Title: Chicano Example Author: “Szu-Yu Chen” date: “02/10/2020” output: html_document
#Data
#Read Data
dta <- read.csv('C:/Users/ASUS/Desktop/data/Chicano.csv', stringsAsFactors = TRUE)
#Load pacman
pacman::p_load(tidyverse, VCA, lme4, nlme)
#Produce a variability chart (y=score, order x =Trt/Class/Pupil), labeling y axis as score,dusplay intercepts(mean) for each pupil in accordance with their “Class” &“Trt”( with salmon color)
VCA::varPlot(Score ~ Trt/Class/Pupil,
Data=dta,
YLabel=list(text="Score",
side=2,
cex=1),
MeanLine=list(var=c("Trt", "Class"),
col=c("darkred", "salmon"),
lwd=c(1, 2)))
#Display a summary of residuals for within “class” and the whole model
summary(m1 <- aov(Score ~ Trt + Error(Class), data=dta))
##
## Error: Class
## Df Sum Sq Mean Sq F value Pr(>F)
## Trt 1 216 216 9.818 0.0351 *
## Residuals 4 88 22
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 18 198 11
#Derived “lmer” function from faraway package to get model and model fit information
faraway::sumary(m2 <- lmer(Score ~ Trt + (1 | Class), data=dta))
## Fixed Effects:
## coef.est coef.se
## (Intercept) 4.00 1.35
## TrtT 6.00 1.91
##
## Random Effects:
## Groups Name Std.Dev.
## Class (Intercept) 1.66
## Residual 3.32
## ---
## number of obs: 24, groups: Class, 6
## AIC = 130.9, DIC = 131.8
## deviance = 127.4
#compute bootstrap confidience intervals for m2 model
confint(m2, method="boot")
## Computing bootstrap confidence intervals ...
##
## 117 message(s): boundary (singular) fit: see ?isSingular
## 2.5 % 97.5 %
## .sig01 0.000000 3.723490
## .sigma 2.237199 4.271600
## (Intercept) 1.296480 6.467043
## TrtT 2.627568 9.814294