
#>  Iter: 7 0.031 0.000 0.000 0.008     
#>  Iter: 8 0.031 0.000 0.000 0.008 
#> ✓ |   3       | Get submap
#> ⠏ |   0       | GrouppingINFO: Going singlemode. Using one CPU for calculation.
#> INFO: Going singlemode. Using one CPU.

#> ⠋ |   1       | Groupping✓ |   3       | Groupping [0.7 s]
#> ⠏ |   0       | Homolog probability  Ploidy level: 4
#>  Number of markers: 20
#>  Number of individuals: 160
#>  ..................................................
#>  ..................................................
#>  ..................................................
#>  ..........
#> ⠋ |   1       | Homolog probability
#> Linkage group  1 ...
#> ⠙ |   2       | Homolog probability⠹ |   3       | Homolog probability⠸ |   4       | Homolog probability✓ |   5       | Homolog probability [0.7 s]
#> ⠏ |   0       | Merge mapsINFO: Going singlemode. Using one CPU for calculation.
#> ⠋ |   1       | Merge maps✓ |   3       | Merge maps [1.2 s]
#> ⠏ |   0       | Preferential Pairing Ploidy level: 4
#>  Number of markers: 20
#>  Number of individuals: 160
#>  ..................................................
#>  ..................................................
#>  ..................................................
#>  ..........
#> 
#> Linkage group  1 ...

#> ⠹ |   3       | Preferential Pairing✓ |   3       | Preferential Pairing [0.7 s]
#> ⠏ |   0       | Read dataReading data...
#> Scanning file to determine attributes.
#> File attributes:
#>   meta lines: 8
#>   header_line: 9
#>   variant count: 200
#>   column count: 326
#> Meta line 8 read in.
#> All meta lines processed.
#> gt matrix initialized.
#> Character matrix gt created.
#>   Character matrix gt rows: 200
#>   Character matrix gt cols: 326
#>   skip: 0
#>   nrows: 200
#>   row_num: 0
#> Processed variant: 200
#> All variants processed
#> Processing genotypes...Done!
#> Selected ploidy: 6 
#> Done!
#> Read the following data:
#>     Ploidy level: 6
#>     No. individuals:  315
#>     No. markers:  167
#>     No. informative markers:  167 (100%)
#>     This dataset contains sequence information.
#>     ...
#>     Done with reading.
#>     Filtering non-conforming markers.
#>     ...
#>     Performing chi-square test.
#>     ...
#>     Done.
#> ⠋ |   1       | Read dataThis is an object of class 'mappoly.data'
#>     Ploidy level:                            6 
#>     No. individuals:                         315 
#>     No. markers:                             164 
#>     Missing data:                            6.01%
#>     Redundant markers:                       1.8%
#> 
#>     ----------
#>     No. markers per sequence:
#>       seq No.mrk
#>         3    164
#>     ----------
#>     Markers with no sequence information: 0
#>     ----------
#>     No. of markers per dosage combination in both parents:
#>     P1 P2 freq
#>      0  1   50
#>      0  2    8
#>      0  3    4
#>      0  4    1
#>      1  0   26
#>      1  1   12
#>      1  2    9
#>      1  3    4
#>      1  4    1
#>      2  0    3
#>      2  1   10
#>      2  2    7
#>      2  3    7
#>      2  4    4
#>      3  0    3
#>      3  1    3
#>      3  2    7
#>      3  3    1
#>      4  0    1
#>      4  1    2
#>      4  2    1
#> Reading the following data:
#>     Ploidy level: 4
#>     No. individuals:  160
#>     No. markers:  4017
#>     No. informative markers:  4017 (100%)
#>     This dataset contains sequence information.
#>     ...
#> 
#>     Done with reading.
#>     Filtering non-conforming markers.
#>     ...
#>     Performing chi-square test.
#>     ...
#>     Done.
#> ⠹ |   3       | Read dataReading the following data:
#>     Ploidy level: 6
#>     No. individuals:  50
#>     No. markers:  100
#>     No. informative markers:  71 (71%)
#>     This dataset contains sequence information.
#>     ...
#>     Done with reading.
#>     Filtering non-conforming markers.
#>     ...
#>     Performing chi-square test.
#>     ...
#>     Done.
#> ⠸ |   4       | Read dataReading the following data:
#>     Ploidy level: 4
#>     No. individuals:  160
#>     No. markers:  4017
#>     No. informative markers:  4017 (100%)
#>     This dataset contains sequence information.
#>     ...
#>     Done with reading.
#>     Filtering non-conforming markers.
#>     ...
#>     Done with filtering.
#> ⠼ |   5       | Read data✓ |   5       | Read data [18.0 s]
#> ⠏ |   0       | Map reestimationINFO: Going singlemode. Using one CPU for calculation.
#> Also, number of markers is too small to perform parallel computation.
#> INFO: Going singlemode. Using one CPU.
#>  Ploidy level: 4
#>  Rec. Frac. Limit: 0.500
#>  Number of markers: 5
#>  Number of individuals: 160
#>  
#>  Init. values:   0.031 0.000 0.000 0.007     
#>  Iter: 1 0.031 0.000 0.000 0.008 
#> ⠹ |   3       | Map reestimation⠼ |   5       | Map reestimation✓ |   5       | Map reestimation [0.5 s]
#> ⠏ |   0       | Simulate datasets⠋ |   1       | Simulate datasets✓ |   1       | Simulate datasets [0.4 s]
#> ⠏ |   0       | Split and rephase    Ploidy level: 4
#>  Rec. Frac. Limit: 0.500
#>  Number of markers: 20
#>  Number of individuals: 160
#>  
#>  Init. values:   0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001   
#>  Iter: 1 0.016 0.001 0.002 0.006 0.006 0.007 0.006 0.011 0.008 0.004 0.003 0.001 0.004 0.001 0.003 0.007 0.009 0.009 0.000   
#>  Iter: 2 0.024 0.000 0.001 0.007 0.007 0.009 0.006 0.014 0.010 0.004 0.003 0.001 0.004 0.001 0.004 0.009 0.013 0.016 0.000   
#>  Iter: 3 0.028 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.001 0.004 0.009 0.016 0.020 0.000   
#>  Iter: 4 0.029 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.004 0.008 0.018 0.024 0.000   
#>  Iter: 5 0.030 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.008 0.020 0.027 0.000   
#>  Iter: 6 0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.007 0.021 0.029 0.000   
#>  Iter: 7 0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.006 0.021 0.031 0.000   
#>  Iter: 8 0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.005 0.022 0.032 0.000   
#>  Iter: 9 0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.004 0.022 0.033 0.000   
#>  Iter: 10    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.004 0.022 0.034 0.000   
#>  Iter: 11    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.003 0.023 0.035 0.000   
#>  Iter: 12    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.003 0.023 0.035 0.000   
#>  Iter: 13    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.003 0.023 0.036 0.000   
#>  Iter: 14    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.002 0.023 0.036 0.000   
#>  Iter: 15    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.002 0.023 0.037 0.000   
#>  Iter: 16    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.002 0.023 0.037 0.000   
#>  Iter: 17    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.002 0.023 0.037 0.000   
#>  Iter: 18    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.001 0.024 0.037 0.000   
#>  Iter: 19    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.005 0.001 0.024 0.037 0.000   
#>  Iter: 20    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.006 0.001 0.024 0.037 0.000   
#>  Iter: 21    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.006 0.001 0.024 0.037 0.000   
#>  Iter: 22    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.006 0.001 0.024 0.038 0.000   
#>  Iter: 23    0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010 0.004 0.003 0.000 0.005 0.000 0.006 0.001 0.024 0.038 0.000 
#> INFO: Going singlemode. Using one CPU for calculation.
#> 3 submaps found ...
#> Adding block 2 of 3 
#> Adding block 3 of 3 
#> ⠋ |   1       | Split and rephase✓ |   1       | Split and rephase [0.8 s]
#> ⠏ |   0       | Utility functions

#> ⠋ |   1       | Utility functionsINFO: Going singlemode. Using one CPU for calculation.
#> ⠴ |   6       | Utility functionsINFO: Going singlemode. Using one CPU.

#> ⠙ |  12       | Utility functions

#> 
#>  NA
#> ----------------------------------
#>  dosage P1:  1
#>  dosage P2:  2
#> ----
#>  dosage distribution
#>   0   1   2   3 mis 
#>  23 120 126  31   0 
#> ----
#>  expected polysomic segregation
#>   0   1   2   3   4   5   6 
#> 0.1 0.4 0.4 0.1 0.0 0.0 0.0 
#> ----------------------------------
#> ⠦ |  27       | Utility functionsINFO: Going singlemode. Using one CPU for calculation.
#> INFO: Going singlemode. Using one CPU.
#> ⠇ |  29       | Utility functions    Ploidy level: 4
#>  Rec. Frac. Limit: 0.500
#>  Number of markers: 10
#>  Number of individuals: 160
#>  
#>  Init. values:   0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010   
#>  Iter: 1 0.031 0.000 0.000 0.007 0.007 0.009 0.006 0.017 0.010   
#>  Iter: 2 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.018 0.009   
#>  Iter: 3 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.018 0.009   
#>  Iter: 4 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 5 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 6 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 7 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 8 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 9 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 10    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 11    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 12    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 13    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 14    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 15    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 16    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 17    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 18    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 19    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 20    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 21    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 22    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007 
#>  Ploidy level: 4
#>  Rec. Frac. Limit: 0.500
#>  Number of markers: 10
#>  Number of individuals: 160
#>  
#>  Init. values:   0.029 0.000 0.000 0.007 0.007 0.009 0.006 0.015 0.010   
#>  Iter: 1 0.030 0.000 0.000 0.007 0.007 0.009 0.006 0.017 0.010   
#>  Iter: 2 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.018 0.009   
#>  Iter: 3 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.018 0.009   
#>  Iter: 4 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 5 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 6 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 7 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 8 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 9 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 10    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 11    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 12    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 13    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 14    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 15    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 16    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 17    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 18    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 19    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 20    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 21    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 22    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007 
#> ⠏ |  30       | Utility functions    Ploidy level: 4
#>  Rec. Frac. Limit: 0.500
#>  Number of markers: 10
#>  Number of individuals: 160
#>  
#>  Init. values:   0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 1 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007 
#>  Ploidy level: 4
#>  Rec. Frac. Limit: 0.500
#>  Number of markers: 10
#>  Number of individuals: 160
#>  
#>  Init. values:   0.031 0.000 0.000 0.006 0.006 0.009 0.005 0.019 0.007   
#>  Iter: 1 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 2 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 3 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 4 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 5 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 6 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 7 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 8 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 9 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 10    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 11    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007 
#> ⠋ |  31       | Utility functions    Ploidy level: 4
#>  Rec. Frac. Limit: 0.500
#>  Number of markers: 10
#>  Number of individuals: 160
#>  
#>  Init. values:   0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 1 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007 
#>  Ploidy level: 4
#>  Rec. Frac. Limit: 0.500
#>  Number of markers: 10
#>  Number of individuals: 160
#>  
#>  Init. values:   0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.014   
#>  Iter: 1 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.018 0.012   
#>  Iter: 2 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.018 0.010   
#>  Iter: 3 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.018 0.010   
#>  Iter: 4 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.009   
#>  Iter: 5 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.009   
#>  Iter: 6 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 7 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 8 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 9 0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 10    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 11    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 12    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.008   
#>  Iter: 13    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 14    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 15    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 16    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 17    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 18    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 19    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 20    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 21    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 22    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 23    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007   
#>  Iter: 24    0.031 0.000 0.000 0.007 0.007 0.009 0.005 0.019 0.007 
#> ⠙ |  32       | Utility functions✓ |  34       | Utility functions [2.5 s]
#> 
#> ══ Results ═════════════════════════════════════════════════════════════════════════════════════════════════════
#> Duration: 40.0 s
#> 
#> OK:       123
#> Failed:   0
#> Warnings: 0
#> Skipped:  0
df <- dplyr::as_tibble(t(sapply(x, function(x) sapply(x[1:6], unlist))))
df[,4:6] <- apply(df[,4:6], 2, as.numeric)
formattable::formattable(df)

file

context

test

user

system

real

test-2pt.R

Two point estimates

estimate two-points rf correctly

4.577

0.315

8.525

test-cahe_twopts.R

Compute genotype counts

compute genotype counts correctly

0.459

0.112

0.745

test-calc_genoprobs.R

Conditional probabilities

computes genotype probabilities correctly

1.096

0.307

1.287

test-est_hmm_map.R

Estimate HMM map

map contructed correctly

1.270

0.327

1.504

test-est_hmm_map.R

Estimate HMM map

sequential map contructed correctly

0.808

0.149

0.895

test-est_with_probs.R

Estimate map with probabilities

map estimated correctly

0.761

0.154

0.865

test-export_map_list.R

Export map list

export map list correctly

0.017

0.004

0.021

test-filters.R

Filter functions

test filter functions

0.480

0.084

0.531

test-get_submap.R

Get submap

sub-map extracted correctly

0.053

0.020

0.068

test-group.R

Groupping

assemble linkage groups correctly

0.667

0.000

0.664

test-homolog_prob.R

Homolog probability

computes homolog probabilities correctly

0.640

0.075

0.694

test-merge_maps.R

Merge maps

merging maps correctly

1.128

0.122

1.204

test-preferential_pairing.R

Preferential Pairing

computes pairing probabilities correctly

0.696

0.064

0.743

test-read_data.R

Read data

read data from VCF file correctly

0.851

0.094

1.316

test-read_data.R

Read data

read data from dosage file correctly

7.519

0.449

8.062

test-read_data.R

Read data

read data from probability file correctly

0.195

0.024

0.368

test-read_data.R

Read data

read data from CSV file correctly

7.332

0.543

8.286

test-reestmap.R

Map reestimation

reestimate genetic maps correctly correctly

0.423

0.061

0.465

test-simulation.R

Simulate datasets

simulate datasets correctly

0.308

0.060

0.353

test-split_and_rephase.R

Split and rephase

split and rephase the map correctly

0.768

0.094

0.829

test-utility_func.R

Utility functions

test several utility functions

2.257

0.333

2.473

apply(df[,4:6], 2, sum)
#>   user system   real 
#> 32.305  3.391 39.898
sum(yz$time, as.matrix(df[,6]))
#> [1] 356.054