in class Exercise2
load data
## 'data.frame': 24 obs. of 4 variables:
## $ Pupil: Factor w/ 24 levels "P01","P02","P03",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ Class: Factor w/ 6 levels "C1","C2","C3",..: 1 1 1 1 2 2 2 2 3 3 ...
## $ Trt : Factor w/ 2 levels "C","T": 2 2 2 2 2 2 2 2 2 2 ...
## $ Score: int 5 2 10 11 10 15 11 8 7 12 ...
varPlot of Score and two treatment conditions
VCA::varPlot(Score ~ Trt/Class/Pupil,
Data=dta,
YLabel=list(text="Score",
side=2,
cex=1),
MeanLine=list(var=c("Trt", "Class"),
col=c("yellow", "purple"),
lwd=c(1, 2)))

Anova
##
## Error: Class
## Df Sum Sq Mean Sq F value Pr(>F)
## Trt 1 216 216 9.818 0.0351 *
## Residuals 4 88 22
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 18 198 11
Fixed Effects and random effect
## Fixed Effects:
## coef.est coef.se
## (Intercept) 4.00 1.35
## TrtT 6.00 1.91
##
## Random Effects:
## Groups Name Std.Dev.
## Class (Intercept) 1.66
## Residual 3.32
## ---
## number of obs: 24, groups: Class, 6
## AIC = 130.9, DIC = 131.8
## deviance = 127.4
Confidence Intervals by bootstrapping
## Computing bootstrap confidence intervals ...
##
## 136 message(s): boundary (singular) fit: see ?isSingular
## 1 warning(s): Model failed to converge with max|grad| = 0.00416971 (tol = 0.002, component 1)
## 2.5 % 97.5 %
## .sig01 0.000000 3.663767
## .sigma 2.297173 4.277030
## (Intercept) 1.669229 6.787090
## TrtT 1.640800 9.573697