Medical Informatics: Chen, L., Gu, Y., Ji, X., Sun, Z., Li, H., Gao, Y., & Huang, Y. (2020). Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning. Journal of the American Medical Informatics Association : JAMIA, 27(1), 56–64.
Plant Science: Braun, I. R., & Lawrence-Dill, C. J. (2019). Automated methods enable direct computation on phenotypic descriptions for novel candidate gene prediction. Frontiers in Plant Science, 10, 1629.
Civil Engineering: Le, T., & David Jeong, H. (2017). NLP-based approach to semantic classification of heterogeneous transportation asset data terminology. Journal of Computing in Civil Engineering, 31(6), 04017057.
Economics: Hansen, S., McMahon, M., & Prat, A. (2018). Transparency and deliberation within the FOMC: a computational linguistics approach. The Quarterly Journal of Economics, 133(2), 801-870.
Political Science: Benoit, K., Munger, K., & Spirling, A. (2019). Measuring and explaining political sophistication through textual complexity. American Journal of Political Science, 63(2), 491-508.
Urban planning: Plunz, R. A., Zhou, Y., Vintimilla, M. I. C., Mckeown, K., Yu, T., Uguccioni, L., & Sutto, M. P. (2019). Twitter sentiment in New York City parks as measure of well-being. Landscape and urban planning, 189, 235-246.
Cultural Heritage: Machidon, O. M., Tavčar, A., Gams, M., & Duguleană, M. (2020). CulturalERICA: A conversational agent improving the exploration of European cultural heritage. Journal of Cultural Heritage, 41, 152-165.