Ejercicio 1

Clave 1
Usando los datos de Comercio Exterior de El Salvador, disponibles en la base de datos preparada en clases, responda las siguientes preguntas:
Importante: muestre sus resultados en formato tabular, y asignando los encabezados y pies de página apropiados en cada caso
1- Calcule las exportaciones totales de El Salvador hacia la región de África Sub-Sahariana, para el periodo 2019-2020 son (en millones de US$)
library(kableExtra)
library(dplyr)
source("C:/Users/DELL/Desktop/METODOS/funciones_comercio_exterior.R")
data_comercio_exterior_actualizado %>%
  select("anio","valor_fob","sub_region") %>%
  filter(sub_region=="Africa Sub-Sahariana",anio %in% 2019:2020,valor_fob>0) %>%
  group_by(anio) %>%
  summarise(`Total Exportaciones El Salvador a África Sub-Sahariana  MM US$`=sum(valor_fob)/1e6) %>% 
  head() %>% kable(caption = "Exportaciones totales de El Salvador a África Sub-Sahariana 2019-2020") %>% kable_minimal()  %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
Exportaciones totales de El Salvador a África Sub-Sahariana 2019-2020
anio Total Exportaciones El Salvador a África Sub-Sahariana MM US$
2019 2.452792
2020 1.364350
* Elaboración propia con base en datos del BCR
2- Obtenga el saldo de la balanza comercial de El Salvador, con “Asia Sudoriental”, para el periodo 2017-2019, (en millones de US$)
data_comercio_exterior_actualizado %>%
  filter(sub_region=="Asia Sudoriental",anio %in% 2017:2019) %>%
  group_by(anio) %>%
  summarise(`Total Exportaciones a Asia Sudoriental MM US$`=sum(valor_fob)/1e6,
            `Total Importaciones a Asia Sudoriental MM US$`=sum(valor_cif)/1e6,
            `Balanza Comercial ESA-Asia Sudoriental MM $`=`Total Exportaciones a Asia Sudoriental MM US$`-`Total Importaciones a Asia Sudoriental MM US$`) %>% 
  head() %>% kable(caption = "Saldo de la Balanza comercial de El Salvador-Asia Sudoriental 2017-2019") %>% kable_minimal()  %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
Saldo de la Balanza comercial de El Salvador-Asia Sudoriental 2017-2019
anio Total Exportaciones a Asia Sudoriental MM US$ Total Importaciones a Asia Sudoriental MM US$ Balanza Comercial ESA-Asia Sudoriental MM $
2017 73.591111 269.4838 -195.8927
2018 16.609646 280.8837 -264.2740
2019 4.608928 262.5498 -257.9409
* Elaboración propia con base en datos del BCR
3- Por cada dólar exportado a la región Sudamericana, en el año 2019, ¿Cuánto se importó?
data_comercio_exterior_actualizado %>% filter(valor_cif==0, valor_fob>0, anio==2019,region_intermedia=="Sudamerica") %>% 
  summarise(`Total de exportaciones de ESA a Sudamérica`=sum(valor_fob))->exportaciones

data_comercio_exterior_actualizado %>%
filter(region_intermedia=="Sudamerica", valor_cif>0, valor_fob==0, anio==2019) %>% 
  summarise(`Ratio de importaciones/exportaciones de ESA a Sudamérica`=sum(valor_cif))->importaciones

ratio_importaciones_exportaciones<- (importaciones/exportaciones)
print(ratio_importaciones_exportaciones)  %>% 
  head() %>% kable(caption = "Ratio importaciones/exportaciones de ESA-Sudamerica") %>% kable_minimal() %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
##   Ratio de importaciones/exportaciones de ESA a Sudamérica
## 1                                                 19.13248
Ratio importaciones/exportaciones de ESA-Sudamerica
Ratio de importaciones/exportaciones de ESA a Sudamérica
19.13248
* Elaboración propia con base en datos del BCR
R/ Por cada dólar que El Salvador exportó a la región Sudamericana, se importaron aproximadamente $19.13 de dicha región.
4- Calcule el indicador de Balassa de El Salvador, con México, Estados Unidos y Canadá, durante el periodo 2017-2020, para el capítulo “01” del SAC.
capitulo<-"01"
data.frame("años"=2017:2020,
"IB_Mexico"=sapply(X=2017:2020,FUN = indicadores_Balassa_capitulo,codigo_pais=484,capitulo=capitulo),
                                 "IB_USA"=sapply(X=2017:2020,FUN=indicadores_Balassa_capitulo,codigo_pais=840,capitulo=capitulo),
                                 
"IB_Canada"=sapply(X=2017:2020,FUN = indicadores_Balassa_capitulo,codigo_pais=124,capitulo=capitulo))%>%
  
head() %>% kable(caption = "Índice de Balassa de El Salvador, con México, Estados Unidos y Canadá para los años 2017-2020") %>% kable_minimal() %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
Índice de Balassa de El Salvador, con México, Estados Unidos y Canadá para los años 2017-2020
años IB_Mexico IB_USA IB_Canada
2017 -0.5836776 0.3498410 0.3857542
2018 -0.8280189 0.3126829 0.6073064
2019 -0.9002707 0.3919810 0.1775334
2020 -0.9686790 0.7464238 0.3220936
* Elaboración propia con base en datos del BCR
Clave 2
Usando los datos de Comercio Exterior de El Salvador, dispinibles en la base de datos preparada en clases, responda las siguientes preguntas:
Importante: muestre sus resultados en formato tabular, y asignando los encabezados y pies de página apropiados en cada caso
1- Calcule el indicador de IVCR de El Salvador, con México, Estados Unidos y Canadá, durante el periodo 2017-2020, para el capítulo “01” del SAC.
capitulo<-"01"
data.frame("años"=2017:2020,
"IVCR_Mexico"=sapply(X=2017:2020,FUN = indicadores_IVCR_capitulo,codigo_pais=484,capitulo=capitulo),

"IVCR_USA"=sapply(X=2017:2020,FUN=indicadores_IVCR_capitulo,codigo_pais=840,capitulo=capitulo),
                                 
"IVCR_Canada"=sapply(X=2017:2020,FUN = indicadores_IVCR_capitulo,codigo_pais=124,capitulo=capitulo))%>%
  
head() %>% kable(caption = "Índice IVCR de El Salvador, con México, Estados Unidos y Canadá para los años 2017-2020") %>% kable_minimal() %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
Índice IVCR de El Salvador, con México, Estados Unidos y Canadá para los años 2017-2020
años IVCR_Mexico IVCR_USA IVCR_Canada
2017 -0.0006366 -0.1268112 0.0025811
2018 -0.0047801 -0.0997253 0.0000473
2019 -0.0014925 -0.0880920 0.0003483
2020 -0.0015934 -0.0894109 0.0004915
* Elaboración propia con base en datos del BCR
2- Por cada dólar exportado a la región Centroamericana , en el periodo 2017-2019, ¿Cuánto se importo? (resultado por año)
# año 2017
data_comercio_exterior_actualizado %>% filter(valor_cif==0, valor_fob>0, anio==2017,region_intermedia=="Centroamérica") %>% 
  summarise(`Total de exportaciones de ESA a Centroamérica`=sum(valor_fob))->exportaciones_1

data_comercio_exterior_actualizado %>%
filter(region_intermedia=="Centroamérica", valor_cif>0, valor_fob==0, anio==2017) %>% 
  summarise(`Total de importaciones de ESA a Centroamérica`=sum(valor_cif))->importaciones_1

ratio_importaciones_exportaciones_1<- (importaciones_1/exportaciones_1)
print(ratio_importaciones_exportaciones_1)  %>% 
  head() %>% kable(caption = "Ratio importaciones/exportaciones de ESA-Centroamérica durante 2017") %>% kable_minimal() %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
##   Total de importaciones de ESA a Centroamérica
## 1                                      1.580565
Ratio importaciones/exportaciones de ESA-Centroamérica durante 2017
Total de importaciones de ESA a Centroamérica
1.580565
* Elaboración propia con base en datos del BCR
# año 2018
data_comercio_exterior_actualizado %>% filter(valor_cif==0, valor_fob>0, anio==2018,region_intermedia=="Centroamérica") %>% 
  summarise(`Total de exportaciones de ESA a Centroamérica`=sum(valor_fob))->exportaciones_2

data_comercio_exterior_actualizado %>%
filter(region_intermedia=="Centroamérica", valor_cif>0, valor_fob==0, anio==2018) %>% 
  summarise(`Total de importaciones de ESA a Centroamérica`=sum(valor_cif))->importaciones_2

ratio_importaciones_exportaciones_2<- (importaciones_2/exportaciones_2)
print(ratio_importaciones_exportaciones_2)  %>% 
  head() %>% kable(caption = "Ratio importaciones/exportaciones de ESA-Centroamérica durante 2018") %>% kable_minimal() %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
##   Total de importaciones de ESA a Centroamérica
## 1                                      1.743028
Ratio importaciones/exportaciones de ESA-Centroamérica durante 2018
Total de importaciones de ESA a Centroamérica
1.743028
* Elaboración propia con base en datos del BCR
# año 2019
data_comercio_exterior_actualizado %>% filter(valor_cif==0, valor_fob>0, anio==2019,region_intermedia=="Centroamérica") %>% 
  summarise(`Total de exportaciones de ESA a Centroamérica`=sum(valor_fob))->exportaciones_3

data_comercio_exterior_actualizado %>%
filter(region_intermedia=="Centroamérica", valor_cif>0, valor_fob==0, anio==2019) %>% 
  summarise(`Total de importaciones de ESA a Centroamérica`=sum(valor_cif))->importaciones_3

ratio_importaciones_exportaciones_3<- (importaciones_3/exportaciones_3)
print(ratio_importaciones_exportaciones_3)  %>% 
  head() %>% kable(caption = "Ratio importaciones/exportaciones de ESA-Centroamérica durante 2019") %>% kable_minimal() %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
##   Total de importaciones de ESA a Centroamérica
## 1                                      1.729294
Ratio importaciones/exportaciones de ESA-Centroamérica durante 2019
Total de importaciones de ESA a Centroamérica
1.729294
* Elaboración propia con base en datos del BCR
R/ Por cada dólar exportado a la región Centroamericana, para el año 2017 se importó $1.58, para el año 2018 se importó $1.74 y para el año 2019 se importó $1.72.
3- Obtenga el Saldo de la balanza comercial de El Salvador, con el “Caribe”, para el periodo 2017-2019, (en millones de US$)
data_comercio_exterior_actualizado %>%
  filter(region_intermedia=="Caribe",anio %in% 2017:2019) %>%
  group_by(anio) %>%
  summarise(`Total Exportaciones al Caribe  MM US$`=sum(valor_fob)/1e6,
            `Total Importaciones al Caribe MM US$`=sum(valor_cif)/1e6,
            `Balanza Comercial ESA-El Caribe MM $`=`Total Exportaciones al Caribe  MM US$`-`Total Importaciones al Caribe MM US$`) %>% 
  head() %>% kable(caption = "Saldo de la Balanza comercial de El Salvador-Caribe durante 2017-2019") %>% kable_minimal()  %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
Saldo de la Balanza comercial de El Salvador-Caribe durante 2017-2019
anio Total Exportaciones al Caribe MM US$ Total Importaciones al Caribe MM US$ Balanza Comercial ESA-El Caribe MM $
2017 150.1824 46.04799 104.1345
2018 172.1331 34.04536 138.0877
2019 169.1371 21.61247 147.5247
* Elaboración propia con base en datos del BCR
4- Calcule las exportaciones totales de El Salvador hacia la región Norte De Europa, para el periodo 2019-2020 son (en millones de US$)
data_comercio_exterior_actualizado %>%
  select("anio","valor_fob","sub_region") %>%
  filter(sub_region=="Norte De Europa",anio %in% 2019:2020,valor_fob>0) %>%
  group_by(anio) %>%
  summarise(`Total Exportaciones El Salvador al Norte De Europa MM US$`=sum(valor_fob)/1e6) %>% 
  head() %>% kable(caption = "Exportaciones totales de El Salvador al Norte De Europa 2019-2020") %>% kable_minimal()  %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
Exportaciones totales de El Salvador al Norte De Europa 2019-2020
anio Total Exportaciones El Salvador al Norte De Europa MM US$
2019 19.80854
2020 10.80609
* Elaboración propia con base en datos del BCR
Clave 3
Usando los datos de Comercio Exterior de El Salvador, disponibles en la base de datos preparada en clases, responda las siguientes preguntas:
Importante: muestre sus resultados en formato tabular, y asignando los encabezados y pies de página apropiados en cada caso
1- Por cada dólar exportado a la región Suramericana, en el periodo 2018-2019, ¿Cuánto se importo? (resultado por año)
# año 2018
data_comercio_exterior_actualizado %>% filter(valor_cif==0, valor_fob>0, anio==2018,region_intermedia=="Sudamerica") %>% 
  summarise(`Total de exportaciones de ESA a Sudamerica`=sum(valor_fob))->exportaciones_sud_2018

data_comercio_exterior_actualizado %>%
filter(region_intermedia=="Sudamerica", valor_cif>0, valor_fob==0, anio==2018) %>% 
  summarise(`Total de importaciones de ESA a Sudamerica`=sum(valor_cif))->importaciones_sud_2018

ratio_importaciones_exportaciones_sud_2018<- (importaciones_sud_2018/exportaciones_sud_2018)
print(ratio_importaciones_exportaciones_sud_2018)  %>% 
  head() %>% kable(caption = "Ratio importaciones/exportaciones de ESA-Suramerica durante 2018") %>% kable_minimal() %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
##   Total de importaciones de ESA a Sudamerica
## 1                                   16.76119
Ratio importaciones/exportaciones de ESA-Suramerica durante 2018
Total de importaciones de ESA a Sudamerica
16.76119
* Elaboración propia con base en datos del BCR
# año 2019
data_comercio_exterior_actualizado %>% filter(valor_cif==0, valor_fob>0, anio==2019,region_intermedia=="Sudamerica") %>% 
  summarise(`Total de exportaciones de ESA a Sudamerica`=sum(valor_fob))->exportaciones_sud_2019

data_comercio_exterior_actualizado %>%
filter(region_intermedia=="Sudamerica", valor_cif>0, valor_fob==0, anio==2019) %>% 
  summarise(`Total de importaciones de ESA a Sudamerica`=sum(valor_cif))->importaciones_sud_2019

ratio_importaciones_exportaciones_sud_2019<- (importaciones_sud_2019/exportaciones_sud_2019)
print(ratio_importaciones_exportaciones_sud_2019)  %>% 
  head() %>% kable(caption = "Ratio importaciones/exportaciones de ESA-Suramerica durante 2019") %>% kable_minimal() %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
##   Total de importaciones de ESA a Sudamerica
## 1                                   19.13248
Ratio importaciones/exportaciones de ESA-Suramerica durante 2019
Total de importaciones de ESA a Sudamerica
19.13248
* Elaboración propia con base en datos del BCR
R/ Por cada dólar exportado a la región Suramericana, para el año 20018 se importó $16.76 y para el año 2019 se importó $19.13.
2- Calcule el IHH de El Salvador, con México, Estados Unidos y Canadá, durante el periodo 2017-2020, normalizado.
data.frame("años"=2017:2020,
"IHH_Mexico"=sapply(X=2017:2020,FUN = indicadores_IHH_Herfindahl_Hirschmann_anual,codigo_pais=484,normalizado=TRUE),

"IHH_USA"=sapply(X=2017:2020,FUN=indicadores_IHH_Herfindahl_Hirschmann_anual,codigo_pais=840,normalizado=TRUE),
                                 
"IHH_Canada"=sapply(X=2017:2020,FUN = indicadores_IHH_Herfindahl_Hirschmann_anual,codigo_pais=124,normalizado=TRUE))%>%
  
 head() %>% kable(caption = "Índice IHH normalizado de El Salvador, con México, Estados Unidos y Canadá para los años 2017-2020") %>% kable_minimal() %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
Índice IHH normalizado de El Salvador, con México, Estados Unidos y Canadá para los años 2017-2020
años IHH_Mexico IHH_USA IHH_Canada
2017 0.0165526 0.0055910 0.1231022
2018 0.0182162 0.0056610 0.0084443
2019 0.0142813 0.0058727 0.1190248
2020 0.0181883 0.0120680 0.0243754
* Elaboración propia con base en datos del BCR
3- Calcule las exportaciones totales de El Salvador hacia la región de África Oriental, para el periodo 2017-2020 son (en millones de US$).
data_comercio_exterior_actualizado %>%
  select("anio","valor_fob","region_intermedia") %>%
  filter(region_intermedia=="África Oriental",anio %in% 2017:2020,valor_fob>0) %>%
  group_by(anio) %>%
  summarise(`Total Exportaciones El Salvador a África Oriental MM US$`=sum(valor_fob)/1e6) %>% 
  head() %>% kable(caption = "Exportaciones totales de El Salvador a África Oriental 2017-2020") %>% kable_minimal()  %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
Exportaciones totales de El Salvador a África Oriental 2017-2020
anio Total Exportaciones El Salvador a África Oriental MM US$
2017 0.6734228
2018 4.0123130
2019 0.8439266
2020 0.0007570
* Elaboración propia con base en datos del BCR
4- Obtenga el Saldo de la balanza comercial de El Salvador, con Latinoamérica, para el periodo 2017-2019, (en millones de US$)
data_comercio_exterior_actualizado %>%
  filter(sub_region=="América Latina Y El Caribe",anio %in% 2017:2019) %>%
  group_by(anio) %>%
  summarise(`Total Exportaciones a América Latina y El Caribe MM US$`=sum(valor_fob)/1e6,
            `Total Importaciones a América Latina y El Caribe MM US$`=sum(valor_cif)/1e6,
            `Balanza Comercial ESA-América Latina y El Caribe MM $`=`Total Exportaciones a América Latina y El Caribe MM US$`-`Total Importaciones a América Latina y El Caribe MM US$`) %>% 
  head() %>% kable(caption = "Saldo de la Balanza comercial de El Salvador-América Latina y El Caribe durante 2017-2019") %>% kable_minimal()  %>% 
  add_footnote(label="Elaboración propia con base en datos del BCR",
               notation="symbol") %>%  kable_styling()
Saldo de la Balanza comercial de El Salvador-América Latina y El Caribe durante 2017-2019
anio Total Exportaciones a América Latina y El Caribe MM US$ Total Importaciones a América Latina y El Caribe MM US$ Balanza Comercial ESA-América Latina y El Caribe MM $
2017 2746.262 3770.895 -1024.633
2018 2922.872 4144.131 -1221.259
2019 3067.961 4553.745 -1485.784
* Elaboración propia con base en datos del BCR

Ejercicio 2

Clave 1
Usando los datos de la Penn World Table, de la Universidad de Groningen.
Resuelva los siguientes requerimientos (es importante mostrar todos sus resultados en formato tabular):
1- Construya una función que le permita elegir el país y filtrar para un periodo(inicio,final), muestre su uso filtrando los datos para El Salvador, en el periodo de 1950-2014.
library(pwt9)
data("pwt9.0")
funcion_para_pais_por_periodo <- function(country,anio_inicio,anio_final) {
  pwt9.0 %>% filter(country==!!country,
                    year>=anio_inicio,
                    year<=anio_final) -> pais_periodo_1
  pais_periodo_1
}
funcion_para_pais_por_periodo(country="El Salvador",anio_inicio=1950,anio_final=2014) %>%
 kable(caption = "Datos de El Salvador 1990-2014",
 digits = 1,align = "l") %>%
 kable_styling(bootstrap_options = "striped",
 full_width = TRUE)
Datos de El Salvador 1990-2014
country isocode year currency rgdpe rgdpo pop emp avh hc ccon cda cgdpe cgdpo ck ctfp cwtfp rgdpna rconna rdana rkna rtfpna rwtfpna labsh delta xr pl_con pl_da pl_gdpo i_cig i_xm i_xr i_outlier cor_exp statcap csh_c csh_i csh_g csh_x csh_m csh_r pl_c pl_i pl_g pl_x pl_m pl_k
El Salvador SLV 1950 US Dollar 1328.7 1163.0 2.0 NA NA 1.2 1106.2 1178.1 1276.2 1136.4 1489.4 NA NA 6510.5 6671.5 6988.9 14268.6 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.9 0.1 0.1 0.2 -0.3 0 0.1 0.1 0.1 0.1 0.1 0.2
El Salvador SLV 1951 US Dollar 1406.2 1163.4 2.0 NA NA 1.2 1178.9 1267.0 1349.9 1105.5 1544.8 NA NA 6766.9 7134.1 7564.4 14326.2 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.9 0.1 0.1 0.2 -0.4 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1952 US Dollar 1488.1 1253.5 2.1 NA NA 1.2 1251.2 1349.3 1420.9 1192.8 1588.6 NA NA 7264.3 7644.2 8094.0 14409.0 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.9 0.1 0.1 0.2 -0.4 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1953 US Dollar 1593.6 1346.1 2.1 NA NA 1.2 1362.8 1464.0 1525.1 1305.6 1600.3 NA NA 7817.6 8292.7 8739.8 14508.4 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.9 0.1 0.1 0.2 -0.3 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1954 US Dollar 1690.6 1356.9 2.2 NA NA 1.2 1451.0 1549.4 1615.6 1317.6 1580.2 NA NA 8021.8 8827.7 9217.7 14583.3 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 1.0 0.1 0.1 0.2 -0.4 0 0.1 0.2 0.1 0.2 0.1 0.2
El Salvador SLV 1955 US Dollar 1753.4 1425.7 2.3 NA NA 1.2 1517.9 1618.2 1669.6 1384.1 1582.7 NA NA 8445.0 9284.1 9673.2 14673.4 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 1.0 0.1 0.1 0.2 -0.4 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1956 US Dollar 1828.7 1514.2 2.3 NA NA 1.3 1564.4 1707.0 1730.1 1459.7 1657.9 NA NA 8990.8 9644.4 10412.6 15037.8 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.9 0.1 0.1 0.2 -0.4 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1957 US Dollar 1975.5 1593.0 2.4 NA NA 1.3 1624.6 1784.3 1864.7 1527.8 1710.4 NA NA 9393.5 10034.3 10928.6 15464.8 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.9 0.1 0.1 0.2 -0.4 0 0.1 0.2 0.1 0.2 0.1 0.2
El Salvador SLV 1958 US Dollar 1892.2 1650.9 2.5 NA NA 1.3 1628.0 1763.6 1785.9 1607.5 1703.7 NA NA 9519.5 10066.1 10701.7 15672.7 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.9 0.1 0.1 0.2 -0.3 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1959 US Dollar 1908.1 1710.7 2.5 NA NA 1.3 1668.1 1771.1 1790.0 1664.5 1698.6 NA NA 9704.6 10381.5 10665.8 15646.0 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.9 0.1 0.1 0.2 -0.3 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1960 US Dollar 1935.0 1727.9 2.6 NA NA 1.3 1713.0 1908.0 1833.1 1611.0 1723.0 NA NA 10141.4 10527.9 11719.5 16277.7 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.9 0.1 0.1 0.2 -0.4 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1961 US Dollar 1988.4 1832.7 2.7 NA NA 1.3 1722.9 1888.9 1898.7 1738.6 1761.3 NA NA 10299.3 10425.4 11426.5 16665.3 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.8 0.1 0.1 0.2 -0.3 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1962 US Dollar 2190.9 2056.0 2.8 NA NA 1.3 1908.8 2075.2 2094.6 2008.4 1795.5 NA NA 11393.6 11522.7 12500.4 17063.0 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.8 0.1 0.1 0.2 -0.3 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1963 US Dollar 2263.0 2125.3 2.9 NA NA 1.3 2000.3 2183.8 2154.5 2091.8 1823.3 NA NA 11892.1 12173.6 13265.7 17543.1 NA NA NA 0.0 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.8 0.1 0.1 0.3 -0.3 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1964 US Dollar 2459.9 2274.7 3.0 NA NA 1.3 2139.1 2404.7 2332.5 2232.8 1897.5 NA NA 13026.6 13116.4 14919.8 18561.3 NA NA NA 0.1 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.8 0.1 0.1 0.3 -0.3 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1965 US Dollar 2638.4 2413.0 3.1 NA NA 1.3 2302.3 2551.6 2502.3 2375.6 1983.0 NA NA 13802.4 14112.0 15722.1 19365.0 NA NA NA 0.1 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.8 0.1 0.1 0.2 -0.3 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1966 US Dollar 2809.3 2571.7 3.2 NA NA 1.3 2499.6 2791.0 2666.6 2550.2 2106.6 NA NA 14927.1 15302.3 17257.2 20419.5 NA NA NA 0.1 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.9 0.1 0.1 0.2 -0.3 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1967 US Dollar 2962.0 2743.2 3.3 NA NA 1.3 2645.2 2897.4 2824.9 2745.1 2182.8 NA NA 15570.7 16075.0 17633.5 21093.6 NA NA NA 0.1 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.8 0.1 0.1 0.2 -0.3 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1968 US Dollar 2973.3 2871.8 3.4 NA NA 1.3 2685.8 2881.1 2844.1 2889.2 2199.8 NA NA 15887.0 16238.4 17227.9 21297.2 NA NA NA 0.1 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.8 0.1 0.1 0.3 -0.3 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1969 US Dollar 3072.1 2982.8 3.5 NA NA 1.3 2770.1 2991.3 2928.2 2991.9 2260.1 NA NA 16480.5 16726.6 17930.4 21689.3 NA NA NA 0.1 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.8 0.1 0.2 0.2 -0.2 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1970 US Dollar 3365.3 3070.2 3.7 NA NA 1.3 2927.8 3175.9 3199.6 3084.7 2350.4 NA NA 17229.6 17737.8 19129.1 22254.2 NA NA NA 0.1 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.8 0.1 0.2 0.2 -0.2 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1971 US Dollar 3400.1 3162.7 3.8 NA NA 1.3 2983.5 3288.7 3220.8 3166.8 2453.2 NA NA 18064.8 18239.4 20145.9 23028.0 NA NA NA 0.1 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.8 0.1 0.1 0.2 -0.3 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1972 US Dollar 3625.1 3332.8 3.9 NA NA 1.3 3142.8 3429.8 3420.3 3342.6 2626.7 NA NA 19058.4 19195.2 20843.3 24376.7 NA NA NA 0.1 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.8 0.1 0.2 0.2 -0.3 0 0.1 0.2 0.1 0.1 0.1 0.2
El Salvador SLV 1973 US Dollar 3889.2 3535.1 4.0 NA NA 1.3 3363.6 3739.7 3641.3 3510.5 2769.8 NA NA 20023.2 20695.4 23138.5 25351.5 NA NA NA 0.1 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.8 0.1 0.2 0.2 -0.3 0 0.1 0.2 0.1 0.2 0.1 0.3
El Salvador SLV 1974 US Dollar 3845.1 3708.9 4.1 NA NA 1.4 3419.4 3909.5 3613.5 3589.1 2981.4 NA NA 21304.8 21122.9 24593.1 26587.2 NA NA NA 0.1 1 0.1 0.1 0.1 extrapolated extrapolated market no NA NA 0.8 0.1 0.2 0.3 -0.4 0 0.1 0.2 0.1 0.2 0.2 0.3
El Salvador SLV 1975 US Dollar 3991.9 3920.2 4.1 1.2 NA 1.4 3559.1 4010.1 3760.6 3768.4 3251.2 NA NA 22492.8 21941.9 24788.4 28534.6 NA NA NA 0.1 1 0.1 0.2 0.2 extrapolated extrapolated market no NA NA 0.8 0.1 0.2 0.3 -0.3 0 0.1 0.3 0.1 0.2 0.2 0.3
El Salvador SLV 1976 US Dollar 4631.0 4075.1 4.2 1.3 NA 1.4 3937.2 4431.4 4343.8 3940.4 3467.6 NA NA 23378.4 24298.5 27443.9 30453.1 NA NA NA 0.1 1 0.2 0.2 0.2 extrapolated extrapolated market no NA NA 0.8 0.1 0.2 0.2 -0.4 0 0.2 0.3 0.1 0.3 0.2 0.4
El Salvador SLV 1977 US Dollar 5449.4 4217.1 4.3 1.3 NA 1.4 4365.6 5064.4 5118.7 4090.6 3840.4 NA NA 24789.6 26910.2 32121.7 33198.9 NA NA NA 0.1 1 0.2 0.2 0.2 extrapolated extrapolated market no NA NA 0.9 0.2 0.2 0.2 -0.4 0 0.2 0.3 0.1 0.4 0.2 0.4
El Salvador SLV 1978 US Dollar 5117.9 4515.6 4.4 1.4 NA 1.4 4523.7 5243.2 4799.0 4355.5 4239.0 NA NA 26388.0 27856.9 33214.9 35825.1 NA NA NA 0.1 1 0.2 0.2 0.2 extrapolated extrapolated market no NA NA 0.8 0.2 0.2 0.2 -0.4 0 0.2 0.3 0.2 0.3 0.2 0.4
El Salvador SLV 1979 US Dollar 5126.8 4554.5 4.5 1.4 NA 1.4 4269.3 4817.5 4809.2 4363.9 4503.1 NA NA 25934.4 26117.2 29952.8 37426.4 NA NA NA 0.1 1 0.2 0.2 0.3 extrapolated extrapolated market no NA NA 0.8 0.1 0.2 0.3 -0.4 0 0.2 0.4 0.2 0.3 0.2 0.4
El Salvador SLV 1980 US Dollar 4649.4 4278.8 4.6 1.4 NA 1.4 3981.8 4354.7 4395.1 4056.5 4601.4 NA NA 23680.8 24121.2 26371.4 37785.8 NA NA NA 0.1 1 0.3 0.3 0.3 benchmark extrapolated market no 0.5 NA 0.8 0.1 0.2 0.3 -0.4 0 0.3 0.4 0.2 0.3 0.3 0.4
El Salvador SLV 1981 US Dollar 4158.9 4066.8 4.7 1.4 NA 1.4 3844.3 4213.6 3941.5 3838.3 4800.8 NA NA 21722.4 22492.0 24689.9 37937.4 NA NA NA 0.1 1 0.3 0.3 0.3 interpolated extrapolated market no NA NA 0.8 0.1 0.2 0.2 -0.3 0 0.3 0.4 0.2 0.3 0.3 0.5
El Salvador SLV 1982 US Dollar 4018.6 4018.7 4.7 1.4 NA 1.5 3696.3 4042.0 3824.0 3818.8 4955.2 NA NA 20505.6 20884.3 22829.7 37910.2 NA NA NA 0.1 1 0.3 0.3 0.3 interpolated extrapolated market no NA NA 0.7 0.1 0.2 0.2 -0.3 0 0.3 0.5 0.2 0.3 0.3 0.5
El Salvador SLV 1983 US Dollar 4132.6 4157.7 4.8 1.4 NA 1.5 3822.9 4145.3 3932.3 3985.5 4915.6 NA NA 20664.0 21008.3 22708.6 37828.4 NA NA NA 0.1 1 0.3 0.3 0.3 interpolated extrapolated market no NA NA 0.7 0.1 0.2 0.2 -0.3 0 0.4 0.5 0.2 0.3 0.4 0.5
El Salvador SLV 1984 US Dollar 4359.0 4385.9 4.9 1.4 NA 1.5 4078.1 4414.8 4134.6 4203.6 5056.1 NA NA 21139.2 21835.7 23572.5 37889.2 NA NA NA 0.1 1 0.4 0.4 0.4 interpolated benchmark market no NA NA 0.7 0.1 0.2 0.2 -0.3 0 0.4 0.5 0.3 0.4 0.4 0.6
El Salvador SLV 1985 US Dollar 4607.5 4457.2 4.9 1.4 NA 1.5 4401.0 4728.1 4395.9 4341.9 5212.9 NA NA 21556.8 22713.4 24274.5 38249.9 NA NA NA 0.1 1 0.4 0.4 0.4 interpolated benchmark market no NA NA 0.8 0.1 0.2 0.3 -0.3 0 0.5 0.6 0.3 0.4 0.4 0.7
El Salvador SLV 1986 US Dollar 4992.9 4838.0 5.0 1.4 NA 1.5 4592.7 4999.5 4789.9 4753.4 5513.2 NA NA 21693.6 22798.4 24897.8 38841.2 NA NA NA 0.1 1 0.5 0.5 0.5 interpolated benchmark market no NA NA 0.7 0.1 0.2 0.3 -0.4 0 0.6 0.8 0.3 0.4 0.4 0.9
El Salvador SLV 1987 US Dollar 5051.6 4840.5 5.1 1.5 NA 1.6 4786.6 5187.2 4842.9 4730.8 5833.6 NA NA 22276.8 23019.1 24972.5 39691.3 NA NA NA 0.1 1 0.6 0.6 0.6 interpolated benchmark market no NA NA 0.8 0.1 0.3 0.3 -0.4 0 0.7 0.9 0.3 0.5 0.5 1.0
El Salvador SLV 1988 US Dollar 5382.8 5085.7 5.1 1.5 NA 1.6 5001.6 5500.9 5166.4 4977.9 6169.6 NA NA 22636.8 23238.7 25760.6 40608.0 NA NA NA 0.1 1 0.7 0.7 0.7 interpolated benchmark market no NA NA 0.7 0.1 0.3 0.2 -0.3 0 0.8 0.9 0.4 0.5 0.5 1.0
El Salvador SLV 1989 US Dollar 5545.0 5135.8 5.2 1.6 NA 1.6 5268.3 5894.9 5337.0 5043.7 6527.5 NA NA 22874.4 23690.6 26922.2 41774.4 NA NA NA 0.1 1 0.8 0.8 0.8 interpolated benchmark market no NA NA 0.8 0.1 0.3 0.2 -0.4 0 0.9 1.0 0.4 0.5 0.5 1.1
El Salvador SLV 1990 US Dollar 5535.1 4805.5 5.3 1.7 NA 1.6 5606.0 6046.1 5366.2 4701.3 6861.5 NA NA 23652.0 24139.1 26146.8 42318.5 NA NA NA 0.1 1 0.8 0.9 1.0 interpolated benchmark market no NA NA 0.9 0.1 0.3 0.4 -0.7 0 1.0 1.5 0.4 0.5 0.5 1.5
El Salvador SLV 1991 US Dollar 5936.1 4939.2 5.3 1.7 NA 1.7 5953.3 6498.0 5734.9 4986.1 7202.9 NA NA 24497.9 24876.0 27400.7 43371.3 NA NA NA 0.0 1 0.9 0.9 1.1 interpolated benchmark market no NA NA 0.9 0.1 0.3 0.3 -0.6 0 1.0 1.5 0.4 0.5 0.5 1.5
El Salvador SLV 1992 US Dollar 6504.2 5411.8 5.4 1.8 NA 1.7 6571.2 7304.6 6278.4 5206.1 7687.2 NA NA 26345.8 26750.5 30236.2 45022.5 NA NA NA 0.0 1 0.9 0.9 1.1 interpolated benchmark market no NA NA 1.0 0.1 0.3 0.4 -0.8 0 1.0 1.5 0.4 0.5 0.5 1.6
El Salvador SLV 1993 US Dollar 7346.2 6345.9 5.5 1.9 NA 1.7 7273.7 8122.3 7078.1 6101.3 8461.3 NA NA 28287.4 28806.2 32671.1 47214.1 NA NA NA 0.0 1 0.9 1.0 1.1 interpolated benchmark market no NA NA 1.0 0.1 0.2 0.4 -0.8 0 1.0 1.5 0.4 0.5 0.5 1.6
El Salvador SLV 1994 US Dollar 8207.6 6780.7 5.5 2.0 NA 1.7 8116.9 9098.4 7895.2 6775.1 9419.2 NA NA 29998.9 30968.7 35479.2 49824.1 NA NA NA 0.0 1 1.0 1.0 1.2 interpolated benchmark market no NA NA 1.0 0.1 0.2 0.5 -0.8 0 1.1 1.6 0.5 0.5 0.5 1.6
El Salvador SLV 1995 US Dollar 9318.7 7888.3 5.6 2.0 NA 1.8 9281.1 10435.2 8986.6 7913.0 10640.5 NA NA 31917.8 33815.8 39097.1 53000.3 NA NA NA 0.1 1 1.0 1.1 1.2 interpolated benchmark market no NA NA 1.0 0.1 0.2 0.5 -0.8 0 1.1 1.6 0.5 0.5 0.6 1.6
El Salvador SLV 1996 US Dollar 9934.7 8648.7 5.6 2.0 NA 1.8 9901.1 10819.8 9587.3 8671.4 11636.6 NA NA 32462.1 34372.5 38158.6 55270.5 NA NA NA 0.0 1 1.0 1.1 1.2 interpolated benchmark market no NA NA 1.0 0.1 0.2 0.5 -0.7 0 1.1 1.7 0.6 0.5 0.6 1.6
El Salvador SLV 1997 US Dollar 10865.0 9510.3 5.7 2.0 NA 1.8 10656.5 11679.9 10460.3 9594.2 12896.6 NA NA 33840.6 35405.3 39482.6 57859.7 NA NA NA 0.0 1 1.0 1.1 1.2 interpolated benchmark market no NA NA 0.9 0.1 0.2 0.6 -0.8 0 1.1 1.6 0.6 0.5 0.5 1.5
El Salvador SLV 1998 US Dollar 11822.4 9966.7 5.7 2.1 NA 1.8 11420.5 12730.7 11336.9 10310.1 14480.6 NA NA 35109.2 36252.9 41511.2 60866.6 NA NA NA 0.0 1 1.0 1.1 1.2 interpolated benchmark market no NA NA 0.9 0.1 0.2 0.6 -0.8 0 1.1 1.6 0.6 0.5 0.5 1.4
El Salvador SLV 1999 US Dollar 12738.6 10614.2 5.8 2.1 NA 1.9 12412.8 13745.8 12235.4 11020.9 16210.3 NA NA 36320.1 37471.4 42427.1 63673.3 NA NA NA 0.0 1 1.0 1.0 1.1 interpolated benchmark market no NA 66.7 0.9 0.1 0.2 0.6 -0.8 0 1.0 1.5 0.6 0.5 0.5 1.4
El Salvador SLV 2000 US Dollar 13578.5 11809.7 5.8 2.2 NA 1.9 13529.3 15016.8 13054.3 11989.0 18214.9 NA NA 37102.0 38822.0 43901.1 66648.9 NA NA NA 0.0 1 1.0 1.0 1.1 interpolated benchmark market no NA NA 0.9 0.1 0.2 0.7 -0.9 0 1.0 1.5 0.6 0.5 0.5 1.3
El Salvador SLV 2001 US Dollar 14789.4 12413.9 5.8 2.2 NA 1.9 14839.5 16534.2 14277.9 12443.0 20437.5 NA NA 37736.0 40093.4 45452.2 69572.9 NA NA NA 0.0 1 0.9 1.0 1.1 interpolated benchmark market no NA NA 1.0 0.1 0.2 0.6 -1.0 0 1.0 1.4 0.6 0.4 0.5 1.2
El Salvador SLV 2002 US Dollar 16034.2 13837.7 5.9 2.2 NA 1.9 15961.1 17768.1 15489.5 13999.2 22973.8 NA NA 38619.3 40673.9 45837.0 72607.6 NA NA NA 0.0 1 0.9 0.9 1.0 interpolated benchmark market no NA NA 1.0 0.1 0.2 0.6 -0.9 0 0.9 1.3 0.6 0.5 0.5 1.2
El Salvador SLV 2003 US Dollar 17350.3 15385.3 5.9 2.2 NA 1.9 17365.4 19451.2 16781.8 15672.6 26116.7 NA NA 39507.7 41409.5 47055.9 75721.6 NA NA NA 0.0 1 0.9 0.9 1.0 interpolated benchmark market no NA NA 0.9 0.1 0.2 0.5 -0.8 0 0.9 1.2 0.6 0.5 0.5 1.1
El Salvador SLV 2004 US Dollar 18765.1 16650.4 5.9 2.2 NA 1.9 19149.9 21319.1 18169.0 16952.9 30179.8 NA NA 40238.8 42535.2 47876.0 78393.3 NA NA NA 0.0 1 0.8 0.9 0.9 interpolated benchmark market no NA 68.3 1.0 0.1 0.2 0.5 -0.7 0 0.9 1.2 0.5 0.5 0.6 1.0
El Salvador SLV 2005 US Dollar 20962.3 19788.2 5.9 2.2 NA 1.9 22115.6 24575.9 20735.3 19766.1 35501.4 NA NA 41672.3 44661.0 50177.7 81070.2 NA NA NA 0.0 1 0.8 0.8 0.9 interpolated benchmark market no NA 71.7 1.0 0.1 0.2 0.4 -0.7 0 0.8 1.1 0.5 0.5 0.6 0.9
El Salvador SLV 2006 US Dollar 23670.1 22070.8 6.0 2.3 NA 2.0 25040.7 28038.2 23271.1 22347.1 42250.0 NA NA 43302.6 46758.6 53000.1 84467.6 NA NA NA 0.0 1 0.8 0.8 0.8 interpolated benchmark market no NA 71.7 1.0 0.1 0.1 0.4 -0.6 0 0.8 1.0 0.5 0.6 0.6 0.8
El Salvador SLV 2007 US Dollar 26954.1 25463.7 6.0 2.4 NA 2.0 29046.2 32438.3 26499.2 25836.9 49601.4 NA NA 44965.5 49451.0 55837.3 88289.6 NA NA NA 0.0 1 0.7 0.8 0.8 interpolated benchmark market no NA 73.3 1.0 0.1 0.1 0.3 -0.6 0 0.8 1.0 0.5 0.6 0.6 0.7
El Salvador SLV 2008 US Dollar 30053.3 28863.7 6.0 2.4 NA 2.0 33050.3 36672.1 29859.2 28644.2 57652.1 NA NA 45538.1 50258.5 56225.4 91446.3 NA NA NA 0.0 1 0.7 0.7 0.7 interpolated benchmark market no NA 83.3 1.0 0.1 0.1 0.3 -0.6 0 0.7 0.9 0.5 0.7 0.7 0.7
El Salvador SLV 2009 US Dollar 32585.9 31136.0 6.0 2.4 NA 2.0 33882.8 37215.6 32227.4 31383.5 66042.6 NA NA 44111.4 45806.5 50506.8 92998.6 NA NA NA 0.0 1 0.6 0.6 0.7 interpolated benchmark market no NA 83.3 0.9 0.1 0.1 0.2 -0.4 0 0.6 0.8 0.5 0.7 0.6 0.7
El Salvador SLV 2010 US Dollar 37684.8 37108.7 6.0 2.4 NA 2.0 39829.3 43812.2 37471.9 37264.9 77955.6 NA NA 44713.6 46830.7 51644.9 94734.9 NA NA NA 0.0 1 0.6 0.6 0.6 interpolated benchmark market no NA 90.0 0.9 0.1 0.1 0.2 -0.4 0 0.6 0.7 0.5 0.7 0.6 0.6
El Salvador SLV 2011 US Dollar 45166.8 45704.8 6.1 2.4 NA 2.0 48017.3 53605.3 45166.8 45704.8 97264.7 NA NA 45704.8 48017.3 53605.3 97264.7 NA NA NA 0.0 1 0.5 0.5 0.5 benchmark benchmark market no 0.6 85.6 0.9 0.1 0.1 0.2 -0.4 0 0.5 0.6 0.5 0.7 0.6 0.5
El Salvador SLV 2012 US Dollar 46164.4 47179.4 6.1 2.5 NA 2.1 49225.0 54663.9 46147.6 46956.7 99345.6 NA NA 46564.6 49170.9 54642.7 99598.2 NA NA NA 0.0 1 0.5 0.5 0.5 extrapolated benchmark market no NA 91.0 0.9 0.1 0.1 0.2 -0.4 0 0.5 0.6 0.5 0.7 0.6 0.5
El Salvador SLV 2013 US Dollar 46742.5 47393.0 6.1 2.6 NA 2.1 49761.2 55572.1 46618.4 47147.3 103172.3 NA NA 47424.4 49694.7 55754.1 102483.9 NA NA NA 0.0 1 0.5 0.5 0.5 extrapolated benchmark market no NA 91.1 0.9 0.1 0.1 0.2 -0.4 0 0.5 0.6 0.5 0.7 0.6 0.5
El Salvador SLV 2014 US Dollar 47903.3 48970.3 6.1 2.6 NA 2.1 50944.9 56342.7 47846.7 48643.6 107174.8 NA NA 48350.4 50767.7 56361.1 104730.7 NA NA NA 0.0 1 0.5 0.5 0.5 extrapolated benchmark market no NA 91.1 0.9 0.1 0.1 0.2 -0.3 0 0.5 0.6 0.6 0.7 0.6 0.5
2- Construya una función que le permita elegir todas las variables de la categoria “Trade detail”, muestre su uso para los datos de Argentina
funcion_para_variable_trade_detail <- function(country,anio_inicio_1,anio_final_1) {
  pwt9.0 %>% filter(country==!!country,
                    year>=anio_inicio_1,
                    year<=anio_final_1) %>%
    select(country,
           year, 
           pl_x,pl_m,
           csh_x,csh_m)-> pais_periodo_2
  pais_periodo_2
}
funcion_para_variable_trade_detail(country = "Argentina",anio_inicio_1  = 1950,anio_final_1 = 2014) %>%
 kable(caption = "Datos de Argentina para la variable Trade detail 1950-2014",
 digits = 1,align = "l") %>%
 kable_styling(bootstrap_options = "striped",
 full_width = TRUE)
Datos de Argentina para la variable Trade detail 1950-2014
country year pl_x pl_m csh_x csh_m
Argentina 1950 0.1 0.1 0.1 -0.1
Argentina 1951 0.2 0.1 0.1 -0.1
Argentina 1952 0.1 0.1 0.1 -0.1
Argentina 1953 0.1 0.1 0.1 0.0
Argentina 1954 0.1 0.1 0.1 0.0
Argentina 1955 0.1 0.1 0.1 -0.1
Argentina 1956 0.2 0.2 0.1 0.0
Argentina 1957 0.2 0.2 0.1 0.0
Argentina 1958 0.2 0.2 0.1 0.0
Argentina 1959 0.2 0.3 0.1 0.0
Argentina 1960 0.2 0.2 0.1 -0.1
Argentina 1961 0.2 0.2 0.1 -0.1
Argentina 1962 0.1 0.3 0.1 -0.1
Argentina 1963 0.2 0.3 0.1 0.0
Argentina 1964 0.2 0.2 0.1 -0.1
Argentina 1965 0.2 0.2 0.1 -0.1
Argentina 1966 0.2 0.2 0.1 0.0
Argentina 1967 0.2 0.3 0.1 0.0
Argentina 1968 0.3 0.3 0.1 0.0
Argentina 1969 0.2 0.3 0.1 0.0
Argentina 1970 0.2 0.3 0.1 -0.1
Argentina 1971 0.3 0.3 0.1 -0.1
Argentina 1972 0.3 0.4 0.0 0.0
Argentina 1973 0.3 0.3 0.0 0.0
Argentina 1974 0.3 0.3 0.0 0.0
Argentina 1975 0.3 0.3 0.1 -0.1
Argentina 1976 0.3 0.4 0.1 0.0
Argentina 1977 0.3 0.5 0.1 -0.1
Argentina 1978 0.3 0.4 0.1 -0.1
Argentina 1979 0.2 0.3 0.1 -0.1
Argentina 1980 0.2 0.2 0.1 -0.1
Argentina 1981 0.3 0.3 0.1 -0.1
Argentina 1982 0.4 0.5 0.1 -0.1
Argentina 1983 0.4 0.5 0.1 -0.1
Argentina 1984 0.4 0.4 0.1 -0.1
Argentina 1985 0.4 0.4 0.2 -0.1
Argentina 1986 0.4 0.5 0.1 -0.1
Argentina 1987 0.5 0.5 0.1 -0.1
Argentina 1988 0.5 0.5 0.1 -0.1
Argentina 1989 0.5 0.5 0.1 0.0
Argentina 1990 0.5 0.5 0.1 0.0
Argentina 1991 0.6 0.6 0.1 -0.1
Argentina 1992 0.5 0.5 0.1 -0.1
Argentina 1993 0.5 0.5 0.1 -0.1
Argentina 1994 0.5 0.6 0.1 -0.1
Argentina 1995 0.6 0.6 0.1 -0.1
Argentina 1996 0.6 0.6 0.1 -0.1
Argentina 1997 0.6 0.6 0.1 -0.1
Argentina 1998 0.5 0.5 0.1 -0.1
Argentina 1999 0.5 0.5 0.1 -0.1
Argentina 2000 0.5 0.5 0.1 -0.1
Argentina 2001 0.5 0.5 0.1 -0.1
Argentina 2002 0.5 0.5 0.1 0.0
Argentina 2003 0.5 0.5 0.1 -0.1
Argentina 2004 0.6 0.5 0.1 -0.1
Argentina 2005 0.6 0.6 0.1 -0.1
Argentina 2006 0.6 0.6 0.1 -0.1
Argentina 2007 0.7 0.6 0.1 -0.1
Argentina 2008 0.7 0.7 0.1 -0.1
Argentina 2009 0.7 0.6 0.1 -0.1
Argentina 2010 0.7 0.7 0.1 -0.1
Argentina 2011 0.8 0.7 0.1 -0.1
Argentina 2012 0.7 0.7 0.1 -0.1
Argentina 2013 0.8 0.7 0.1 -0.1
Argentina 2014 0.7 0.7 0.1 -0.1
3- Use las funciones creadas en 1 y 2, para generar 2 dataframes, que muestren los datos de “México” y “Canadá” para el periodo 2000-2014
dataframe_1<-funcion_para_pais_por_periodo(country = c("Mexico","Canada"),anio_inicio = 2000,anio_final = 2014) 
print(dataframe_1)
##    country isocode year        currency   rgdpe   rgdpo       pop      emp
## 1   Canada     CAN 2001 Canadian Dollar 1166188 1119308  30.99134 15.05903
## 2   Canada     CAN 2003 Canadian Dollar 1211094 1184269  31.59659 15.84749
## 3   Canada     CAN 2005 Canadian Dollar 1311424 1323181  32.25633 16.43793
## 4   Canada     CAN 2007 Canadian Dollar 1376870 1384391  32.98228 17.26695
## 5   Canada     CAN 2009 Canadian Dollar 1310934 1304883  33.74656 17.43560
## 6   Canada     CAN 2011 Canadian Dollar 1423920 1455816  34.49990 18.07691
## 7   Canada     CAN 2013 Canadian Dollar 1478439 1493624  35.23061 18.66565
## 8   Mexico     MEX 2000    Mexican Peso 1241567 1203299 102.80859 38.60970
## 9   Mexico     MEX 2002    Mexican Peso 1265801 1217542 105.57830 39.59854
## 10  Mexico     MEX 2004    Mexican Peso 1399936 1345215 108.25782 41.23692
## 11  Mexico     MEX 2006    Mexican Peso 1581637 1542631 111.38286 43.06945
## 12  Mexico     MEX 2008    Mexican Peso 1693705 1677677 114.97282 45.01016
## 13  Mexico     MEX 2010    Mexican Peso 1734610 1694514 118.61754 48.29945
## 14  Mexico     MEX 2012    Mexican Peso 1908250 1862729 122.07096 50.82909
## 15  Mexico     MEX 2014    Mexican Peso 1987688 1945966 125.38583 51.41257
##         avh       hc      ccon     cda   cgdpe   cgdpo      ck      ctfp
## 1  1767.990 3.518916  814203.9 1079932 1145022 1144414 3268334 0.9022754
## 2  1732.136 3.548723  858441.9 1148489 1194611 1200543 3349291 0.8915871
## 3  1739.182 3.578782  918976.9 1263380 1315081 1326233 3865556 0.9038564
## 4  1724.689 3.609095  969776.7 1342214 1370408 1395106 4445640 0.8834894
## 5  1678.515 3.639666 1000717.9 1325223 1306457 1323073 4794360 0.8118237
## 6  1683.574 3.662325 1045868.8 1440603 1423920 1455816 5427466 0.8070218
## 7  1682.736 3.676923 1086339.8 1488701 1465085 1472069 5828469 0.7754062
## 8  2173.992 2.417732  976115.5 1233276 1210525 1196573 2683662 0.6776875
## 9  2196.150 2.456598 1021844.4 1259728 1243224 1219592 2552782 0.6798000
## 10 2123.364 2.496088 1114709.0 1384239 1376237 1344221 3077106 0.6890303
## 11 2141.324 2.536212 1244907.5 1576208 1571088 1546752 3770402 0.7279464
## 12 2173.356 2.571415 1345486.1 1729921 1692513 1672410 4036200 0.7459487
## 13 2128.041 2.599173 1381195.4 1742997 1728535 1697135 5054693 0.6361806
## 14 2106.862 2.637690 1535906.1 1947835 1903657 1851572 6089364 0.6145336
## 15 2136.773 2.676779 1602949.4 2009978 1974138 1934006 6677512 0.6035797
##        cwtfp  rgdpna    rconna   rdana    rkna    rtfpna   rwtfpna     labsh
## 1  0.8153173 1190649  782785.5 1041029 3905941 1.0337603 0.9134005 0.6171623
## 2  0.8093318 1247575  832796.8 1119539 4151862 1.0330168 0.9367892 0.6124471
## 3  0.7981808 1327435  882079.1 1221829 4462552 1.0369463 0.9645296 0.5987505
## 4  0.8020070 1389595  950916.3 1319552 4812567 1.0226208 0.9813300 0.6059821
## 5  0.7897093 1367808  994270.1 1323141 5106391 0.9890912 0.9668959 0.6315947
## 6  0.7662106 1455816 1045868.8 1440603 5427466 1.0000000 1.0000000 0.6074459
## 7  0.7574083 1513537 1084256.5 1500049 5779532 0.9928653 0.9944088 0.6191180
## 8  0.6711588 1458667 1084404.0 1414794 3850000 1.1481084 1.0948994 0.4670270
## 9  0.6677148 1469444 1119252.6 1433203 4150159 1.0850003 1.0404917 0.4771637
## 10 0.6691776 1552597 1225134.2 1551886 4461555 1.0916569 1.0728562 0.4381100
## 11 0.6927031 1679987 1343449.2 1719133 4852529 1.0932913 1.1000023 0.4061596
## 12 0.7331457 1758094 1411593.2 1826431 5305337 1.0535300 1.0761238 0.3901641
## 13 0.6299252 1761765 1405425.9 1779081 5671746 0.9895102 0.9824765 0.4086950
## 14 0.6213605 1904764 1537147.2 1954599 6096434 1.0019095 1.0108787 0.3860400
## 15 0.6044779 1974418 1601032.4 2025506 6498114 0.9832620 0.9917858 0.3860400
##         delta         xr    pl_con     pl_da   pl_gdpo        i_cig      i_xm
## 1  0.04350585  1.5487608 0.6702421 0.6399313 0.6402714 interpolated benchmark
## 2  0.04180438  1.4010517 0.7807368 0.7431563 0.7394839 interpolated benchmark
## 3  0.04020973  1.2117633 0.9279599 0.8852534 0.8778094    benchmark benchmark
## 4  0.03873762  1.0740992 1.1123220 1.0638244 1.0449910 interpolated benchmark
## 5  0.03881708  1.1431006 1.0911957 1.0492800 1.0361022 interpolated benchmark
## 6  0.03708802  0.9895307 1.3175685 1.2562085 1.2286866    benchmark benchmark
## 7  0.03645137  1.0297966 1.3056631 1.2551931 1.2492380 extrapolated benchmark
## 8  0.04038701  9.4555583 0.5079750 0.5357581 0.5420051 interpolated benchmark
## 9  0.03962168  9.6559583 0.5620881 0.5825984 0.5938877    benchmark benchmark
## 10 0.03732139 11.2859667 0.5380411 0.5595008 0.5728266 interpolated benchmark
## 11 0.03668293 10.8992417 0.5956349 0.6144006 0.6240674 interpolated benchmark
## 12 0.03644980 11.1297167 0.6365756 0.6506737 0.6584950 interpolated benchmark
## 13 0.03668989 12.6360083 0.5986645 0.6074073 0.6186453 interpolated benchmark
## 14 0.03684472 13.1694583 0.6110190 0.6222254 0.6397288 extrapolated benchmark
## 15 0.03734821 13.2924500 0.6468756 0.6558278 0.6694366 extrapolated benchmark
##      i_xr i_outlier   cor_exp  statcap     csh_c     csh_i     csh_g     csh_x
## 1  market        no        NA       NA 0.5601038 0.2321958 0.1513555 0.4177729
## 2  market        no        NA       NA 0.5621071 0.2415964 0.1529374 0.3902732
## 3  market        no 0.9038276       NA 0.5438991 0.2596853 0.1490238 0.4328717
## 4  market        no        NA       NA 0.5394937 0.2669595 0.1556341 0.4428070
## 5  market        no        NA       NA 0.5724548 0.2452664 0.1839038 0.3453314
## 6  market        no 0.8238315       NA 0.5405646 0.2711428 0.1778429 0.4387028
## 7  market        no        NA       NA 0.5595505 0.2733303 0.1784177 0.4206315
## 8  market        no        NA       NA 0.6732539 0.2149140 0.1425054 0.2626764
## 9  market        no        NA       NA 0.6941089 0.1950519 0.1437490 0.2504522
## 10 market        no        NA 74.44444 0.6979996 0.2005101 0.1312609 0.2391311
## 11 market        no        NA 68.88889 0.6725003 0.2141908 0.1323524 0.2579798
## 12 market        no        NA 77.77778 0.6508341 0.2298687 0.1536851 0.2416872
## 13 market        no        NA 85.55556 0.6285632 0.2131835 0.1852762 0.2481539
## 14 market        no        NA 88.00000 0.6352695 0.2224750 0.1942454 0.2695678
## 15 market        no        NA 85.55556 0.6356119 0.2104586 0.1932114 0.2715108
##         csh_m         csh_r      pl_c      pl_i      pl_g      pl_x      pl_m
## 1  -0.3644541  0.0030260538 0.6292517 0.5470572 0.8219304 0.5460286 0.5313601
## 2  -0.3496419  0.0027277917 0.7315946 0.6319304 0.9613546 0.5810179 0.5726507
## 3  -0.3851879 -0.0002920294 0.8729587 0.7712987 1.1287004 0.6280424 0.6155325
## 4  -0.3985552 -0.0063390261 1.0543412 0.9375428 1.3133082 0.6796820 0.6845841
## 5  -0.3370062 -0.0099502383 1.0351254 0.9200191 1.2657314 0.6898180 0.7204297
## 6  -0.4166212 -0.0116318641 1.2595756 1.0936318 1.4938417 0.7052622 0.7428895
## 7  -0.4186161 -0.0133138811 1.2401137 1.1189287 1.5112380 0.7374130 0.7493351
## 8  -0.2947699  0.0014201968 0.5336822 0.6412158 0.3865237 0.5290740 0.5086392
## 9  -0.2809940 -0.0023679789 0.5839284 0.6707015 0.4566301 0.5262772 0.4921273
## 10 -0.2745519  0.0056501571 0.5515599 0.6482526 0.4661525 0.5847969 0.5332708
## 11 -0.2801102  0.0030869977 0.6152702 0.6849153 0.4958651 0.6264205 0.5910664
## 12 -0.2696986 -0.0063766162 0.6767916 0.7000160 0.4662665 0.7205961 0.6841487
## 13 -0.2698361 -0.0053406847 0.6602539 0.6407837 0.3897180 0.7083094 0.6583319
## 14 -0.2984421 -0.0231155679 0.6784819 0.6640091 0.3903852 0.7425870 0.6709370
## 15 -0.2945466 -0.0162459742 0.7153954 0.6910835 0.4214644 0.7570050 0.7021390
##         pl_k
## 1  0.6292847
## 2  0.7568532
## 3  0.8875628
## 4  1.0519462
## 5  1.0221647
## 6  1.1579119
## 7  1.1488672
## 8  0.6657988
## 9  0.8063704
## 10 0.7196133
## 11 0.7278860
## 12 0.8066145
## 13 0.6478299
## 14 0.6141177
## 15 0.6044782
dataframe_2<-funcion_para_variable_trade_detail(country = c("Mexico","Canada"),anio_inicio_1 = 2000,anio_final_1=2014)
print(dataframe_2)
##    country year      pl_x      pl_m     csh_x      csh_m
## 1   Canada 2001 0.5460286 0.5313601 0.4177729 -0.3644541
## 2   Canada 2003 0.5810179 0.5726507 0.3902732 -0.3496419
## 3   Canada 2005 0.6280424 0.6155325 0.4328717 -0.3851879
## 4   Canada 2007 0.6796820 0.6845841 0.4428070 -0.3985552
## 5   Canada 2009 0.6898180 0.7204297 0.3453314 -0.3370062
## 6   Canada 2011 0.7052622 0.7428895 0.4387028 -0.4166212
## 7   Canada 2013 0.7374130 0.7493351 0.4206315 -0.4186161
## 8   Mexico 2000 0.5290740 0.5086392 0.2626764 -0.2947699
## 9   Mexico 2002 0.5262772 0.4921273 0.2504522 -0.2809940
## 10  Mexico 2004 0.5847969 0.5332708 0.2391311 -0.2745519
## 11  Mexico 2006 0.6264205 0.5910664 0.2579798 -0.2801102
## 12  Mexico 2008 0.7205961 0.6841487 0.2416872 -0.2696986
## 13  Mexico 2010 0.7083094 0.6583319 0.2481539 -0.2698361
## 14  Mexico 2012 0.7425870 0.6709370 0.2695678 -0.2984421
## 15  Mexico 2014 0.7570050 0.7021390 0.2715108 -0.2945466
Clave 2
Usando los datos de la Penn World Table, de la Universidad de Groningen.
Resuelva los siguientes requerimientos (es importante mostrar todos sus resultados en formato tabular):
1- Construya una función que le permita elegir el país y filtrar para un periodo(inicio,final), muestre su uso filtrando los datos para Guatemala , en el periodo de 1990-2014.
options(scipen = 999999)
funcion_para_pais_por_periodo_1 <- function(country,anio_inicio_2,anio_final_2) {
  pwt9.0 %>% filter(country==!!country,
year>=anio_inicio_2,year<=anio_final_2) -> pais_periodo_3
  pais_periodo_3
}
funcion_para_pais_por_periodo_1(country = "Guatemala",anio_inicio_2  = 1990,anio_final_2 = 2014) %>%
 kable(caption = "Datos de Guatemala 1990-2014",
 digits = 1,align = "l") %>%
 kable_styling(bootstrap_options = "striped",
 full_width = TRUE)
Datos de Guatemala 1990-2014
country isocode year currency rgdpe rgdpo pop emp avh hc ccon cda cgdpe cgdpo ck ctfp cwtfp rgdpna rconna rdana rkna rtfpna rwtfpna labsh delta xr pl_con pl_da pl_gdpo i_cig i_xm i_xr i_outlier cor_exp statcap csh_c csh_i csh_g csh_x csh_m csh_r pl_c pl_i pl_g pl_x pl_m pl_k
Guatemala GTM 1990 Quetzal 33234.6 34222.7 9.2 2.5 NA 1.5 32241.0 35134.4 33063.2 34293.3 45778.6 0.9 0.9 46215.4 41905.3 47471.4 126784.4 1.0 0.9 0.5 0.1 4.5 0.2 0.2 0.2 interpolated benchmark market no NA NA 0.8 0.1 0.1 0.1 -0.1 0.0 0.2 0.4 0.2 0.5 0.5 0.3
Guatemala GTM 1991 Quetzal 35438.7 36470.8 9.4 2.6 NA 1.5 33555.4 37250.1 35158.6 36600.2 47208.3 0.9 0.9 47906.0 43432.1 50421.9 129355.2 1.0 0.9 0.5 0.1 5.0 0.2 0.2 0.2 interpolated benchmark market no NA NA 0.8 0.1 0.1 0.1 -0.1 0.0 0.2 0.4 0.2 0.5 0.5 0.3
Guatemala GTM 1992 Quetzal 36326.2 37987.7 9.6 2.7 NA 1.5 35497.8 40458.9 35981.5 37812.5 49587.2 0.9 0.9 50223.9 45647.4 54848.9 133586.8 1.0 1.0 0.5 0.1 5.2 0.2 0.3 0.2 interpolated benchmark market no NA NA 0.8 0.1 0.1 0.1 -0.1 0.0 0.2 0.4 0.2 0.5 0.5 0.4
Guatemala GTM 1993 Quetzal 38583.3 40375.7 9.9 2.8 NA 1.5 37369.7 42216.4 38180.7 40147.5 53500.3 0.9 0.9 52196.8 47680.4 56266.1 140097.1 1.0 1.0 0.5 0.1 5.6 0.2 0.3 0.3 interpolated benchmark market no NA NA 0.8 0.1 0.1 0.1 -0.1 0.0 0.3 0.4 0.2 0.5 0.5 0.3
Guatemala GTM 1994 Quetzal 41145.2 42164.7 10.1 3.0 NA 1.6 39555.8 44458.9 40625.7 42118.2 57302.1 0.8 0.9 54301.9 49909.4 58601.2 144104.8 1.0 0.9 0.5 0.1 5.8 0.3 0.3 0.3 interpolated benchmark market no NA NA 0.8 0.1 0.1 0.1 -0.1 0.0 0.3 0.4 0.2 0.5 0.5 0.4
Guatemala GTM 1995 Quetzal 43889.6 45114.5 10.4 3.0 NA 1.6 42208.8 47068.0 43522.3 45290.4 62316.2 0.9 0.9 56981.1 52361.3 60906.5 150601.8 1.0 0.9 0.5 0.1 5.8 0.3 0.3 0.3 interpolated benchmark market no NA NA 0.8 0.1 0.1 0.1 -0.1 0.0 0.3 0.4 0.2 0.5 0.5 0.3
Guatemala GTM 1996 Quetzal 45516.4 46279.2 10.6 3.1 NA 1.6 43993.9 48135.5 45269.6 46609.7 66182.5 0.8 0.9 58669.1 53711.6 60829.8 154488.9 1.0 0.9 0.5 0.1 6.0 0.3 0.3 0.3 interpolated benchmark market no NA NA 0.9 0.1 0.1 0.1 -0.1 0.0 0.3 0.5 0.2 0.6 0.5 0.4
Guatemala GTM 1997 Quetzal 48241.9 48901.3 10.9 3.2 NA 1.6 46064.6 51158.2 47688.0 49022.4 72300.2 0.8 0.8 61235.1 55940.7 64595.6 163422.1 1.0 0.9 0.5 0.1 6.1 0.3 0.3 0.3 interpolated benchmark market no NA NA 0.9 0.1 0.1 0.1 -0.2 0.0 0.3 0.5 0.3 0.5 0.5 0.3
Guatemala GTM 1998 Quetzal 51417.2 51953.6 11.1 3.3 NA 1.6 48666.8 55740.6 50502.8 52091.2 79881.7 0.8 0.8 64293.3 58718.5 70643.4 172925.6 0.9 1.0 0.5 0.1 6.4 0.3 0.3 0.3 interpolated benchmark market no NA NA 0.8 0.1 0.1 0.1 -0.2 0.0 0.3 0.5 0.3 0.5 0.5 0.4
Guatemala GTM 1999 Quetzal 53551.0 54882.2 11.4 3.4 NA 1.6 51127.0 58298.1 52587.8 54994.9 89127.0 0.8 0.8 66766.6 61015.4 72668.6 185427.2 0.9 0.9 0.5 0.1 7.4 0.3 0.3 0.3 interpolated benchmark market no NA 47.8 0.8 0.1 0.1 0.1 -0.2 0.0 0.3 0.4 0.3 0.5 0.5 0.3
Guatemala GTM 2000 Quetzal 56102.1 57968.2 11.7 3.6 NA 1.7 53538.4 61430.3 55067.0 57636.4 96989.8 0.7 0.7 69175.8 63408.1 75548.2 192628.2 0.9 0.9 0.5 0.1 7.8 0.3 0.3 0.3 interpolated benchmark market no NA NA 0.8 0.1 0.1 0.1 -0.2 0.0 0.3 0.4 0.3 0.5 0.5 0.3
Guatemala GTM 2001 Quetzal 58489.1 61418.7 12.0 3.7 NA 1.6 56344.4 65172.1 57608.4 61010.9 103967.5 0.7 0.8 70788.7 65909.3 78846.1 198709.3 0.9 0.9 0.5 0.1 7.9 0.3 0.3 0.3 interpolated benchmark market no NA NA 0.8 0.1 0.1 0.1 -0.2 0.0 0.3 0.4 0.3 0.5 0.5 0.4
Guatemala GTM 2002 Quetzal 61456.7 63811.9 12.3 3.9 NA 1.6 58545.0 68691.8 60556.7 63553.1 112948.9 0.7 0.8 73525.9 67883.9 81973.3 205983.8 0.9 0.9 0.5 0.1 7.8 0.3 0.3 0.3 interpolated benchmark market no NA NA 0.8 0.2 0.1 0.1 -0.2 0.1 0.3 0.4 0.4 0.5 0.5 0.4
Guatemala GTM 2003 Quetzal 63583.8 66275.4 12.6 4.0 NA 1.6 61206.7 71559.9 62545.6 66160.8 122840.9 0.7 0.7 75386.6 70127.8 84049.5 212495.2 0.9 0.9 0.5 0.1 7.9 0.3 0.4 0.3 interpolated benchmark market no NA NA 0.8 0.2 0.1 0.1 -0.2 0.0 0.3 0.4 0.4 0.5 0.5 0.4
Guatemala GTM 2004 Quetzal 66131.6 69108.5 12.9 4.0 NA 1.6 63706.6 74806.2 64977.1 69019.6 136110.9 0.7 0.7 77762.9 72080.1 86489.9 218599.4 0.9 1.0 0.4 0.1 7.9 0.4 0.4 0.3 interpolated benchmark market no NA 81.1 0.8 0.2 0.1 0.1 -0.2 0.1 0.4 0.5 0.4 0.5 0.5 0.4
Guatemala GTM 2005 Quetzal 68825.3 72399.2 13.2 4.2 NA 1.6 68320.2 79756.3 68791.5 72216.7 153376.9 0.7 0.7 80298.1 74991.0 89195.8 225095.9 0.9 1.0 0.4 0.1 7.6 0.4 0.4 0.4 interpolated benchmark market no NA 78.9 0.9 0.2 0.1 0.1 -0.3 0.0 0.4 0.5 0.4 0.6 0.5 0.4
Guatemala GTM 2006 Quetzal 73486.2 76669.0 13.5 4.5 NA 1.6 72078.9 85189.2 72839.5 76602.5 173933.1 0.7 0.7 84617.9 78573.3 94445.4 234027.8 0.9 1.0 0.4 0.0 7.6 0.4 0.4 0.4 interpolated benchmark market no NA 80.0 0.9 0.2 0.1 0.1 -0.2 0.0 0.4 0.5 0.4 0.6 0.6 0.4
Guatemala GTM 2007 Quetzal 79439.3 82025.2 13.8 4.5 NA 1.7 77205.1 91696.3 78528.7 82105.0 192681.0 0.7 0.7 89952.3 83017.8 100097.3 243391.2 1.0 1.0 0.4 0.0 7.7 0.4 0.4 0.4 interpolated benchmark market no NA 78.9 0.9 0.2 0.1 0.1 -0.3 0.0 0.4 0.5 0.4 0.6 0.6 0.4
Guatemala GTM 2008 Quetzal 83265.5 85980.3 14.1 4.5 NA 1.7 82892.9 95164.7 82976.3 85649.1 209983.8 0.7 0.7 92903.7 87139.7 100861.8 251030.0 1.0 1.0 0.4 0.0 7.6 0.5 0.5 0.5 interpolated benchmark market no NA 82.2 0.9 0.1 0.1 0.1 -0.3 0.0 0.5 0.5 0.5 0.7 0.6 0.4
Guatemala GTM 2009 Quetzal 87864.5 88414.6 14.4 4.5 NA 1.7 84656.9 95068.2 87094.7 88634.6 223994.4 0.7 0.7 93392.6 88072.6 99219.4 255899.8 1.0 0.9 0.4 0.0 8.2 0.4 0.4 0.4 interpolated benchmark market no NA 85.6 0.9 0.1 0.1 0.1 -0.2 0.0 0.4 0.5 0.4 0.7 0.6 0.4
Guatemala GTM 2010 Quetzal 92085.6 93170.7 14.7 4.3 NA 1.8 89748.7 101272.5 91646.2 93270.4 241053.6 0.7 0.7 96072.4 91514.5 103506.6 260478.3 1.0 1.0 0.4 0.0 8.1 0.4 0.5 0.4 interpolated benchmark market no NA 85.6 0.9 0.1 0.1 0.1 -0.2 0.0 0.4 0.5 0.4 0.7 0.6 0.4
Guatemala GTM 2011 Quetzal 98496.6 100070.9 15.0 4.5 NA 1.8 94919.2 109068.4 98496.6 100070.9 266095.2 0.7 0.7 100070.9 94919.2 109068.4 266095.2 1.0 1.0 0.4 0.0 7.8 0.5 0.5 0.5 benchmark benchmark market no 0.6 83.3 0.8 0.1 0.1 0.1 -0.3 0.0 0.5 0.5 0.5 0.7 0.6 0.4
Guatemala GTM 2012 Quetzal 101200.2 102466.4 15.4 5.1 NA 1.8 98274.9 112493.7 101122.4 101964.9 272282.8 0.7 0.7 103043.0 98167.0 112555.0 272057.2 1.0 1.0 0.4 0.0 7.8 0.5 0.5 0.5 extrapolated benchmark market no NA 80.0 0.9 0.1 0.1 0.1 -0.3 0.0 0.5 0.5 0.5 0.7 0.6 0.4
Guatemala GTM 2013 Quetzal 104637.7 105246.7 15.7 4.9 NA 1.8 102153.3 115864.6 104280.2 104663.1 281013.8 0.7 0.7 106852.9 101996.6 116153.3 277956.6 1.0 1.0 0.4 0.0 7.9 0.5 0.5 0.5 extrapolated benchmark market no NA 76.7 0.9 0.1 0.1 0.1 -0.3 0.0 0.5 0.6 0.5 0.7 0.6 0.4
Guatemala GTM 2014 Quetzal 109715.6 110703.2 16.0 5.0 NA 1.8 106532.5 120539.6 109468.7 110100.0 292397.5 0.7 0.7 111393.9 106132.7 120700.0 284343.5 1.0 1.0 0.4 0.0 7.7 0.5 0.5 0.5 extrapolated benchmark market no NA 68.9 0.9 0.1 0.1 0.1 -0.3 0.0 0.5 0.6 0.5 0.7 0.6 0.4
2- Construya una función que le permita elegir todas las variables de la categoría “Labor detail”, muestre su uso para los datos de Argentina.
funcion_para_variable_labor_detail <- function(country,anio_inicio_3,anio_final_3) {
  pwt9.0 %>% filter(country==!!country,year>=anio_inicio_3,year<=anio_final_3) %>%
    select(country,year,emp, avh, hc, labsh)-> pais_periodo_4
  pais_periodo_4
}
funcion_para_variable_labor_detail(country = "Argentina",anio_inicio_3  = 1950,anio_final_3 = 2014) %>%
 kable(caption = "Probando Función consulta Trade detail, ARG 1990-2014",
 digits = 1,align = "l") %>%
 kable_styling(bootstrap_options = "striped",
 full_width = TRUE)
Probando Función consulta Trade detail, ARG 1990-2014
country year emp avh hc labsh
Argentina 1950 6.5 2034.0 1.8 0.5
Argentina 1951 6.7 2037.9 1.8 0.5
Argentina 1952 6.8 2041.7 1.8 0.5
Argentina 1953 6.9 2045.6 1.9 0.5
Argentina 1954 7.0 2049.5 1.9 0.5
Argentina 1955 7.1 2053.4 1.9 0.5
Argentina 1956 7.2 2057.3 1.9 0.5
Argentina 1957 7.3 2061.2 1.9 0.5
Argentina 1958 7.4 2065.1 1.9 0.5
Argentina 1959 7.5 2069.1 1.9 0.5
Argentina 1960 7.6 2073.0 2.0 0.5
Argentina 1961 7.7 2066.2 2.0 0.5
Argentina 1962 7.8 2059.4 2.0 0.5
Argentina 1963 7.9 2052.7 2.0 0.5
Argentina 1964 8.0 2045.9 2.0 0.5
Argentina 1965 8.1 2039.2 2.0 0.5
Argentina 1966 8.2 2032.5 2.0 0.5
Argentina 1967 8.3 2025.9 2.0 0.5
Argentina 1968 8.4 2019.2 2.0 0.5
Argentina 1969 8.5 2012.6 2.1 0.5
Argentina 1970 8.6 2006.0 2.1 0.5
Argentina 1971 8.6 2002.7 2.1 0.5
Argentina 1972 8.7 1999.3 2.1 0.5
Argentina 1973 8.8 1996.0 2.1 0.5
Argentina 1974 9.1 1992.8 2.2 0.5
Argentina 1975 9.2 1989.7 2.2 0.5
Argentina 1976 9.2 1986.5 2.2 0.5
Argentina 1977 9.4 1983.4 2.2 0.5
Argentina 1978 9.5 1980.3 2.2 0.5
Argentina 1979 9.6 1977.1 2.2 0.5
Argentina 1980 9.6 1974.0 2.3 0.5
Argentina 1981 9.7 1961.2 2.3 0.5
Argentina 1982 9.8 1948.5 2.3 0.5
Argentina 1983 10.1 1935.9 2.4 0.5
Argentina 1984 10.3 1923.4 2.4 0.5
Argentina 1985 10.4 1911.0 2.4 0.5
Argentina 1986 10.7 1898.6 2.4 0.5
Argentina 1987 11.0 1886.3 2.5 0.5
Argentina 1988 11.2 1874.1 2.5 0.5
Argentina 1989 11.3 1862.0 2.5 0.5
Argentina 1990 11.6 1850.0 2.5 0.5
Argentina 1991 12.0 1838.0 2.6 0.5
Argentina 1992 12.1 1826.0 2.6 0.5
Argentina 1993 12.1 1850.3 2.6 0.5
Argentina 1994 12.1 1875.0 2.6 0.5
Argentina 1995 11.5 1897.2 2.6 0.5
Argentina 1996 11.8 1846.1 2.6 0.4
Argentina 1997 12.4 1917.3 2.6 0.4
Argentina 1998 12.9 1903.0 2.6 0.4
Argentina 1999 13.0 1893.2 2.6 0.5
Argentina 2000 13.1 1861.0 2.7 0.5
Argentina 2001 13.0 1803.4 2.7 0.5
Argentina 2002 13.0 1610.6 2.7 0.4
Argentina 2003 13.7 1719.4 2.7 0.4
Argentina 2004 14.7 1739.7 2.8 0.4
Argentina 2005 15.3 1755.3 2.8 0.4
Argentina 2006 15.9 1809.4 2.8 0.4
Argentina 2007 16.4 1816.9 2.8 0.4
Argentina 2008 16.8 1835.9 2.8 0.4
Argentina 2009 17.0 1736.9 2.8 0.4
Argentina 2010 17.5 1728.7 2.8 0.4
Argentina 2011 17.9 1762.3 2.9 0.4
Argentina 2012 18.1 1789.0 2.9 0.4
Argentina 2013 18.3 1776.7 2.9 0.4
Argentina 2014 18.1 1776.7 2.9 0.4
3- Use las funciones creadas en 1 y 2, para generar 2 dataframes, que muestren los datos de “EE.UU” y “Canadá” para el periodo 2000-2014.
dataframe_3<-funcion_para_pais_por_periodo_1(country = c("United States of America","Canada"),anio_inicio_2 = 2000,anio_final_2 = 2014)
print(dataframe_3)
##                     country isocode year        currency    rgdpe    rgdpo
## 1                    Canada     CAN 2001 Canadian Dollar  1166188  1119308
## 2                    Canada     CAN 2003 Canadian Dollar  1211094  1184269
## 3                    Canada     CAN 2005 Canadian Dollar  1311424  1323181
## 4                    Canada     CAN 2007 Canadian Dollar  1376870  1384391
## 5                    Canada     CAN 2009 Canadian Dollar  1310934  1304883
## 6                    Canada     CAN 2011 Canadian Dollar  1423920  1455816
## 7                    Canada     CAN 2013 Canadian Dollar  1478439  1493624
## 8  United States of America     USA 2000       US Dollar 13222419 13031820
## 9  United States of America     USA 2002       US Dollar 13591523 13309916
## 10 United States of America     USA 2004       US Dollar 14499944 14204685
## 11 United States of America     USA 2006       US Dollar 15353601 15083465
## 12 United States of America     USA 2008       US Dollar 15357469 15305872
## 13 United States of America     USA 2010       US Dollar 15368666 15250698
## 14 United States of America     USA 2012       US Dollar 15976742 15899255
## 15 United States of America     USA 2014       US Dollar 16704698 16598099
##          pop       emp      avh       hc       ccon      cda    cgdpe    cgdpo
## 1   30.99134  15.05903 1767.990 3.518916   814203.9  1079932  1145022  1144414
## 2   31.59659  15.84749 1732.136 3.548723   858441.9  1148489  1194611  1200543
## 3   32.25633  16.43793 1739.182 3.578782   918976.9  1263380  1315081  1326233
## 4   32.98228  17.26695 1724.689 3.609095   969776.7  1342214  1370408  1395106
## 5   33.74656  17.43560 1678.515 3.639666  1000717.9  1325223  1306457  1323073
## 6   34.49990  18.07691 1683.574 3.662325  1045868.8  1440603  1423920  1455816
## 7   35.23061  18.66565 1682.736 3.676923  1086339.8  1488701  1465085  1472069
## 8  282.89574 139.29607 1848.147 3.578583  9977582.0 13511612 13035321 12983206
## 9  288.47085 139.08432 1805.477 3.598119 10524779.0 14027745 13503168 13339370
## 10 293.53089 141.63098 1783.413 3.617761 11251801.0 15090846 14366189 14232334
## 11 298.86052 146.61525 1778.528 3.642329 12126527.0 16170304 15318001 15099868
## 12 304.47314 147.52623 1761.316 3.671921 12569281.0 16125585 15370500 15321926
## 13 309.87617 141.34911 1738.001 3.701753 12764841.0 15842214 15317448 15273702
## 14 314.79946 144.86284 1753.699 3.712276 13206454.0 16505245 15946878 15863845
## 15 319.44863 148.46339 1764.597 3.722829 13685949.0 17113208 16605887 16490883
##          ck      ctfp     cwtfp   rgdpna     rconna    rdana     rkna    rtfpna
## 1   3268334 0.9022754 0.8153173  1190649   782785.5  1041029  3905941 1.0337603
## 2   3349291 0.8915871 0.8093318  1247575   832796.8  1119539  4151862 1.0330168
## 3   3865556 0.9038564 0.7981808  1327435   882079.1  1221829  4462552 1.0369463
## 4   4445640 0.8834894 0.8020070  1389595   950916.3  1319552  4812567 1.0226208
## 5   4794360 0.8118237 0.7897093  1367808   994270.1  1323141  5106391 0.9890912
## 6   5427466 0.8070218 0.7662106  1455816  1045868.8  1440603  5427466 1.0000000
## 7   5828469 0.7754062 0.7574083  1513537  1084256.5  1500049  5779532 0.9928653
## 8  35997032 1.0000000 1.0000000 12975535 10500206.0 13647352 38439588 0.9205835
## 9  38467564 1.0000000 1.0000000 13336194 11088529.0 14123900 40679832 0.9388351
## 10 42071616 1.0000000 1.0000000 14229557 11796878.0 15181932 43024076 0.9741488
## 11 47891040 1.0000000 1.0000000 15097712 12476968.0 16121374 45671956 0.9863822
## 12 50006724 1.0000000 1.0000000 15321422 12759836.0 16086510 47779436 0.9808996
## 13 48876336 1.0000000 1.0000000 15273331 12883714.0 15924426 48728140 0.9990609
## 14 50020716 1.0000000 1.0000000 15863049 13182059.0 16509182 49960600 1.0051460
## 15 52849892 1.0000000 1.0000000 16490192 13585164.0 17137356 51190644 1.0141082
##      rwtfpna     labsh      delta        xr    pl_con     pl_da   pl_gdpo
## 1  0.9134005 0.6171623 0.04350585 1.5487608 0.6702421 0.6399313 0.6402714
## 2  0.9367892 0.6124471 0.04180438 1.4010517 0.7807368 0.7431563 0.7394839
## 3  0.9645296 0.5987505 0.04020973 1.2117633 0.9279599 0.8852534 0.8778094
## 4  0.9813300 0.6059821 0.03873762 1.0740992 1.1123220 1.0638244 1.0449910
## 5  0.9668959 0.6315947 0.03881708 1.1431006 1.0911957 1.0492800 1.0361022
## 6  1.0000000 0.6074459 0.03708802 0.9895307 1.3175685 1.2562085 1.2286866
## 7  0.9944088 0.6191180 0.03645137 1.0297966 1.3056631 1.2551931 1.2492380
## 8  0.9289908 0.6426795 0.05212035 1.0000000 0.8255066 0.7889932 0.7921603
## 9  0.9539754 0.6347357 0.05012728 1.0000000 0.8584893 0.8129588 0.8229414
## 10 0.9972088 0.6222099 0.04774661 1.0000000 0.9002079 0.8544319 0.8624678
## 11 1.0105580 0.6123036 0.04556167 1.0000000 0.9395798 0.9045495 0.9176166
## 12 0.9881262 0.6150548 0.04627780 1.0000000 0.9851168 0.9575869 0.9606227
## 13 0.9994178 0.5952319 0.04710827 1.0000000 0.9968326 0.9769499 0.9797481
## 14 1.0036752 0.6020187 0.04788478 1.0000000 1.0294040 1.0130669 1.0183694
## 15 1.0111778 0.6035975 0.04704589 1.0000000 1.0537966 1.0446941 1.0519795
##           i_cig      i_xm   i_xr i_outlier   cor_exp statcap     csh_c
## 1  interpolated benchmark market        no        NA      NA 0.5601038
## 2  interpolated benchmark market        no        NA      NA 0.5621071
## 3     benchmark benchmark market        no 0.9038276      NA 0.5438991
## 4  interpolated benchmark market        no        NA      NA 0.5394937
## 5  interpolated benchmark market        no        NA      NA 0.5724548
## 6     benchmark benchmark market        no 0.8238315      NA 0.5405646
## 7  extrapolated benchmark market        no        NA      NA 0.5595505
## 8  interpolated benchmark market        no        NA      NA 0.6758358
## 9     benchmark benchmark market        no        NA      NA 0.6889258
## 10 interpolated benchmark market        no        NA      NA 0.6870325
## 11 interpolated benchmark market        no        NA      NA 0.6949668
## 12 interpolated benchmark market        no        NA      NA 0.7019295
## 13 interpolated benchmark market        no        NA      NA 0.7068287
## 14 extrapolated benchmark market        no        NA      NA 0.7113655
## 15 extrapolated benchmark market        no        NA      NA 0.7167840
##        csh_i      csh_g      csh_x      csh_m         csh_r      pl_c      pl_i
## 1  0.2321958 0.15135552 0.41777286 -0.3644541  0.0030260538 0.6292517 0.5470572
## 2  0.2415964 0.15293744 0.39027315 -0.3496419  0.0027277917 0.7315946 0.6319304
## 3  0.2596853 0.14902379 0.43287170 -0.3851879 -0.0002920294 0.8729587 0.7712987
## 4  0.2669595 0.15563411 0.44280696 -0.3985552 -0.0063390261 1.0543412 0.9375428
## 5  0.2452664 0.18390381 0.34533143 -0.3370062 -0.0099502383 1.0351254 0.9200191
## 6  0.2711428 0.17784286 0.43870276 -0.4166212 -0.0116318641 1.2595756 1.0936318
## 7  0.2733303 0.17841771 0.42063153 -0.4186161 -0.0133138811 1.2401137 1.1189287
## 8  0.2722001 0.09266327 0.10603466 -0.1566473  0.0099134836 0.7741043 0.6859053
## 9  0.2626036 0.10007539 0.09348762 -0.1526167  0.0075242864 0.8035018 0.6761612
## 10 0.2697411 0.10354772 0.09122263 -0.1587287  0.0071848887 0.8447491 0.7202677
## 11 0.2678021 0.10812150 0.10488261 -0.1837855  0.0080124773 0.8866088 0.7995001
## 12 0.2321056 0.11841653 0.11299946 -0.1750899  0.0096388310 0.9310760 0.8602863
## 13 0.2014818 0.12891109 0.11498131 -0.1603202  0.0081172762 0.9450076 0.8944773
## 14 0.2079439 0.12112205 0.12747377 -0.1780486  0.0101433368 0.9792322 0.9476624
## 15 0.2078275 0.11312606 0.12769014 -0.1767433  0.0113156438 1.0038527 1.0083452
##         pl_g      pl_x      pl_m      pl_k
## 1  0.8219304 0.5460286 0.5313601 0.6292847
## 2  0.9613546 0.5810179 0.5726507 0.7568532
## 3  1.1287004 0.6280424 0.6155325 0.8875628
## 4  1.3133082 0.6796820 0.6845841 1.0519462
## 5  1.2657314 0.6898180 0.7204297 1.0221647
## 6  1.4938417 0.7052622 0.7428895 1.1579119
## 7  1.5112380 0.7374130 0.7493351 1.1488672
## 8  1.2004077 0.5668258 0.6185908 0.7926286
## 9  1.2370269 0.5558824 0.5905658 0.8231374
## 10 1.2681735 0.6299770 0.6751730 0.8626361
## 11 1.2800587 0.6548091 0.6914976 0.9177476
## 12 1.3054508 0.7507930 0.8069550 0.9606543
## 13 1.2809926 0.7277685 0.7809259 0.9797719
## 14 1.3240701 0.7639757 0.8052509 1.0184206
## 15 1.3702492 0.7692084 0.8049124 1.0520236
dataframe_4<-funcion_para_variable_labor_detail(country = c("United States of America","Canada"),anio_inicio_3 = 2000,anio_final_3 = 2014)
print(dataframe_4)
##                     country year       emp      avh       hc     labsh
## 1                    Canada 2001  15.05903 1767.990 3.518916 0.6171623
## 2                    Canada 2003  15.84749 1732.136 3.548723 0.6124471
## 3                    Canada 2005  16.43793 1739.182 3.578782 0.5987505
## 4                    Canada 2007  17.26695 1724.689 3.609095 0.6059821
## 5                    Canada 2009  17.43560 1678.515 3.639666 0.6315947
## 6                    Canada 2011  18.07691 1683.574 3.662325 0.6074459
## 7                    Canada 2013  18.66565 1682.736 3.676923 0.6191180
## 8  United States of America 2000 139.29607 1848.147 3.578583 0.6426795
## 9  United States of America 2002 139.08432 1805.477 3.598119 0.6347357
## 10 United States of America 2004 141.63098 1783.413 3.617761 0.6222099
## 11 United States of America 2006 146.61525 1778.528 3.642329 0.6123036
## 12 United States of America 2008 147.52623 1761.316 3.671921 0.6150548
## 13 United States of America 2010 141.34911 1738.001 3.701753 0.5952319
## 14 United States of America 2012 144.86284 1753.699 3.712276 0.6020187
## 15 United States of America 2014 148.46339 1764.597 3.722829 0.6035975
Clave 3
Usando los datos de la Penn World Table, de la Universidad de Groningen.
Resuelva los siguientes requerimientos (es importante mostrar todos sus resultados en formato tabular):
1- Construya una función que le permita elegir el país y filtrar para un periodo(inicio,final), muestre su uso filtrando los datos para Honduras, en el periodo de 1990-2014.
options(scipen = 999999)
funcion_para_pais_por_periodo_2 <- function(country,anio_inicio_3,anio_final_3) {
  pwt9.0 %>% filter(country==!!country,
year>=anio_inicio_3,year<=anio_final_3) -> pais_periodo_5
  pais_periodo_5
}
funcion_para_pais_por_periodo_2(country = "Honduras",anio_inicio_3  = 1990,anio_final_3 = 2014) %>%
 kable(caption = "Datos de Honduras 1990-2014",
 digits = 1,align = "l") %>%
 kable_styling(bootstrap_options = "striped",
 full_width = TRUE) 
Datos de Honduras 1990-2014
country isocode year currency rgdpe rgdpo pop emp avh hc ccon cda cgdpe cgdpo ck ctfp cwtfp rgdpna rconna rdana rkna rtfpna rwtfpna labsh delta xr pl_con pl_da pl_gdpo i_cig i_xm i_xr i_outlier cor_exp statcap csh_c csh_i csh_g csh_x csh_m csh_r pl_c pl_i pl_g pl_x pl_m pl_k
Honduras HND 1990 Lempira 13869.7 14480.0 4.9 1.2 NA 1.8 12349.6 14292.9 14019.5 14777.8 24019.2 0.6 0.6 15670.5 14036.9 16844.1 46727.6 1.2 1.2 0.6 0.0 4.1 0.2 0.3 0.2 interpolated benchmark market no NA NA 0.7 0.1 0.1 0.1 -0.1 0.1 0.2 0.4 0.3 0.5 0.5 0.4
Honduras HND 1991 Lempira 14668.8 15217.2 5.0 1.5 NA 1.8 12721.9 15095.5 14801.8 15593.7 24835.8 0.6 0.5 16180.1 14378.0 17783.9 48069.2 1.1 1.0 0.6 0.0 5.3 0.2 0.2 0.2 interpolated benchmark market no NA NA 0.7 0.2 0.1 0.1 -0.1 0.1 0.2 0.4 0.3 0.5 0.5 0.4
Honduras HND 1992 Lempira 15327.7 15702.4 5.2 1.7 NA 1.8 13162.2 15913.1 15452.5 15956.8 26166.6 0.5 0.5 17090.1 14913.3 18787.8 50292.8 1.1 1.0 0.6 0.0 5.5 0.2 0.3 0.3 interpolated benchmark market no NA NA 0.7 0.2 0.1 0.1 -0.1 0.0 0.2 0.4 0.3 0.5 0.5 0.4
Honduras HND 1993 Lempira 15933.6 17007.8 5.3 1.7 NA 1.8 13556.2 17219.0 16058.7 17298.6 28826.0 0.5 0.5 18154.8 15235.9 20400.8 53997.6 1.1 1.1 0.6 0.1 6.5 0.2 0.3 0.2 interpolated benchmark market no NA NA 0.7 0.2 0.1 0.1 -0.2 0.1 0.2 0.4 0.3 0.5 0.5 0.4
Honduras HND 1994 Lempira 16221.7 17431.8 5.5 1.8 NA 1.8 13626.8 17519.9 16247.2 17766.1 31566.0 0.5 0.5 17918.2 15181.7 20793.2 57416.0 1.0 1.0 0.6 0.1 8.4 0.2 0.3 0.2 interpolated benchmark market no NA NA 0.7 0.2 0.1 0.1 -0.2 0.1 0.2 0.4 0.3 0.5 0.5 0.3
Honduras HND 1995 Lempira 17476.4 19391.9 5.6 1.8 NA 1.8 13971.4 17967.3 17503.1 19796.2 33959.8 0.5 0.5 18649.3 15343.4 21133.8 59647.0 1.0 1.0 0.6 0.1 9.5 0.2 0.3 0.2 interpolated benchmark market no NA NA 0.6 0.2 0.1 0.1 -0.2 0.2 0.2 0.3 0.4 0.5 0.5 0.4
Honduras HND 1996 Lempira 17991.7 18534.6 5.7 2.0 NA 1.8 14862.3 18612.0 17993.6 18919.2 36097.2 0.5 0.5 19316.6 16146.4 21565.4 62041.0 1.0 1.0 0.6 0.1 11.7 0.2 0.3 0.3 interpolated benchmark market no NA NA 0.7 0.2 0.1 0.1 -0.2 0.1 0.2 0.4 0.4 0.6 0.5 0.4
Honduras HND 1997 Lempira 18783.4 19283.0 5.9 2.1 NA 1.8 15261.0 19375.8 18662.3 19602.3 38920.0 0.5 0.4 20281.2 16564.7 22439.0 65095.4 1.0 0.9 0.6 0.1 13.0 0.3 0.3 0.3 interpolated benchmark market no NA NA 0.7 0.2 0.1 0.1 -0.2 0.1 0.3 0.4 0.4 0.5 0.5 0.4
Honduras HND 1998 Lempira 19437.3 19877.3 6.0 2.1 NA 1.9 16084.1 20327.3 19169.8 20236.4 42338.4 0.4 0.4 20869.7 17542.5 23514.3 68522.9 1.0 0.9 0.6 0.1 13.4 0.3 0.3 0.3 interpolated benchmark market no NA NA 0.7 0.2 0.1 0.2 -0.3 0.1 0.3 0.4 0.5 0.5 0.5 0.4
Honduras HND 1999 Lempira 18722.7 19555.4 6.1 2.3 NA 1.9 16175.8 20880.7 18457.6 19883.2 46072.1 0.4 0.4 20475.4 17648.5 24128.7 72088.2 0.9 0.9 0.6 0.1 14.2 0.3 0.4 0.3 interpolated benchmark market no NA 60.6 0.7 0.2 0.1 0.1 -0.3 0.1 0.3 0.4 0.5 0.5 0.5 0.4
Honduras HND 2000 Lempira 20014.3 21004.3 6.2 2.3 NA 1.9 17440.5 22230.8 19769.9 21097.9 49552.6 0.4 0.4 21652.3 19076.1 25351.3 74802.0 0.9 0.9 0.6 0.1 14.8 0.3 0.4 0.3 interpolated benchmark market no NA NA 0.7 0.2 0.1 0.1 -0.2 0.1 0.3 0.4 0.5 0.5 0.5 0.4
Honduras HND 2001 Lempira 20637.6 21337.6 6.4 2.3 NA 1.9 18379.9 23177.1 20478.2 21473.4 52978.8 0.4 0.4 22242.0 19999.8 26028.0 77193.2 0.9 0.9 0.6 0.1 15.5 0.4 0.4 0.4 interpolated benchmark market no NA NA 0.8 0.2 0.1 0.1 -0.3 0.0 0.3 0.4 0.5 0.4 0.5 0.4
Honduras HND 2002 Lempira 21429.9 22322.8 6.5 2.3 NA 1.9 19132.1 23977.6 21306.5 22633.9 56023.2 0.4 0.4 23077.0 20740.8 26554.2 79013.1 1.0 1.0 0.6 0.1 16.4 0.4 0.4 0.3 interpolated benchmark market no NA NA 0.8 0.2 0.1 0.1 -0.3 0.1 0.3 0.4 0.6 0.5 0.5 0.4
Honduras HND 2003 Lempira 22293.7 23442.7 6.6 2.4 NA 1.9 20103.3 25232.9 22122.4 23866.7 59671.4 0.4 0.4 24126.3 21693.0 27731.2 81101.3 1.0 1.0 0.6 0.1 17.3 0.4 0.4 0.3 interpolated benchmark market no NA NA 0.7 0.2 0.1 0.1 -0.3 0.1 0.3 0.4 0.5 0.5 0.5 0.4
Honduras HND 2004 Lempira 23503.4 24886.9 6.8 2.4 NA 2.0 21223.1 27632.3 23295.6 25364.9 65749.5 0.4 0.4 25629.9 22787.2 30171.7 84672.6 1.0 1.0 0.6 0.1 18.2 0.4 0.4 0.3 interpolated benchmark market no NA 63.9 0.7 0.3 0.1 0.1 -0.3 0.1 0.3 0.4 0.6 0.5 0.5 0.4
Honduras HND 2005 Lempira 24863.1 27339.3 6.9 2.5 NA 2.0 23171.7 29687.9 25057.7 27758.7 72955.4 0.4 0.4 27180.8 24338.4 31628.4 87856.1 1.0 1.0 0.6 0.1 18.8 0.4 0.4 0.4 interpolated benchmark market no NA 63.3 0.7 0.2 0.1 0.1 -0.3 0.1 0.4 0.4 0.5 0.5 0.5 0.4
Honduras HND 2006 Lempira 26591.9 28317.3 7.0 2.6 NA 2.0 25053.5 32155.2 26569.6 28826.4 81215.1 0.4 0.4 28965.8 26253.9 34069.2 91934.2 1.0 1.0 0.6 0.1 18.9 0.4 0.4 0.4 interpolated benchmark market no NA 63.3 0.8 0.2 0.1 0.1 -0.3 0.1 0.4 0.4 0.6 0.6 0.6 0.4
Honduras HND 2007 Lempira 28196.9 30212.6 7.1 2.8 NA 2.0 26953.7 35926.3 28055.9 30818.3 89601.1 0.4 0.4 30758.2 28137.4 37910.0 98000.6 1.0 1.1 0.6 0.1 18.9 0.4 0.4 0.4 interpolated benchmark market no NA 70.0 0.8 0.3 0.1 0.1 -0.3 0.1 0.4 0.5 0.6 0.6 0.6 0.4
Honduras HND 2008 Lempira 28689.7 29158.4 7.3 2.8 NA 2.0 28240.2 38256.5 28743.0 29235.6 97798.8 0.4 0.4 32059.9 29045.7 39696.9 104314.8 1.1 1.1 0.6 0.1 18.9 0.5 0.5 0.5 interpolated benchmark market no NA 73.3 0.8 0.3 0.1 0.3 -0.5 -0.1 0.5 0.5 0.7 0.7 0.7 0.4
Honduras HND 2009 Lempira 29242.9 29286.4 7.4 2.9 NA 2.0 28587.6 34253.8 29066.9 29677.8 100695.9 0.3 0.4 31280.2 29424.5 35252.2 105943.4 1.0 1.0 0.6 0.1 18.9 0.5 0.5 0.5 interpolated benchmark market no NA 77.8 0.8 0.2 0.1 0.1 -0.3 0.0 0.5 0.5 0.7 0.7 0.6 0.4
Honduras HND 2010 Lempira 30846.4 31120.9 7.5 2.9 NA 2.1 29819.8 36243.6 30734.7 31326.9 104274.6 0.3 0.4 32447.4 30233.1 36788.3 107767.7 1.0 1.0 0.6 0.1 18.9 0.5 0.5 0.5 interpolated benchmark market no NA 77.8 0.8 0.2 0.1 0.1 -0.4 0.1 0.5 0.5 0.7 0.7 0.6 0.4
Honduras HND 2011 Lempira 32806.5 33691.9 7.6 3.1 NA 2.1 31070.4 39269.9 32806.5 33691.9 110959.4 0.3 0.4 33691.9 31070.4 39269.9 110959.4 1.0 1.0 0.6 0.1 18.9 0.5 0.5 0.5 benchmark benchmark market no 0.6 77.8 0.8 0.2 0.1 0.1 -0.4 0.1 0.5 0.6 0.7 0.7 0.6 0.5
Honduras HND 2012 Lempira 33773.0 34602.0 7.7 3.2 NA 2.1 32356.3 40233.3 33701.1 34306.4 114260.5 0.3 0.4 35083.0 32295.1 40251.7 114391.2 1.0 1.0 0.6 0.1 19.5 0.5 0.5 0.5 extrapolated benchmark market no NA 76.0 0.8 0.2 0.1 0.2 -0.4 0.0 0.5 0.6 0.8 0.7 0.7 0.5
Honduras HND 2013 Lempira 33759.9 33670.3 7.8 3.3 NA 2.2 33565.7 40386.9 33537.5 33307.6 118671.2 0.3 0.4 36062.3 33478.7 40477.3 117494.7 1.0 0.9 0.6 0.1 20.3 0.5 0.6 0.6 extrapolated benchmark market no NA 62.2 0.9 0.2 0.1 0.3 -0.4 -0.1 0.5 0.6 0.8 0.7 0.6 0.4
Honduras HND 2014 Lempira 35219.2 34835.7 8.0 3.4 NA 2.2 34384.1 41614.7 35008.4 34377.6 123703.3 0.3 0.4 37174.9 34161.5 41649.4 120378.6 1.0 0.9 0.6 0.1 21.0 0.5 0.6 0.6 extrapolated benchmark market no NA 73.3 0.9 0.2 0.1 0.3 -0.5 -0.1 0.5 0.6 0.8 0.7 0.6 0.4
2- Construya una función que le permita elegir todas las variables de la categoría “Capital detail”, muestre su uso para los datos de Panamá
funcion_para_variable_capital_detail <- function(country,anio_inicio_4,anio_final_4) {
  pwt9.0 %>% filter(country==!!country,year>=anio_inicio_4,year<=anio_final_4) %>%
    select(country,year,ck, rkna, pl_k)-> pais_periodo_6
  pais_periodo_6
}
funcion_para_variable_capital_detail(country = "Panama",anio_inicio_4  = 1950,anio_final_4 = 2014) %>%
 kable(caption = "Probando Función consulta Trade detail, ARG 1990-2014",
 digits = 1,align = "l") %>%
 kable_styling(bootstrap_options = "striped",
 full_width = TRUE)
Probando Función consulta Trade detail, ARG 1990-2014
country year ck rkna pl_k
Panama 1950 3974.4 7910.7 0.2
Panama 1951 4069.1 7852.9 0.2
Panama 1952 4146.3 7819.0 0.2
Panama 1953 4194.0 7919.3 0.2
Panama 1954 4124.0 7955.6 0.2
Panama 1955 4161.5 8047.9 0.2
Panama 1956 4363.7 8225.0 0.2
Panama 1957 4487.4 8409.0 0.2
Panama 1958 4531.0 8648.3 0.2
Panama 1959 4688.3 8946.8 0.2
Panama 1960 4690.7 9182.7 0.2
Panama 1961 4875.8 9531.8 0.2
Panama 1962 5083.9 9964.5 0.2
Panama 1963 5296.1 10468.6 0.2
Panama 1964 5434.3 10876.9 0.2
Panama 1965 5712.3 11372.3 0.2
Panama 1966 6162.0 12153.6 0.2
Panama 1967 6605.5 12955.6 0.2
Panama 1968 7103.5 13884.0 0.2
Panama 1969 7759.3 14962.7 0.2
Panama 1970 8744.9 16607.6 0.2
Panama 1971 9853.1 18485.3 0.2
Panama 1972 11258.1 20871.1 0.2
Panama 1973 12697.5 23114.2 0.2
Panama 1974 14108.2 24912.7 0.3
Panama 1975 15473.7 26847.1 0.3
Panama 1976 16559.0 28760.0 0.3
Panama 1977 17266.5 29532.2 0.3
Panama 1978 18411.5 30826.6 0.4
Panama 1979 19512.7 32049.5 0.4
Panama 1980 20876.9 33797.9 0.4
Panama 1981 22641.3 36217.0 0.4
Panama 1982 24276.0 38632.2 0.4
Panama 1983 24367.4 39796.4 0.5
Panama 1984 24464.8 40627.0 0.4
Panama 1985 24666.5 41321.0 0.5
Panama 1986 25712.5 42623.7 0.5
Panama 1987 26721.9 44186.4 0.5
Panama 1988 26434.9 43668.6 0.4
Panama 1989 25723.7 42711.3 0.5
Panama 1990 25448.7 42280.0 0.5
Panama 1991 25695.9 43114.4 0.5
Panama 1992 26580.9 44983.6 0.5
Panama 1993 28817.3 48241.7 0.5
Panama 1994 31240.9 51560.6 0.5
Panama 1995 34024.9 55079.7 0.5
Panama 1996 36206.4 58254.4 0.5
Panama 1997 39246.6 61684.6 0.5
Panama 1998 43127.2 65850.3 0.5
Panama 1999 47489.8 70507.2 0.5
Panama 2000 51416.7 74266.6 0.5
Panama 2001 53947.7 75946.8 0.4
Panama 2002 56263.8 77322.8 0.4
Panama 2003 60077.4 79968.2 0.4
Panama 2004 65767.7 83185.1 0.4
Panama 2005 73176.2 86754.7 0.4
Panama 2006 81943.7 91417.5 0.4
Panama 2007 92301.1 99499.9 0.5
Panama 2008 103622.5 109266.6 0.5
Panama 2009 112844.9 117965.0 0.5
Panama 2010 124656.5 128348.8 0.5
Panama 2011 142056.7 142056.7 0.6
Panama 2012 158524.4 159050.1 0.6
Panama 2013 179119.1 178155.9 0.5
Panama 2014 201345.0 197037.3 0.5
3- Use las funciones creadas en 1 y 2, para generar 2 dataframes, que muestren los datos de “EE.UU” y “Reino Unido” para el periodo 1990-2000.
dataframe_5<-funcion_para_pais_por_periodo_2(country = c("United States of America","United Kingdom"),anio_inicio_3 = 2000,anio_final_3 = 2014)
print(dataframe_5)
##                     country isocode year       currency    rgdpe    rgdpo
## 1            United Kingdom     GBR 2000 Pound Sterling  2088803  2024305
## 2            United Kingdom     GBR 2002 Pound Sterling  2175498  2086833
## 3            United Kingdom     GBR 2004 Pound Sterling  2289329  2153446
## 4            United Kingdom     GBR 2006 Pound Sterling  2404281  2302793
## 5            United Kingdom     GBR 2008 Pound Sterling  2421008  2323823
## 6            United Kingdom     GBR 2010 Pound Sterling  2288598  2177450
## 7            United Kingdom     GBR 2012 Pound Sterling  2389794  2287097
## 8            United Kingdom     GBR 2014 Pound Sterling  2588791  2493279
## 9  United States of America     USA 2000      US Dollar 13222419 13031820
## 10 United States of America     USA 2002      US Dollar 13591523 13309916
## 11 United States of America     USA 2004      US Dollar 14499944 14204685
## 12 United States of America     USA 2006      US Dollar 15353601 15083465
## 13 United States of America     USA 2008      US Dollar 15357469 15305872
## 14 United States of America     USA 2010      US Dollar 15368666 15250698
## 15 United States of America     USA 2012      US Dollar 15976742 15899255
## 16 United States of America     USA 2014      US Dollar 16704698 16598099
##          pop       emp      avh       hc     ccon      cda    cgdpe    cgdpo
## 1   58.86700  27.31735 1699.107 3.509591  1650633  2054763  2015176  2011111
## 2   59.30123  27.76327 1681.323 3.547473  1776909  2177053  2115245  2088659
## 3   59.84623  28.35924 1654.646 3.585763  1869910  2295413  2232693  2162665
## 4   60.64885  29.00422 1666.594 3.624467  1953109  2437369  2376343  2314418
## 5   61.68962  29.60776 1647.057 3.663588  1999632  2486845  2413115  2318905
## 6   62.71668  29.35739 1643.919 3.703131  1872350  2342944  2279856  2190839
## 7   63.57377  29.89977 1657.981 3.718676  1931668  2432806  2384291  2273115
## 8   64.33135  30.96205 1675.110 3.734285  2041393  2619317  2570680  2465456
## 9  282.89574 139.29607 1848.147 3.578583  9977582 13511612 13035321 12983206
## 10 288.47085 139.08432 1805.477 3.598119 10524779 14027745 13503168 13339370
## 11 293.53089 141.63098 1783.413 3.617761 11251801 15090846 14366189 14232334
## 12 298.86052 146.61525 1778.528 3.642329 12126527 16170304 15318001 15099868
## 13 304.47314 147.52623 1761.316 3.671921 12569281 16125585 15370500 15321926
## 14 309.87617 141.34911 1738.001 3.701753 12764841 15842214 15317448 15273702
## 15 314.79946 144.86284 1753.699 3.712276 13206454 16505245 15946878 15863845
## 16 319.44863 148.46339 1764.597 3.722829 13685949 17113208 16605887 16490883
##          ck      ctfp     cwtfp   rgdpna   rconna    rdana     rkna    rtfpna
## 1   5134820 0.9471037 0.9298179  1849012  1538370  1967642  8162493 0.9527478
## 2   5185287 0.9554247 0.9469899  1947393  1661618  2105152  8467400 0.9799596
## 3   5802754 0.9197314 0.9206511  2062448  1782713  2239532  8781973 1.0136995
## 4   7125918 0.9016753 0.8867161  2180790  1869845  2353489  9129126 1.0300403
## 5   8470947 0.8398271 0.8557630  2226741  1917020  2383924  9483548 1.0242398
## 6   9973122 0.7192608 0.7415940  2166256  1877744  2331174  9652181 0.9896541
## 7  10618961 0.7097169 0.7300584  2235028  1913694  2385488  9856324 0.9937612
## 8  11811327 0.7187873 0.7358745  2350437  1991213  2526581 10107181 1.0041046
## 9  35997032 1.0000000 1.0000000 12975535 10500206 13647352 38439588 0.9205835
## 10 38467564 1.0000000 1.0000000 13336194 11088529 14123900 40679832 0.9388351
## 11 42071616 1.0000000 1.0000000 14229557 11796878 15181932 43024076 0.9741488
## 12 47891040 1.0000000 1.0000000 15097712 12476968 16121374 45671956 0.9863822
## 13 50006724 1.0000000 1.0000000 15321422 12759836 16086510 47779436 0.9808996
## 14 48876336 1.0000000 1.0000000 15273331 12883714 15924426 48728140 0.9990609
## 15 50020716 1.0000000 1.0000000 15863049 13182059 16509182 49960600 1.0051460
## 16 52849892 1.0000000 1.0000000 16490192 13585164 17137356 51190644 1.0141082
##      rwtfpna     labsh      delta        xr    pl_con     pl_da   pl_gdpo
## 1  0.9563877 0.6309897 0.04590227 0.6609308 0.7730830 0.7715102 0.7730696
## 2  0.9992812 0.6373287 0.04374646 0.6672233 0.7911140 0.7943278 0.8044384
## 3  1.0383248 0.6274449 0.04058720 0.5461800 1.0382537 1.0292385 1.0625654
## 4  1.0485817 0.6270030 0.03842190 0.5434867 1.1103029 1.0891278 1.1182685
## 5  1.0343657 0.6201425 0.03771575 0.5439663 1.1878980 1.1576535 1.2046851
## 6  1.0046118 0.6247535 0.03776076 0.6471793 1.1091706 1.0542688 1.0971051
## 7  1.0005206 0.6144362 0.03753510 0.6330470 1.1681970 1.1032517 1.1572107
## 8  1.0181538 0.6125513 0.03676019 0.6077296 1.2356402 1.1626858 1.2123085
## 9  0.9289908 0.6426795 0.05212035 1.0000000 0.8255066 0.7889932 0.7921603
## 10 0.9539754 0.6347357 0.05012728 1.0000000 0.8584893 0.8129588 0.8229414
## 11 0.9972088 0.6222099 0.04774661 1.0000000 0.9002079 0.8544319 0.8624678
## 12 1.0105580 0.6123036 0.04556167 1.0000000 0.9395798 0.9045495 0.9176166
## 13 0.9881262 0.6150548 0.04627780 1.0000000 0.9851168 0.9575869 0.9606227
## 14 0.9994178 0.5952319 0.04710827 1.0000000 0.9968326 0.9769499 0.9797481
## 15 1.0036752 0.6020187 0.04788478 1.0000000 1.0294040 1.0130669 1.0183694
## 16 1.0111778 0.6035975 0.04704589 1.0000000 1.0537966 1.0446941 1.0519795
##           i_cig      i_xm   i_xr i_outlier cor_exp statcap     csh_c     csh_i
## 1     benchmark benchmark market        no      NA      NA 0.6695670 0.2009486
## 2     benchmark benchmark market        no      NA      NA 0.6769798 0.1915792
## 3     benchmark benchmark market        no      NA      NA 0.6916623 0.1967494
## 4     benchmark benchmark market        no      NA      NA 0.6737601 0.2092361
## 5     benchmark benchmark market        no      NA      NA 0.6756253 0.2101049
## 6     benchmark benchmark market        no      NA      NA 0.6522532 0.2148008
## 7     benchmark benchmark market        no      NA      NA 0.6454995 0.2204630
## 8     benchmark benchmark market        no      NA      NA 0.6338343 0.2344086
## 9  interpolated benchmark market        no      NA      NA 0.6758358 0.2722001
## 10    benchmark benchmark market        no      NA      NA 0.6889258 0.2626036
## 11 interpolated benchmark market        no      NA      NA 0.6870325 0.2697411
## 12 interpolated benchmark market        no      NA      NA 0.6949668 0.2678021
## 13 interpolated benchmark market        no      NA      NA 0.7019295 0.2321056
## 14 interpolated benchmark market        no      NA      NA 0.7068287 0.2014818
## 15 extrapolated benchmark market        no      NA      NA 0.7113655 0.2079439
## 16 extrapolated benchmark market        no      NA      NA 0.7167840 0.2078275
##         csh_g      csh_x      csh_m       csh_r      pl_c      pl_i      pl_g
## 1  0.15118961 0.27215350 -0.3255441 0.031685416 0.7461854 0.7650863 0.8922034
## 2  0.17376177 0.25672942 -0.3210518 0.022001587 0.7699903 0.8085992 0.8734126
## 3  0.17296985 0.26966739 -0.3673002 0.036251169 0.9895672 0.9896205 1.2329383
## 4  0.17012757 0.31067675 -0.3984770 0.034676518 1.0533600 1.0037246 1.3358153
## 5  0.18669203 0.27829620 -0.4001066 0.049388219 1.1442323 1.0335227 1.3459213
## 6  0.20237352 0.26941344 -0.3967097 0.057868775 1.0874327 0.8358320 1.1792317
## 7  0.20428941 0.28417677 -0.4131205 0.058691852 1.1654679 0.8529153 1.1768202
## 8  0.19416399 0.27393726 -0.3789007 0.042556617 1.2379344 0.9049899 1.2281511
## 9  0.09266327 0.10603466 -0.1566473 0.009913484 0.7741043 0.6859053 1.2004077
## 10 0.10007539 0.09348762 -0.1526167 0.007524286 0.8035018 0.6761612 1.2370269
## 11 0.10354772 0.09122263 -0.1587287 0.007184889 0.8447491 0.7202677 1.2681735
## 12 0.10812150 0.10488261 -0.1837855 0.008012477 0.8866088 0.7995001 1.2800587
## 13 0.11841653 0.11299946 -0.1750899 0.009638831 0.9310760 0.8602863 1.3054508
## 14 0.12891109 0.11498131 -0.1603202 0.008117276 0.9450076 0.8944773 1.2809926
## 15 0.12112205 0.12747377 -0.1780486 0.010143337 0.9792322 0.9476624 1.3240701
## 16 0.11312606 0.12769014 -0.1767433 0.011315644 1.0038527 1.0083452 1.3702492
##         pl_x      pl_m      pl_k
## 1  0.5387948 0.5723231 0.9000055
## 2  0.5333555 0.5548418 1.0013583
## 3  0.6087583 0.6330809 1.2344007
## 4  0.6377970 0.6666489 1.1702131
## 5  0.7469229 0.7602253 1.1152974
## 6  0.7149853 0.7221244 0.8187803
## 7  0.7449705 0.7338502 0.8415760
## 8  0.7567233 0.7437919 0.8534581
## 9  0.5668258 0.6185908 0.7926286
## 10 0.5558824 0.5905658 0.8231374
## 11 0.6299770 0.6751730 0.8626361
## 12 0.6548091 0.6914976 0.9177476
## 13 0.7507930 0.8069550 0.9606543
## 14 0.7277685 0.7809259 0.9797719
## 15 0.7639757 0.8052509 1.0184206
## 16 0.7692084 0.8049124 1.0520236
dataframe_6<-funcion_para_variable_capital_detail(country = c("Mexico","Canada"),anio_inicio_4 = 2000,anio_final_4 = 2014)
print(dataframe_6)
##    country year      ck    rkna      pl_k
## 1   Canada 2001 3268334 3905941 0.6292847
## 2   Canada 2003 3349291 4151862 0.7568532
## 3   Canada 2005 3865556 4462552 0.8875628
## 4   Canada 2007 4445640 4812567 1.0519462
## 5   Canada 2009 4794360 5106391 1.0221647
## 6   Canada 2011 5427466 5427466 1.1579119
## 7   Canada 2013 5828469 5779532 1.1488672
## 8   Mexico 2000 2683662 3850000 0.6657988
## 9   Mexico 2002 2552782 4150159 0.8063704
## 10  Mexico 2004 3077106 4461555 0.7196133
## 11  Mexico 2006 3770402 4852529 0.7278860
## 12  Mexico 2008 4036200 5305337 0.8066145
## 13  Mexico 2010 5054693 5671746 0.6478299
## 14  Mexico 2012 6089364 6096434 0.6141177
## 15  Mexico 2014 6677512 6498114 0.6044782