Logistic Regression

Anna

01 November, 2020

Linear regression vs. Binary logistic regression

See: https://thestatsgeek.com/2014/02/08/r-squared-in-logistic-regression/

Learning objectives for this class:

Look, it’s binary + regression!

Binary logistic regression assumptions:

Upload the data and have a look at it

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
head(mydata)
##   admit gre  gpa rank
## 1     0 380 3.61    3
## 2     1 660 3.67    3
## 3     1 800 4.00    1
## 4     1 640 3.19    4
## 5     0 520 2.93    4
## 6     1 760 3.00    2
library(psych)
describe(mydata)
##       vars   n   mean     sd median trimmed    mad    min max  range  skew
## admit    1 400   0.32   0.47    0.0    0.27   0.00   0.00   1   1.00  0.78
## gre      2 400 587.70 115.52  580.0  589.06 118.61 220.00 800 580.00 -0.14
## gpa      3 400   3.39   0.38    3.4    3.40   0.40   2.26   4   1.74 -0.21
## rank     4 400   2.48   0.94    2.0    2.48   1.48   1.00   4   3.00  0.10
##       kurtosis   se
## admit    -1.39 0.02
## gre      -0.36 5.78
## gpa      -0.60 0.02
## rank     -0.91 0.05

Check variable scales

the ‘rank’ variable is read as quantitative – correct it and describe the data again:

mydata$admit <- as.factor(mydata$admit)
class(mydata$rank)
## [1] "integer"
table(mydata$rank)
## 
##   1   2   3   4 
##  61 151 121  67
mydata$rank <- factor(mydata$rank)
class(mydata$rank)
## [1] "factor"
describe(mydata)
##        vars   n   mean     sd median trimmed    mad    min max  range  skew
## admit*    1 400   1.32   0.47    1.0    1.27   0.00   1.00   2   1.00  0.78
## gre       2 400 587.70 115.52  580.0  589.06 118.61 220.00 800 580.00 -0.14
## gpa       3 400   3.39   0.38    3.4    3.40   0.40   2.26   4   1.74 -0.21
## rank*     4 400   2.48   0.94    2.0    2.48   1.48   1.00   4   3.00  0.10
##        kurtosis   se
## admit*    -1.39 0.02
## gre       -0.36 5.78
## gpa       -0.60 0.02
## rank*     -0.91 0.05
describeBy(mydata, mydata$admit)
## 
##  Descriptive statistics by group 
## group: 0
##        vars   n   mean     sd median trimmed    mad    min max  range  skew
## admit*    1 273   1.00   0.00   1.00    1.00   0.00   1.00   1   0.00   NaN
## gre       2 273 573.19 115.83 580.00  574.25 118.61 220.00 800 580.00 -0.10
## gpa       3 273   3.34   0.38   3.34    3.35   0.40   2.26   4   1.74 -0.07
## rank*     4 273   2.64   0.92   3.00    2.68   1.48   1.00   4   3.00 -0.03
##        kurtosis   se
## admit*      NaN 0.00
## gre       -0.38 7.01
## gpa       -0.55 0.02
## rank*     -0.89 0.06
## ------------------------------------------------------------ 
## group: 1
##        vars   n   mean     sd median trimmed    mad    min max  range  skew
## admit*    1 127   2.00   0.00   2.00    2.00   0.00   2.00   2   0.00   NaN
## gre       2 127 618.90 108.88 620.00  620.39 118.61 300.00 800 500.00 -0.17
## gpa       3 127   3.49   0.37   3.54    3.51   0.40   2.42   4   1.58 -0.53
## rank*     4 127   2.15   0.92   2.00    2.07   1.48   1.00   4   3.00  0.44
##        kurtosis   se
## admit*      NaN 0.00
## gre       -0.35 9.66
## gpa       -0.38 0.03
## rank*     -0.64 0.08

The share of admit = 1 is 0.32. It means that, without any information, there is a 0.68 probability that admit = 0.

Missing data

Check for the share of missing data (if <= 5%, could be imputed). If much data is missing, consider possible biases in results or using the variable with many missings in robustness check models but not in the main model.

library(Amelia)
library(mlbench)
missmap(mydata, col=c("blue", "red"), legend = T, main = "Missing values vs observed")

There are no blue cells, which means there is no missing data in this dataset.

Check the cross-tabs of interest :

xtabs(~ admit + rank, data = mydata)
##      rank
## admit  1  2  3  4
##     0 28 97 93 55
##     1 33 54 28 12

Estimate the model and check significance of predictors

mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
summary(mylogit)
## 
## Call:
## glm(formula = admit ~ gre + gpa + rank, family = "binomial", 
##     data = mydata)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6268  -0.8662  -0.6388   1.1490   2.0790  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -3.989979   1.139951  -3.500 0.000465 ***
## gre          0.002264   0.001094   2.070 0.038465 *  
## gpa          0.804038   0.331819   2.423 0.015388 *  
## rank2       -0.675443   0.316490  -2.134 0.032829 *  
## rank3       -1.340204   0.345306  -3.881 0.000104 ***
## rank4       -1.551464   0.417832  -3.713 0.000205 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 499.98  on 399  degrees of freedom
## Residual deviance: 458.52  on 394  degrees of freedom
## AIC: 470.52
## 
## Number of Fisher Scoring iterations: 4
anova(mylogit, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: admit
## 
## Terms added sequentially (first to last)
## 
## 
##      Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
## NULL                   399     499.98              
## gre   1  13.9204       398     486.06 0.0001907 ***
## gpa   1   5.7122       397     480.34 0.0168478 *  
## rank  3  21.8265       394     458.52 7.088e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(equatiomatic)
extract_eq(mylogit, wrap = T)

\[ \begin{aligned} \log\left[ \frac { P( \operatorname{admit} = \operatorname{1} ) }{ 1 - P( \operatorname{admit} = \operatorname{1} ) } \right] &= \alpha + \beta_{1}(\operatorname{gre}) + \beta_{2}(\operatorname{gpa}) + \beta_{3}(\operatorname{rank}_{\operatorname{2}})\ + \\ &\quad \beta_{4}(\operatorname{rank}_{\operatorname{3}}) + \beta_{5}(\operatorname{rank}_{\operatorname{4}}) + \epsilon \end{aligned} \]

library(broom)
tidy(mylogit)
## # A tibble: 6 x 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept) -3.99      1.14        -3.50 0.000465
## 2 gre          0.00226   0.00109      2.07 0.0385  
## 3 gpa          0.804     0.332        2.42 0.0154  
## 4 rank2       -0.675     0.316       -2.13 0.0328  
## 5 rank3       -1.34      0.345       -3.88 0.000104
## 6 rank4       -1.55      0.418       -3.71 0.000205
augment(mylogit)
## # A tibble: 400 x 10
##    admit   gre   gpa rank  .fitted .resid .std.resid    .hat .sigma  .cooksd
##    <fct> <int> <dbl> <fct>   <dbl>  <dbl>      <dbl>   <dbl>  <dbl>    <dbl>
##  1 0       380  3.61 3     -1.57   -0.616     -0.621 0.0161    1.08 0.000579
##  2 1       660  3.67 3     -0.885   1.57       1.58  0.0109    1.08 0.00450 
##  3 1       800  4    1      1.04    0.779      0.788 0.0234    1.08 0.00145 
##  4 1       640  3.19 4     -1.53    1.86       1.87  0.0167    1.08 0.0132  
##  5 0       520  2.93 4     -2.01   -0.502     -0.505 0.0132    1.08 0.000302
##  6 1       760  3    2     -0.532   1.41       1.43  0.0213    1.08 0.00631 
##  7 1       560  2.98 1     -0.326   1.32       1.33  0.0221    1.08 0.00535 
##  8 0       400  3.08 2     -1.28   -0.699     -0.704 0.0129    1.08 0.000610
##  9 1       540  3.39 3     -1.38    1.79       1.80  0.00848   1.08 0.00573 
## 10 0       700  3.92 2      0.0715 -1.21      -1.22  0.0145    1.08 0.00268 
## # ... with 390 more rows
glance(mylogit)
## # A tibble: 1 x 8
##   null.deviance df.null logLik   AIC   BIC deviance df.residual  nobs
##           <dbl>   <int>  <dbl> <dbl> <dbl>    <dbl>       <int> <int>
## 1          500.     399  -229.  471.  494.     459.         394   400

This model output shows that all predictors are significant, therefore, we look at the estimates.

Positive estimates indicate that, as the predictor changes from 0 to 1 (dummy) or increases by 1 (continuous), the chances of admit increase. A negative estimate shows a decrease of chances (in the log of odds form). To interpret the coefficients in a more intuitive way, we get the odds or, better, predicted probabilities (see next slide).

Change the reference level of a categorical predictor:

mydatarank2 <- within(mydata, rank <- relevel(rank, ref = 2))
mylogitrank2 <- update(mylogit, data = mydatarank2)
summary(mylogitrank2)
## 
## Call:
## glm(formula = admit ~ gre + gpa + rank, family = "binomial", 
##     data = mydatarank2)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6268  -0.8662  -0.6388   1.1490   2.0790  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -4.665422   1.109370  -4.205 2.61e-05 ***
## gre          0.002264   0.001094   2.070   0.0385 *  
## gpa          0.804038   0.331819   2.423   0.0154 *  
## rank1        0.675443   0.316490   2.134   0.0328 *  
## rank3       -0.664761   0.283319  -2.346   0.0190 *  
## rank4       -0.876021   0.366735  -2.389   0.0169 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 499.98  on 399  degrees of freedom
## Residual deviance: 458.52  on 394  degrees of freedom
## AIC: 470.52
## 
## Number of Fisher Scoring iterations: 4

Interpretation

First, let’s recall how logit(p/(1-p)) relates to p, the probability of the event:

Warming-up: What is the odds ratio of being drown when wearing a lab coat as compared to not wearing one?

Start with getting the coefficients in odds (+ their confidence intervals)

exp(cbind(OR = coef(mylogit), confint(mylogit)))
##                    OR       2.5 %    97.5 %
## (Intercept) 0.0185001 0.001889165 0.1665354
## gre         1.0022670 1.000137602 1.0044457
## gpa         2.2345448 1.173858216 4.3238349
## rank2       0.5089310 0.272289674 0.9448343
## rank3       0.2617923 0.131641717 0.5115181
## rank4       0.2119375 0.090715546 0.4706961

Continue with calculating the predicted probability of admission at each value of rank, holding gre and gpa at their means

Create a new dataset with mean values of gre and gpa and all four ranks of previous schools:

newdata1 <- with(mydata, data.frame(gre = mean(gre), 
                        gpa = mean(gpa), 
                        rank = factor(1:4)))
newdata1 
##     gre    gpa rank
## 1 587.7 3.3899    1
## 2 587.7 3.3899    2
## 3 587.7 3.3899    3
## 4 587.7 3.3899    4
  1. for rank:
newdata1$rankP <- predict(mylogit, newdata = newdata1, type = "response")
newdata1 ## predicted probabilities for different ranks at the mean levels of gre and gpa.
##     gre    gpa rank     rankP
## 1 587.7 3.3899    1 0.5166016
## 2 587.7 3.3899    2 0.3522846
## 3 587.7 3.3899    3 0.2186120
## 4 587.7 3.3899    4 0.1846684
  1. for gre levels (we pick gre for it has a larger variance):
newdata2 <- with(mydata, data.frame(gre = rep(seq(from = 200, to = 800, length.out = 100), 4), 
                                    gpa = mean(gpa), rank = factor(rep(1:4, each = 100))))

#Tip! If you ever need to predict on a combination of factor variables, use tidyr::crossing() for creating the new data

newdata3 <- cbind(newdata2, predict(mylogit, newdata = newdata2, type = "response", se = T))

Plot the predicted values with confidence intervals (rank * gre):

newdata3 <- within(newdata3, {
  PredictedProb <- fit
  LL <- fit - (1.96 * se.fit)
  UL <- fit + (1.96 * se.fit)
})
head(newdata3)
##        gre    gpa rank       fit    se.fit residual.scale        UL         LL
## 1 200.0000 3.3899    1 0.3075737 0.1096320              1 0.5224523 0.09269508
## 2 206.0606 3.3899    1 0.3105042 0.1089936              1 0.5241316 0.09687675
## 3 212.1212 3.3899    1 0.3134499 0.1083418              1 0.5257999 0.10110004
## 4 218.1818 3.3899    1 0.3164108 0.1076768              1 0.5274574 0.10536425
## 5 224.2424 3.3899    1 0.3193867 0.1069990              1 0.5291047 0.10966861
## 6 230.3030 3.3899    1 0.3223773 0.1063086              1 0.5307422 0.11401236
##   PredictedProb
## 1     0.3075737
## 2     0.3105042
## 3     0.3134499
## 4     0.3164108
## 5     0.3193867
## 6     0.3223773
library(ggplot2)
ggplot(newdata3, aes(x = gre, y = PredictedProb)) +
  geom_ribbon(aes(ymin = LL, ymax = UL, fill = rank), alpha = 0.2) +
  geom_line(aes(colour = rank), size = 0.75) +
  ylim(0, 1)

For gre <=380, there is no difference between the graduates of rank 1-rank 4 (universities/colleges). With higher gre grades, rank 1 school graduates have higher probability to be admitted than rank 3 - rank 4 graduates. At the same time, rank 2 school graduates are not statistically significantly different from either rank 1, or rank 3, or rank 4 graduates.

  1. for gpa levels:
#newdata4 <- with(mydata, data.frame(gre = mean(gre), 
#                                    gpa = rep(seq(from = 2.2, to = 4.0, length.out = 18), 4),
#                                    rank = factor(rep(1:4, each = 18))))

# compare the old routine with 'crossing' from tidyr package:

library(tidyr)
newdata4 <- crossing(gre = mean(mydata$gre),
                     gpa = seq(from = 2.2, to = 4.0, length.out = 18),
                     rank = factor(1:4))


newdata5 <- cbind(newdata4, predict(mylogit, newdata = newdata4, type = "link", se = T))
newdata5 <- within(newdata5, {
  PredictedProb <- plogis(fit)
  LL <- plogis(fit - (1.96 * se.fit))
  UL <- plogis(fit + (1.96 * se.fit))
})
ggplot(newdata5, aes(x = gpa, y = PredictedProb)) +
  geom_ribbon(aes(ymin = LL, ymax = UL, fill = rank), alpha = 0.2) +
  geom_line(aes(colour = rank), size = 0.75) +
  ylim(0, 1)

There is a similar story here: if gpa is <= 2.8, there is no difference across (university/college) ranks. For higher gpa levels, rank 1 graduates have higher probabilities than rank 3 - rank 4 school graduates.

Overall goodness-of-fit measures

Recall that:

  1. In linear regression, there are the R-squared and the F-test to evaluate the overall model quality.

  2. In linear regression, the R-squared shows the explained share of the outcome’s variance, while the F-test says whether the model is better than no model (= the intercept = the mean).

In a binary logistic model, the overall goodness-of-fit measures are based on:

See https://www.r-bloggers.com/evaluating-logistic-regression-models/

Let’s look at them, one by one.

Likelihood Ratio for the overall model fit

The loglikelihood (LL) is the measure of discrepancy between the model and the data.

The closer LL to zero, the better.

Based on the LL are:

We can compare them across nested models

library(lmtest)
mymodel2 <- glm(admit ~ gre + rank, data = mydata, family = "binomial")
mymodel3 <- glm(admit ~ rank, data = mydata, family = "binomial")
lrtest(mymodel3, mymodel2, mylogit) #you want LogLik closer to 0.
## Likelihood ratio test
## 
## Model 1: admit ~ rank
## Model 2: admit ~ gre + rank
## Model 3: admit ~ gre + gpa + rank
##   #Df  LogLik Df   Chisq Pr(>Chisq)   
## 1   4 -237.48                         
## 2   5 -232.27  1 10.4349   0.001237 **
## 3   6 -229.26  1  6.0143   0.014190 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mymodel3, mymodel2, mylogit, test ="Chisq") # This is JUST THE SAME (look at p-values), but it is -2LL.
## Analysis of Deviance Table
## 
## Model 1: admit ~ rank
## Model 2: admit ~ gre + rank
## Model 3: admit ~ gre + gpa + rank
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)   
## 1       396     474.97                        
## 2       395     464.53  1  10.4349 0.001237 **
## 3       394     458.52  1   6.0143 0.014190 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These are two equivalent functions. Both outputs say that the 2nd model is significantly better than the 1st one, and that the 3rd model is significantly better than the 2nd one.

library(sjPlot)
tab_model(mymodel3, mymodel2, mylogit, show.aic = T, show.loglik = T, bootstrap = T, dv.labels = c('mymodel3', 'mymodel2', 'mylogit'))
  mymodel3 mymodel2 mylogit
Predictors Odds Ratios CI p Odds Ratios CI p Odds Ratios CI p
(Intercept) 1.19 0.69 – 2.00 0.454 0.16 0.04 – 0.59 0.004 0.02 0.00 – 0.14 <0.001
rank [2] 0.47 0.24 – 0.87 0.018 0.50 0.25 – 0.93 0.026 0.50 0.28 – 0.93 0.030
rank [3] 0.25 0.13 – 0.49 <0.001 0.28 0.14 – 0.52 <0.001 0.26 0.13 – 0.53 <0.001
rank [4] 0.18 0.07 – 0.39 <0.001 0.20 0.08 – 0.42 <0.001 0.21 0.08 – 0.45 0.002
gre 1.00 1.00 – 1.01 0.002 1.00 1.00 – 1.00 0.038
gpa 2.28 1.18 – 4.61 0.016
Observations 400 400 400
R2 Tjur 0.063 0.087 0.102
AIC 482.967 474.532 470.517
log-Likelihood -237.483 -232.266 -229.259

We choose the best model (mylogit) and interpret it.

Pseudo-R-squared measures:

#install.packages("pscl")
library(pscl)
pR2(mylogit)
## fitting null model for pseudo-r2
##           llh       llhNull            G2      McFadden          r2ML 
## -229.25874624 -249.98825878   41.45902508    0.08292194    0.09845702 
##          r2CU 
##    0.13799580

See:https://www.rdocumentation.org/packages/pscl/versions/1.5.2/topics/pR2 See: https://is.muni.cz/el/1423/podzim2010/SPP456/Regression_Models_For_Categorical_Dependent_Variables_USING_STATA.pdf

library(rcompanion)
compareGLM(mymodel3, mymodel2, mylogit)
## $Models
##   Formula                   
## 1 "admit ~ rank"            
## 2 "admit ~ gre + rank"      
## 3 "admit ~ gre + gpa + rank"
## 
## $Fit.criteria
##   Rank Df.res   AIC  AICc   BIC McFadden Cox.and.Snell Nagelkerke   p.value
## 1    4    396 485.0 485.1 504.9  0.05002       0.06061    0.08495 7.399e-06
## 2    5    395 476.5 476.7 500.5  0.07089       0.08480    0.11890 1.781e-07
## 3    6    394 472.5 472.8 500.5  0.08292       0.09846    0.13800 3.528e-08

A technical note: if you use grouped data, pseudo-R-squared measures are likely to be overestimated by several times. How to deal with it? Recalculate the model fit by expanding your data back to individual observations.

See: https://stats.stackexchange.com/questions/183699/how-to-calculate-pseudo-r2-when-using-logistic-regression-on-aggregated-data-fil

In addition, “R-squared says nothing about prediction error” See: https://data.library.virginia.edu/is-r-squared-useless/

Hosmer-Lemeshow Test: search for evidence of poor fit

A well-fitting model shows no significant difference between the model and the observed data

In this test, a well-fitting model should report a p-value greater than 0.05

“If the p-value is small, this is indicative of poor fit. A large p-value does not mean the model fits well, since lack of evidence against a null hypothesis is not equivalent to evidence in favour of the alternative hypothesis. In particular, if our sample size is small, a high p-value from the test may simply be a consequence of the test having lower power to detect mis-specification, rather than being indicative of good fit.”

See: http://thestatsgeek.com/2014/02/16/the-hosmer-lemeshow-goodness-of-fit-test-for-logistic-regression/

#install.packages("generalhoslem")
library(generalhoslem)
logitgof(mydata$admit, fitted(mylogit), g = 10) #g should be larger than the number of predictors; df = g - 2
## 
##  Hosmer and Lemeshow test (binary model)
## 
## data:  mydata$admit, fitted(mylogit)
## X-squared = 11.085, df = 8, p-value = 0.1969

Due to low power, alternative have been suggested to replace the Hosmer-Lemeshow test, they are the Osius-Rojek and the Stukel test (see functions to calculate them here: http://www.chrisbilder.com/categorical/Chapter5/AllGOFTests.R )

For the matter of comparison, let’s try them as well:

o.r.test(mylogit)
## z =  0.4920821 with p-value =  0.6226613
stukel.test(mylogit)
## Stukel Test Stat =  0.1663363 with p-value =  0.9201964

The results are similar: since p-value is above the threshold of 0.05, there is no statistical evidence of the poor fit of our model based on the difference in the occurence of event between the fitted and the observed values.

Classification tables / Hit ratio

See: https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/One_ROC_Curve_and_Cutoff_Analysis.pdf

A technical note: different criteria are used as success rates across different life areas (sensitivity and specificity vs. precision and recall), see, e.g. https://uberpython.wordpress.com/2012/01/01/precision-recall-sensitivity-and-specificity/

First, we need to create a training and a test subsamples and fit a model on the training data:

bound <- floor((nrow(mydata)/4)*3)     #define 75% of training and test set (could be 50%, 60%)
set.seed(123)
df <- mydata[sample(nrow(mydata)), ]   #sample 400 random rows out of the data
df.train <- df[1:bound, ]              #get training set
df.test <- df[(bound+1):nrow(df), ]    #get test set

mylogit1 <- glm(admit ~ gre + gpa + rank, data = df.train, family = "binomial", 
                na.action = na.omit)

Then we count the proportion of outcomes accurately predicted on the test data:

pred <- format(round(predict(mylogit1, newdata = df.test, type = "response")))
accuracy <- table(pred, df.test[,"admit"])
sum(diag(accuracy))/sum(accuracy)
## [1] 0.7
xtabs(~ pred + df.test$admit)
##     df.test$admit
## pred  0  1
##    0 63 19
##    1 11  7
library(caret)
#confusionMatrix(data=pred, df.test$admit) 

This may give back the error message: “Error: data and reference should be factors with the same levels.”

If this happens, try the following:

confusionMatrix(table(pred, df.test$admit))
## Confusion Matrix and Statistics
## 
##     
## pred  0  1
##    0 63 19
##    1 11  7
##                                           
##                Accuracy : 0.7             
##                  95% CI : (0.6002, 0.7876)
##     No Information Rate : 0.74            
##     P-Value [Acc > NIR] : 0.8474          
##                                           
##                   Kappa : 0.1339          
##                                           
##  Mcnemar's Test P-Value : 0.2012          
##                                           
##             Sensitivity : 0.8514          
##             Specificity : 0.2692          
##          Pos Pred Value : 0.7683          
##          Neg Pred Value : 0.3889          
##              Prevalence : 0.7400          
##          Detection Rate : 0.6300          
##    Detection Prevalence : 0.8200          
##       Balanced Accuracy : 0.5603          
##                                           
##        'Positive' Class : 0               
## 

On Kappa (the relative improvement of predicted accuracy over “ground truth”), see: https://stats.stackexchange.com/questions/82162/cohens-kappa-in-plain-english

Conclusion: Our model fit is not statistically significantly better than no model at all (Null Information Rate).

But there are only 300 + 100 observations. We need more observations and, probably, more predictors.

See: https://www.hranalytics101.com/how-to-assess-model-accuracy-the-basics/#confusion-matrix-and-the-no-information-rate

Let’s ROC! (‘receiver operating characteristic’)

First, let’s learn by looking at a very well-fitting and a poorly fitting model.

Here is an ROC curve with a strong predictor.

By contrast, this one is a very poor predictor.

library(pROC)
# Compute AUC for predicting admit with continuous variables:
f1 <- roc(admit ~ gre + gpa, data = df.train) 
ggroc(f1) + theme_bw() + geom_abline(intercept = 1, slope = 1)

f1$gre
## 
## Call:
## roc.formula(formula = admit ~ gre, data = df.train)
## 
## Data: gre in 199 controls (admit 0) < 101 cases (admit 1).
## Area under the curve: 0.5868

“A model with high discrimination ability will have high sensitivity and specificity simultaneously, leading to an ROC curve which goes close to the top left corner of the plot. A model with no discrimination ability will have an ROC curve which is the 45 degree diagonal line.” See: https://thestatsgeek.com/2014/05/05/area-under-the-roc-curve-assessing-discrimination-in-logistic-regression/

gre is a bad fit (< 0.80)

gpa is a rather poor fit as well (AUROC < 0.80).

To report average marginal effects that are comparable across models:

See: https://cran.r-project.org/web/packages/margins/vignettes/Introduction.html

#install.packages("margins")
library(margins)
m <- margins(mylogit, type = "response")
summary(m)
##  factor     AME     SE       z      p   lower   upper
##     gpa  0.1564 0.0630  2.4846 0.0130  0.0330  0.2798
##     gre  0.0004 0.0002  2.1068 0.0351  0.0000  0.0009
##   rank2 -0.1566 0.0736 -2.1272 0.0334 -0.3009 -0.0123
##   rank3 -0.2872 0.0733 -3.9170 0.0001 -0.4309 -0.1435
##   rank4 -0.3212 0.0802 -4.0052 0.0001 -0.4784 -0.1640

Interpretation:

Overall: “For categorical variables with more than two possible values, e.g. religion, the marginal effects show you the difference in the predicted probabilities for cases in one category relative to the reference category.”

See: https://www3.nd.edu/~rwilliam/stats3/Margins02.pdf

plot(m) # gre and gpa seem to be mixed up :( Give preference to the table values.

Units are changes in predicted probability of Y.

plot(m, type = "link")

Units are Y-variable natural units.

A technical note: AME is, in essence, “the slope of multi-dimensional surface with respect to one dimension of that surface. Partial derivatives can translate the coefficients to the marginal (in % of probability) contribution of X to the outcome.”

“For the non-numeric classes, discrete differences rather than partial derivatives are reported as the partial derivative of a discrete variable is undefined” See: https://cran.r-project.org/web/packages/margins/vignettes/TechnicalDetails.pdf

Now, if you want to calculate AMEs at more than just the mean values, you can try a “five-numbers” approach by estimating AME at the minimal, 25th, 50th, 75th percentiles, and the maximum of a continuous predictor (here, it is gre):

margins(mylogit, at = list(gre = fivenum(mydata$gre))) 
##  at(gre)       gre    gpa   rank2   rank3   rank4
##      220 0.0003054 0.1084 -0.1253 -0.2090 -0.2282
##      520 0.0004254 0.1510 -0.1571 -0.2810 -0.3120
##      580 0.0004465 0.1585 -0.1606 -0.2920 -0.3257
##      660 0.0004716 0.1675 -0.1632 -0.3039 -0.3411
##      800 0.0005043 0.1791 -0.1620 -0.3155 -0.3585
cplot(mylogit, "gre", what = "prediction", main = "Predicted admit, given gre")
##       xvals     yvals     upper      lower
## 1  220.0000 0.1912913 0.3293332 0.05324935
## 2  244.1667 0.1999003 0.3349924 0.06480810
## 3  268.3333 0.2087967 0.3405397 0.07705355
## 4  292.5000 0.2179811 0.3459866 0.08997559
## 5  316.6667 0.2274534 0.3513519 0.10355486
## 6  340.8333 0.2372125 0.3566644 0.11776057
## 7  365.0000 0.2472562 0.3619647 0.13254773
## 8  389.1667 0.2575817 0.3673097 0.14785363
## 9  413.3333 0.2681847 0.3727760 0.16359328
## 10 437.5000 0.2790601 0.3784663 0.17965382
## 11 461.6667 0.2902016 0.3845153 0.19588791
## 12 485.8333 0.3016019 0.3910967 0.21210700
## 13 510.0000 0.3132523 0.3984280 0.22807664
## 14 534.1667 0.3251433 0.4067686 0.24351805
## 15 558.3333 0.3372640 0.4164053 0.25812272
## 16 582.5000 0.3496025 0.4276189 0.27158598
## 17 606.6667 0.3621457 0.4406338 0.28365750
## 18 630.8333 0.3748795 0.4555665 0.29419252
## 19 655.0000 0.3877889 0.4723996 0.30317809
## 20 679.1667 0.4008577 0.4909949 0.31072049

options(scipen = 999)
cplot(mylogit, "gre", what = "effect", main = "Average Marginal Effect of gre")

In the first plot above, Y-axes are different. The upper one shows predicted probabilities (fitted values from predict()), the lower one shows the AME in the outcome (calculated with margins()).

margins(mylogit, at = list(gpa = fivenum(mydata$gpa))) #fivenum are min, 25%, 50%(median), 75%, and maximum.
##  at(gpa)       gre    gpa   rank2   rank3   rank4
##    2.260 0.0002921 0.1037 -0.1209 -0.2001 -0.2181
##    3.130 0.0004167 0.1479 -0.1561 -0.2768 -0.3068
##    3.395 0.0004501 0.1598 -0.1619 -0.2948 -0.3289
##    3.670 0.0004795 0.1703 -0.1645 -0.3087 -0.3470
##    4.000 0.0005052 0.1794 -0.1627 -0.3174 -0.3606
cplot(mylogit, "gpa", what = "prediction", main = "Predicted admit, given gpa")
##     xvals     yvals     upper      lower
## 1  2.2600 0.1798308 0.2984691 0.06119251
## 2  2.3325 0.1885895 0.3051858 0.07199319
## 3  2.4050 0.1976720 0.3118808 0.08346312
## 4  2.4775 0.2070802 0.3185673 0.09559314
## 5  2.5500 0.2168152 0.3252662 0.10836423
## 6  2.6225 0.2268769 0.3320085 0.12174533
## 7  2.6950 0.2372641 0.3388377 0.13569055
## 8  2.7675 0.2479744 0.3458129 0.15013578
## 9  2.8400 0.2590039 0.3530130 0.16499472
## 10 2.9125 0.2703476 0.3605409 0.18015436
## 11 2.9850 0.2819991 0.3685276 0.19547065
## 12 3.0575 0.2939505 0.3771355 0.21076543
## 13 3.1300 0.3061923 0.3865574 0.22582718
## 14 3.2025 0.3187139 0.3970088 0.24041895
## 15 3.2750 0.3315028 0.4087086 0.25429694
## 16 3.3475 0.3445454 0.4218506 0.26724013
## 17 3.4200 0.3578264 0.4365681 0.27908480
## 18 3.4925 0.3713294 0.4529077 0.28975110
## 19 3.5650 0.3850364 0.4708228 0.29925010
## 20 3.6375 0.3989283 0.4901876 0.30766903

cplot(mylogit, "gpa", what = "effect", main = "Average Marginal Effect of gpa")

Diagnostics

See: https://data.princeton.edu/wws509/notes/c3s8

mydata$admit <- as.numeric(as.character(mydata$admit))
arm::binnedplot(mydata$gre, mydata$admit)

arm::binnedplot(mydata$gpa, mydata$admit)

linearity of the logit over the covariates: Plotting of residuals against individual predictors or linear predictor is helpful in identifying non-linearity.

car::residualPlots(mylogit)

##      Test stat Pr(>|Test stat|)
## gre     0.1082           0.7422
## gpa     0.0835           0.7726
## rank

If the model is properly specified, no additional predictors that are statistically significant can be found.

If some continuous predictor’s stat in this test is significant, test a new model where you include its quadratic term.

car::marginalModelPlots(mylogit)

Marginal model plot drawing response variable against each predictors and linear predictor. Fitted values are compared to observed data.

no multicollinearity (GVIF >10 could be a problem)

library(car)
vif(mylogit)
##          GVIF Df GVIF^(1/(2*Df))
## gre  1.134377  1        1.065071
## gpa  1.155902  1        1.075129
## rank 1.025759  3        1.004248

looks OK, GVIFs are ~1.

outliers,high leverage, and influential observations

See: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4885900/

outlierTest(mylogit)
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
##     rstudent unadjusted p-value Bonferroni p
## 198 2.106376           0.035172           NA
influenceIndexPlot(mylogit, id.n. = 3)

Obs.198 has the largest residual, but it is not significant = no problem here.

We want to see 3 “most outlying outliers”.

Cook’s distance

influencePlot(mylogit, col = "red", id.n. = 3)#obs.373 has the largest leverage; obs.198 is most influential.

##      StudRes        Hat       CookD
## 40  2.083822 0.01235387 0.015563562
## 156 2.057274 0.01487512 0.017574208
## 198 2.106376 0.01472214 0.019411921
## 356 1.199803 0.04133761 0.007569415
## 373 1.428058 0.04921401 0.015025521

To check the effect of the outlier, you can estimate the model without it and compare the results:

model2 <- update(mylogit, subset = c(-373,-198))
compareCoefs(mylogit, model2)#no coefficients change significantly, none of them changes significance level.
## Calls:
## 1: glm(formula = admit ~ gre + gpa + rank, family = "binomial", data = 
##   mydata)
## 2: glm(formula = admit ~ gre + gpa + rank, family = "binomial", data = 
##   mydata, subset = c(-373, -198))
## 
##             Model 1 Model 2
## (Intercept)   -3.99   -4.33
## SE             1.14    1.17
##                            
## gre         0.00226 0.00232
## SE          0.00109 0.00111
##                            
## gpa           0.804   0.879
## SE            0.332   0.340
##                            
## rank2        -0.675  -0.626
## SE            0.316   0.319
##                            
## rank3        -1.340  -1.300
## SE            0.345   0.347
##                            
## rank4        -1.551  -1.598
## SE            0.418   0.429
## 

There are no changes in the sign or magnitude of coefficients, which means there is no need to exclude any observations from mylogit.

Self-check questions:

Useful resources on binary logistic regression with examples and discussion:

Binary Logistic Regression vs. Decision Trees

Based on: https://www.datacamp.com/community/tutorials/decision-trees-R See the text for interpretation of results.

Decision Trees: Some Theory

Decision Trees: Example with CRT

library(tree)
mydata$admit <- as.factor(mydata$admit)
tree_admit <- tree(admit ~ ., data = mydata)
summary(tree_admit)
## 
## Classification tree:
## tree(formula = admit ~ ., data = mydata)
## Number of terminal nodes:  9 
## Residual mean deviance:  1.08 = 422.2 / 391 
## Misclassification error rate: 0.2675 = 107 / 400
plot(tree_admit)
text(tree_admit, pretty = 0)

set.seed(123)

train=sample(1:nrow(mydata), 250)
test = mydata[-train,]
head(train)
## [1] 179  14 195 306 118 299
tree_admit <- tree(admit ~ ., data=mydata, subset=train)
plot(tree_admit) 
text(tree_admit, pretty = 0)

pruned_tree <- prune.misclass(tree_admit)
plot(pruned_tree)

tree_pred = predict(tree_admit, mydata[-train,], type = "class")
with(mydata[-train,], table(tree_pred, admit))
##          admit
## tree_pred  0  1
##         0 88 26
##         1 20 16
pred <- mydata[-train, ]
#install.packages("caret")
library(caret)
#install.packages("e1071")
library(e1071)
confusionMatrix(table(tree_pred, pred$admit))
## Confusion Matrix and Statistics
## 
##          
## tree_pred  0  1
##         0 88 26
##         1 20 16
##                                           
##                Accuracy : 0.6933          
##                  95% CI : (0.6129, 0.7659)
##     No Information Rate : 0.72            
##     P-Value [Acc > NIR] : 0.7947          
##                                           
##                   Kappa : 0.2047          
##                                           
##  Mcnemar's Test P-Value : 0.4610          
##                                           
##             Sensitivity : 0.8148          
##             Specificity : 0.3810          
##          Pos Pred Value : 0.7719          
##          Neg Pred Value : 0.4444          
##              Prevalence : 0.7200          
##          Detection Rate : 0.5867          
##    Detection Prevalence : 0.7600          
##       Balanced Accuracy : 0.5979          
##                                           
##        'Positive' Class : 0               
## 

Literature-based summary on alternative methods: