\[ F(c_1,c_2,\ldots,c_n)=\mathcal{P}(x_{t_1}{\leq}c_1,x_{t_2}{\leq}c_2,\ldots,x_{t_n}{\leq}c_n) \]
\[ \begin{align} F(c_1,c_2,\ldots,c_n)&=\prod_{t=1}^n\Phi(c_t)\\ &=\prod_{t=1}^n\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x\exp{\left\{-\frac{z^2}{2}\right\}}dz \end{align} \]
\[ F_t(x)=\mathcal{P}\left\{x_t{\leq}x\right\} \]
\[ F_t(x)=\mathcal{P}\left\{x_t{\leq}x\right\} \]
\[ f_t(x)=\frac{F_t(x)}{{\partial}x} \]
\[ \begin{align} \mu_{x_t}&=E(x_t)\\ &=\int_{-\infty}^{\infty}xf_t(x)dx \end{align} \]
\[ \gamma_x(s,t)=E[(x_s-\mu_s)(x_t-\mu_t)] \]
\[ \gamma_x(t,t)=E[(x_t-\mu_t)^2] \]
\[ \begin{align} \rho_x(s,t)&=\frac{E[(x_s-\mu_s)(x_t-\mu_t)]}{\sqrt{E[(x_s-\mu_s)^2]}\sqrt{E[(x_t-\mu_t)^2]}}\\ &=\frac{\gamma_x(s,t)}{\sqrt{\gamma_x(s,s)}\sqrt{\gamma_x(t,t)}} \end{align} \]
\[ \gamma_{xy}(s,t)=E[(x_s-\mu_{xs})(y_t-\mu_{yt})] \]
\[ \begin{align} \rho_{xy}(s,t)&=\frac{E[(x_s-\mu_{xs})(y_t-\mu_{yt})]}{\sqrt{E[(x_s-\mu_{xs})^2]}\sqrt{E[(x_t-\mu_{yt})^2]}}\\ &=\frac{\gamma_{xy}(s,t)}{\sqrt{\gamma_x(s,s)}\sqrt{\gamma_y(t,t)}} \end{align} \]
\[\mathcal{P}(x_{t_1}{\leq}c_1,x_{t_2}{\leq}c_2,\ldots,x_{t_k}{\leq}c_k)=\mathcal{P}(x_{t_1+h}{\leq}c_1,x_{t_2+h}{\leq}c_2,\ldots,x_{t_k+h}{\leq}c_k)\]
\[ \begin{align} \mu_t&=E(x_t)\\ &=\mu \end{align} \]
\[ \begin{align} \gamma_x(s,t)&=\gamma_x(s+h,t+h)\\ &=E[(x_{s+h}-\mu)(x_{t+h}-\mu)]\\ &=E[(x_{t}-\mu)(x_{t+h}-\mu)]\\ \end{align} \]
library(astsa)
\[ y_t=\omega_t{\sim}wn(0,\sigma_\omega^2) \]
WN <- arima.sim(model = list(order=c(0,0,0)), 200)
plot(WN)
\[Corr(\varepsilon_t,\varepsilon_{t-h})\]
acf2(WN)
## ACF PACF
## [1,] -0.09 -0.09
## [2,] -0.02 -0.03
## [3,] 0.21 0.21
## [4,] -0.13 -0.10
## [5,] 0.04 0.03
## [6,] 0.09 0.05
## [7,] 0.00 0.06
## [8,] -0.01 -0.04
## [9,] 0.13 0.11
## [10,] -0.06 -0.05
## [11,] 0.01 0.02
## [12,] 0.15 0.10
## [13,] -0.12 -0.06
## [14,] 0.08 0.05
## [15,] -0.05 -0.12
## [16,] -0.12 -0.07
## [17,] 0.01 -0.05
## [18,] -0.06 -0.05
## [19,] -0.08 -0.08
## [20,] 0.05 0.04
## [21,] 0.03 0.03
## [22,] -0.07 0.00
## [23,] 0.04 0.00
## [24,] -0.04 -0.03
## [25,] -0.01 0.06
D.WN <- diff(WN,2)
\[ \begin{align} {\nabla}y_t&=y_t-y_{t-1}\\ &=\omega_t-\omega_{t-1}\text{; }\omega_t{\sim}wn(0,\sigma_\omega^2) \end{align} \]
\[ \begin{align} {\nabla}^2y_t&=(y_t-y_{t-1})-(y_{t-1}-y_{t-2})\\ &=(\omega_t-\omega_{t-1})-(\omega_{t-1}-\omega_{t-2})\\ &=\omega_t-2\omega_{t-1}+\omega_{t-2}\text{; }\omega_t{\sim}wn(0,\sigma_\omega^2) \end{align} \] ## Gráfico de la serie
plot(D.WN)
acf2(D.WN)
## ACF PACF
## [1,] -0.14 -0.14
## [2,] -0.45 -0.48
## [3,] 0.23 0.09
## [4,] -0.16 -0.41
## [5,] -0.07 0.02
## [6,] 0.16 -0.23
## [7,] -0.09 -0.03
## [8,] -0.03 -0.19
## [9,] 0.12 0.07
## [10,] -0.13 -0.28
## [11,] 0.00 0.11
## [12,] 0.15 -0.18
## [13,] -0.10 0.13
## [14,] 0.06 -0.05
## [15,] 0.00 0.04
## [16,] -0.12 -0.08
## [17,] 0.08 0.05
## [18,] -0.02 -0.15
## [19,] -0.10 -0.05
## [20,] 0.11 -0.09
## [21,] 0.05 0.00
## [22,] -0.07 -0.06
## [23,] 0.03 -0.05
## [24,] 0.02 0.00
## [25,] -0.04 -0.05
MA <- arima.sim(model=list(order=c(0,0,1), ma=-0.9),n=200)
acf2(MA)
## ACF PACF
## [1,] -0.44 -0.44
## [2,] 0.01 -0.23
## [3,] -0.10 -0.26
## [4,] 0.02 -0.22
## [5,] 0.05 -0.11
## [6,] -0.04 -0.13
## [7,] 0.03 -0.08
## [8,] -0.10 -0.19
## [9,] 0.14 -0.03
## [10,] -0.11 -0.12
## [11,] -0.06 -0.26
## [12,] 0.22 0.06
## [13,] -0.10 0.03
## [14,] 0.03 0.04
## [15,] -0.11 -0.03
## [16,] 0.07 0.01
## [17,] -0.06 -0.07
## [18,] 0.02 -0.11
## [19,] 0.05 0.00
## [20,] -0.13 -0.12
## [21,] 0.20 0.06
## [22,] -0.17 -0.04
## [23,] 0.08 0.00
## [24,] -0.03 -0.04
## [25,] 0.04 -0.03
sarima(MA, p=0, d=0, q=1)
## initial value 0.224881
## iter 2 value 0.073941
## iter 3 value 0.042530
## iter 4 value 0.001856
## iter 5 value -0.007310
## iter 6 value -0.014471
## iter 7 value -0.015342
## iter 8 value -0.018594
## iter 9 value -0.018707
## iter 10 value -0.018753
## iter 11 value -0.018754
## iter 12 value -0.018754
## iter 13 value -0.018754
## iter 14 value -0.018754
## iter 14 value -0.018754
## iter 14 value -0.018754
## final value -0.018754
## converged
## initial value -0.020329
## iter 2 value -0.020520
## iter 3 value -0.021192
## iter 4 value -0.021203
## iter 5 value -0.021205
## iter 6 value -0.021205
## iter 6 value -0.021205
## final value -0.021205
## converged
## $fit
##
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
## Q), period = S), xreg = xmean, include.mean = FALSE, transform.pars = trans,
## fixed = fixed, optim.control = list(trace = trc, REPORT = 1, reltol = tol))
##
## Coefficients:
## ma1 xmean
## -0.9264 0.0052
## s.e. 0.0283 0.0054
##
## sigma^2 estimated as 0.9492: log likelihood = -279.55, aic = 565.09
##
## $degrees_of_freedom
## [1] 198
##
## $ttable
## Estimate SE t.value p.value
## ma1 -0.9264 0.0283 -32.7503 0.00
## xmean 0.0052 0.0054 0.9565 0.34
##
## $AIC
## [1] 2.825467
##
## $AICc
## [1] 2.825772
##
## $BIC
## [1] 2.874942
AR <- arima.sim(model=list(order=c(1,0,0), ar=0.8),n=200)
acf2(AR)
## ACF PACF
## [1,] 0.74 0.74
## [2,] 0.59 0.08
## [3,] 0.50 0.09
## [4,] 0.43 0.04
## [5,] 0.32 -0.11
## [6,] 0.26 0.04
## [7,] 0.20 -0.05
## [8,] 0.18 0.07
## [9,] 0.19 0.10
## [10,] 0.16 -0.06
## [11,] 0.13 -0.01
## [12,] 0.13 0.02
## [13,] 0.11 -0.03
## [14,] 0.06 -0.05
## [15,] 0.04 0.01
## [16,] 0.03 0.02
## [17,] -0.01 -0.08
## [18,] -0.05 -0.04
## [19,] -0.05 0.02
## [20,] -0.06 -0.01
## [21,] -0.05 0.03
## [22,] -0.08 -0.08
## [23,] -0.08 0.02
## [24,] -0.09 -0.04
## [25,] -0.10 -0.05
sarima(AR, p=1, d=0, q=0)
## initial value 0.307987
## iter 2 value -0.100182
## iter 3 value -0.100241
## iter 4 value -0.100272
## iter 5 value -0.100275
## iter 6 value -0.100293
## iter 7 value -0.100294
## iter 8 value -0.100294
## iter 9 value -0.100295
## iter 10 value -0.100295
## iter 11 value -0.100295
## iter 12 value -0.100295
## iter 13 value -0.100295
## iter 13 value -0.100295
## iter 13 value -0.100295
## final value -0.100295
## converged
## initial value -0.094177
## iter 2 value -0.094237
## iter 3 value -0.094330
## iter 4 value -0.094361
## iter 5 value -0.094415
## iter 6 value -0.094428
## iter 7 value -0.094430
## iter 8 value -0.094430
## iter 9 value -0.094430
## iter 10 value -0.094430
## iter 10 value -0.094430
## iter 10 value -0.094430
## final value -0.094430
## converged
## $fit
##
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
## Q), period = S), xreg = xmean, include.mean = FALSE, transform.pars = trans,
## fixed = fixed, optim.control = list(trace = trc, REPORT = 1, reltol = tol))
##
## Coefficients:
## ar1 xmean
## 0.7485 0.2100
## s.e. 0.0469 0.2518
##
## sigma^2 estimated as 0.8245: log likelihood = -264.9, aic = 535.8
##
## $degrees_of_freedom
## [1] 198
##
## $ttable
## Estimate SE t.value p.value
## ar1 0.7485 0.0469 15.9659 0.0000
## xmean 0.2100 0.2518 0.8343 0.4051
##
## $AIC
## [1] 2.679016
##
## $AICc
## [1] 2.679321
##
## $BIC
## [1] 2.728491
AR.2 <- arima.sim(model=list(order=c(2,0,0),ar=c(1.5,-0.75)),200)
acf2(AR.2)
## ACF PACF
## [1,] 0.84 0.84
## [2,] 0.48 -0.77
## [3,] 0.06 0.02
## [4,] -0.26 0.05
## [5,] -0.43 0.00
## [6,] -0.42 0.01
## [7,] -0.27 0.11
## [8,] -0.06 -0.04
## [9,] 0.14 0.06
## [10,] 0.27 -0.03
## [11,] 0.29 -0.01
## [12,] 0.20 -0.07
## [13,] 0.05 -0.08
## [14,] -0.13 -0.06
## [15,] -0.28 -0.07
## [16,] -0.36 -0.05
## [17,] -0.36 -0.08
## [18,] -0.27 0.01
## [19,] -0.14 -0.03
## [20,] 0.00 -0.08
## [21,] 0.09 -0.05
## [22,] 0.12 0.02
## [23,] 0.11 0.04
## [24,] 0.06 0.01
## [25,] 0.01 0.03
sarima(AR.2,p=2,d=0,q=0)
## initial value 1.058747
## iter 2 value 0.909986
## iter 3 value 0.516369
## iter 4 value 0.317631
## iter 5 value 0.144396
## iter 6 value -0.006896
## iter 7 value -0.030047
## iter 8 value -0.041753
## iter 9 value -0.043194
## iter 10 value -0.044464
## iter 11 value -0.044970
## iter 12 value -0.044970
## iter 13 value -0.044970
## iter 14 value -0.044970
## iter 14 value -0.044970
## iter 14 value -0.044970
## final value -0.044970
## converged
## initial value -0.038940
## iter 2 value -0.038953
## iter 3 value -0.038962
## iter 4 value -0.038964
## iter 5 value -0.038964
## iter 6 value -0.038964
## iter 6 value -0.038964
## iter 6 value -0.038964
## final value -0.038964
## converged
## $fit
##
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
## Q), period = S), xreg = xmean, include.mean = FALSE, transform.pars = trans,
## fixed = fixed, optim.control = list(trace = trc, REPORT = 1, reltol = tol))
##
## Coefficients:
## ar1 ar2 xmean
## 1.5033 -0.7853 0.0937
## s.e. 0.0430 0.0429 0.2396
##
## sigma^2 estimated as 0.9106: log likelihood = -276, aic = 559.99
##
## $degrees_of_freedom
## [1] 197
##
## $ttable
## Estimate SE t.value p.value
## ar1 1.5033 0.0430 34.9546 0.0000
## ar2 -0.7853 0.0429 -18.3128 0.0000
## xmean 0.0937 0.2396 0.3910 0.6962
##
## $AIC
## [1] 2.79995
##
## $AICc
## [1] 2.800562
##
## $BIC
## [1] 2.865916
ARIMA <- arima.sim(model=list(order=c(2,0,1),ar=c(1,-0.9),ma=0.8),n=400)
acf2(ARIMA)
## ACF PACF
## [1,] 0.55 0.55
## [2,] -0.35 -0.93
## [3,] -0.85 0.34
## [4,] -0.54 -0.27
## [5,] 0.20 0.02
## [6,] 0.66 -0.04
## [7,] 0.50 0.05
## [8,] -0.08 -0.08
## [9,] -0.52 -0.02
## [10,] -0.46 -0.07
## [11,] -0.03 -0.05
## [12,] 0.37 0.03
## [13,] 0.41 -0.02
## [14,] 0.11 -0.07
## [15,] -0.26 0.00
## [16,] -0.37 -0.02
## [17,] -0.16 -0.02
## [18,] 0.17 0.08
## [19,] 0.34 0.05
## [20,] 0.22 0.02
## [21,] -0.07 -0.02
## [22,] -0.30 -0.02
## [23,] -0.27 0.02
## [24,] -0.02 -0.07
## [25,] 0.23 0.07
## [26,] 0.29 0.03
## [27,] 0.10 -0.02
## [28,] -0.16 0.02
## [29,] -0.28 0.00
## [30,] -0.16 0.01
sarima(ARIMA,p=2,d=0,q=1)
## initial value 1.423228
## iter 2 value 0.615753
## iter 3 value 0.374992
## iter 4 value 0.030388
## iter 5 value 0.011572
## iter 6 value -0.008167
## iter 7 value -0.020900
## iter 8 value -0.022022
## iter 9 value -0.022222
## iter 10 value -0.022369
## iter 11 value -0.022371
## iter 12 value -0.022371
## iter 13 value -0.022371
## iter 14 value -0.022371
## iter 15 value -0.022371
## iter 16 value -0.022371
## iter 16 value -0.022371
## iter 16 value -0.022371
## final value -0.022371
## converged
## initial value -0.017507
## iter 2 value -0.017538
## iter 3 value -0.017578
## iter 4 value -0.017589
## iter 5 value -0.017590
## iter 6 value -0.017592
## iter 7 value -0.017592
## iter 8 value -0.017592
## iter 8 value -0.017592
## iter 8 value -0.017592
## final value -0.017592
## converged
## $fit
##
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
## Q), period = S), xreg = xmean, include.mean = FALSE, transform.pars = trans,
## fixed = fixed, optim.control = list(trace = trc, REPORT = 1, reltol = tol))
##
## Coefficients:
## ar1 ar2 ma1 xmean
## 0.9969 -0.9003 0.8085 -0.0281
## s.e. 0.0220 0.0217 0.0317 0.0977
##
## sigma^2 estimated as 0.95: log likelihood = -560.54, aic = 1131.08
##
## $degrees_of_freedom
## [1] 396
##
## $ttable
## Estimate SE t.value p.value
## ar1 0.9969 0.0220 45.2431 0.000
## ar2 -0.9003 0.0217 -41.5406 0.000
## ma1 0.8085 0.0317 25.4767 0.000
## xmean -0.0281 0.0977 -0.2874 0.774
##
## $AIC
## [1] 2.827692
##
## $AICc
## [1] 2.827945
##
## $BIC
## [1] 2.877585
ARIMA.110 <- arima.sim(model=list(order=c(1,1,0),ar=0.9),n=500)
acf2(ARIMA.110)
## ACF PACF
## [1,] 1.00 1.00
## [2,] 0.99 -0.09
## [3,] 0.99 -0.06
## [4,] 0.99 -0.05
## [5,] 0.98 -0.05
## [6,] 0.98 -0.05
## [7,] 0.97 -0.04
## [8,] 0.97 -0.03
## [9,] 0.96 -0.03
## [10,] 0.96 -0.03
## [11,] 0.95 -0.02
## [12,] 0.94 -0.01
## [13,] 0.94 -0.02
## [14,] 0.93 -0.02
## [15,] 0.92 -0.02
## [16,] 0.92 -0.02
## [17,] 0.91 -0.01
## [18,] 0.90 0.00
## [19,] 0.90 0.00
## [20,] 0.89 0.01
## [21,] 0.88 0.01
## [22,] 0.88 0.01
## [23,] 0.87 0.01
## [24,] 0.86 0.01
## [25,] 0.86 0.01
## [26,] 0.85 0.00
## [27,] 0.84 0.00
## [28,] 0.83 0.01
## [29,] 0.83 0.01
## [30,] 0.82 -0.01
## [31,] 0.81 0.00
## [32,] 0.81 -0.01
## [33,] 0.80 -0.01
sarima(ARIMA.110,p=0,d=1,q=0)
## initial value 0.893576
## iter 1 value 0.893576
## final value 0.893576
## converged
## initial value 0.893576
## iter 1 value 0.893576
## final value 0.893576
## converged
## $fit
##
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
## Q), period = S), xreg = constant, transform.pars = trans, fixed = fixed,
## optim.control = list(trace = trc, REPORT = 1, reltol = tol))
##
## Coefficients:
## constant
## 0.4757
## s.e. 0.1093
##
## sigma^2 estimated as 5.972: log likelihood = -1156.26, aic = 2316.51
##
## $degrees_of_freedom
## [1] 499
##
## $ttable
## Estimate SE t.value p.value
## constant 0.4757 0.1093 4.3524 0
##
## $AIC
## [1] 4.633028
##
## $AICc
## [1] 4.633044
##
## $BIC
## [1] 4.649887
D.ARIMA.110 <- diff(ARIMA.110,1)
acf2(D.ARIMA.110)
## ACF PACF
## [1,] 0.90 0.90
## [2,] 0.80 -0.03
## [3,] 0.73 0.05
## [4,] 0.65 -0.04
## [5,] 0.60 0.08
## [6,] 0.55 0.01
## [7,] 0.50 -0.03
## [8,] 0.45 -0.03
## [9,] 0.38 -0.08
## [10,] 0.33 0.02
## [11,] 0.28 -0.02
## [12,] 0.26 0.08
## [13,] 0.23 -0.01
## [14,] 0.20 -0.04
## [15,] 0.18 0.03
## [16,] 0.16 -0.01
## [17,] 0.13 -0.02
## [18,] 0.11 -0.06
## [19,] 0.07 -0.03
## [20,] 0.04 -0.05
## [21,] 0.01 -0.03
## [22,] -0.01 0.05
## [23,] -0.02 -0.02
## [24,] -0.03 0.01
## [25,] -0.04 0.00
## [26,] -0.05 0.02
## [27,] -0.07 -0.08
## [28,] -0.09 -0.01
## [29,] -0.09 0.06
## [30,] -0.07 0.07
## [31,] -0.06 -0.01
## [32,] -0.05 0.01
## [33,] -0.04 0.03
sarima(ARIMA.110,p=1,d=1,q=0)
## initial value 0.893363
## iter 2 value 0.061600
## iter 3 value 0.061594
## iter 4 value 0.061593
## iter 5 value 0.061578
## iter 6 value 0.061570
## iter 7 value 0.061568
## iter 8 value 0.061568
## iter 9 value 0.061567
## iter 10 value 0.061567
## iter 11 value 0.061567
## iter 12 value 0.061567
## iter 13 value 0.061567
## iter 14 value 0.061567
## iter 15 value 0.061567
## iter 16 value 0.061567
## iter 17 value 0.061566
## iter 17 value 0.061566
## iter 17 value 0.061566
## final value 0.061566
## converged
## initial value 0.063515
## iter 2 value 0.063514
## iter 3 value 0.063500
## iter 4 value 0.063497
## iter 5 value 0.063482
## iter 6 value 0.063473
## iter 7 value 0.063472
## iter 8 value 0.063469
## iter 9 value 0.063469
## iter 10 value 0.063469
## iter 11 value 0.063469
## iter 12 value 0.063469
## iter 13 value 0.063469
## iter 14 value 0.063469
## iter 15 value 0.063469
## iter 16 value 0.063469
## iter 17 value 0.063469
## iter 18 value 0.063469
## iter 18 value 0.063469
## iter 18 value 0.063469
## final value 0.063469
## converged
## $fit
##
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
## Q), period = S), xreg = constant, transform.pars = trans, fixed = fixed,
## optim.control = list(trace = trc, REPORT = 1, reltol = tol))
##
## Coefficients:
## ar1 constant
## 0.8999 0.4545
## s.e. 0.0193 0.4670
##
## sigma^2 estimated as 1.132: log likelihood = -741.2, aic = 1488.41
##
## $degrees_of_freedom
## [1] 498
##
## $ttable
## Estimate SE t.value p.value
## ar1 0.8999 0.0193 46.6350 0.0000
## constant 0.4545 0.4670 0.9733 0.3309
##
## $AIC
## [1] 2.976816
##
## $AICc
## [1] 2.976864
##
## $BIC
## [1] 3.002104