Regresión lineal simple parte 2

Arboles de cereza negra

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
head(trees)
##   Girth Height Volume
## 1   8.3     70   10.3
## 2   8.6     65   10.3
## 3   8.8     63   10.2
## 4  10.5     72   16.4
## 5  10.7     81   18.8
## 6  10.8     83   19.7
glimpse(trees)
## Rows: 31
## Columns: 3
## $ Girth  <dbl> 8.3, 8.6, 8.8, 10.5, 10.7, 10.8, 11.0, 11.0, 11.1, 11.2, 11....
## $ Height <dbl> 70, 65, 63, 72, 81, 83, 66, 75, 80, 75, 79, 76, 76, 69, 75, ...
## $ Volume <dbl> 10.3, 10.3, 10.2, 16.4, 18.8, 19.7, 15.6, 18.2, 22.6, 19.9, ...
summary(trees)
##      Girth           Height       Volume     
##  Min.   : 8.30   Min.   :63   Min.   :10.20  
##  1st Qu.:11.05   1st Qu.:72   1st Qu.:19.40  
##  Median :12.90   Median :76   Median :24.20  
##  Mean   :13.25   Mean   :76   Mean   :30.17  
##  3rd Qu.:15.25   3rd Qu.:80   3rd Qu.:37.30  
##  Max.   :20.60   Max.   :87   Max.   :77.00
pairs(trees)

cor(trees)
##            Girth    Height    Volume
## Girth  1.0000000 0.5192801 0.9671194
## Height 0.5192801 1.0000000 0.5982497
## Volume 0.9671194 0.5982497 1.0000000

Prueba de correlación de pearson

El coeficiente de correlación de Pearson, pensado para variables cuantitativas (escala mínima de intervalo), es un índice que mide el grado de covariación entre distintas variables relacionadas linealmente. Adviértase que decimos “variables relacionadas linealmente”. Esto significa que puede haber variables fuertemente relacionadas, pero no de forma lineal, en cuyo caso no proceder a aplicarse la correlación de Pearson.

Correlacion de pearson

prueba p

Al probar hipótesis en las que la estadística de prueba es discreta, la región crítica se puede elegir de forma arbitraria y determinar su tamaño. Si es demasiado grande, se puede reducir al hacer un ajuste en el valor crítico. Puede ser necesario aumentar el tamaño de la muestra para compensar la disminución que ocurre de manera automática en la potencia de la prueba (probabilidad de rechazar Ho dado que una alternativa específica es verdadera).

Por generaciones enteras de análisis estadístico, se ha hecho costumbre elegir un nivel de significancia de 0.05 ó 0.01 y seleccionar la región crítica en consecuencia. Entonces, por supuesto, el rechazo o no rechazo estricto de Ho dependerá de esa región crítica. En la estadística aplicada los usuarios han adoptado de forma extensa la aproximación del valor P. La aproximación se diseña para dar al usuario una alternativa a la simple conclusión de “rechazo” o “no rechazo”.

La aproximación del valor P como ayuda en la toma de decisiones es bastante natural pues casi todos los paquetes de computadora que proporcionan el cálculo de prueba de hipótesis entregan valores de P junto con valores de la estadística de la prueba apropiada.

Un valor P es el nivel (de significancia) más bajo en el que el valor observado de la estadística de prueba es significativo. El valor P es el nivel de significancia más pequeño que conduce al rechazo de la hipótesis nula Ho. El valor P es el mínimo nivel de significancia en el cual Ho sería rechazada cuando se utiliza un procedimiento de prueba especificado con un conjunto dado de información. Una vez que el valor de P se haya determinado, la conclusión en cualquier nivel particular resulta de comparar el valor P con:

Valor P < o = Þ rechazar Ho al nivel. Valor P > Þ No rechazar Ho al nivel.

Valor de p

cor.test(x = trees$Girth, y = trees$Volume, method = "pearson", digits= 3)
## 
##  Pearson's product-moment correlation
## 
## data:  trees$Girth and trees$Volume
## t = 20.478, df = 29, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.9322519 0.9841887
## sample estimates:
##       cor 
## 0.9671194
library(GGally)
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
ggpairs(trees, lower = list( continous = "smooth"), diag = list(continous = "bar"), axisLabels = "none")

Conclusiones

De lo hasta ahora analizado, podemos concluir que:

  1. Observando los diagramas de dispersión notamos que: la variable de dámetro (girth) y volumen (volume) están relacionadas.

  2. El coeficiente de correlación de pearson es bastante alto (r =0.9671194) y tenemos un valor de P significativo (p-value < 2.2e-16). Esto significa que hay una intensa correlación entre ambas variables.

¿La correlación implica causalidad?

Cálculo del modelo de regresión lineal simple

modelo.lineal <- lm(Volume ~ Girth, data = trees)
summary(modelo.lineal)
## 
## Call:
## lm(formula = Volume ~ Girth, data = trees)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -8.065 -3.107  0.152  3.495  9.587 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -36.9435     3.3651  -10.98 7.62e-12 ***
## Girth         5.0659     0.2474   20.48  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared:  0.9353, Adjusted R-squared:  0.9331 
## F-statistic: 419.4 on 1 and 29 DF,  p-value: < 2.2e-16
  • Ecuación de la recta de mínimos cuadrados

\[ y = -36.9435 + 5.0659x\]

Intervalos de confianza

se llama intervalo de confianza a un par o varios pares de números entre los cuales se estima que estará cierto valor desconocido con un determinado nivel de confianza. Formalmente, estos números determinan un intervalo, que se calcula a partir de datos de una muestra, y el valor desconocido es un parámetro poblacional. El nivel de confianza representa el porcentaje de intervalos que tomados de 100 muestras independientes distintas contienen en realidad el valor desconocido. En estas circunstancias, α es el llamado error aleatorio o nivel de significación, esto es, el número de intervalos sobre 100 que no contienen el valor.

Intervalos de confianza

confint(modelo.lineal)
##                  2.5 %     97.5 %
## (Intercept) -43.825953 -30.060965
## Girth         4.559914   5.571799
  • Redacción del ejercicio

se llevaron a cabo la examinacion de algunos metodos para evaluar el comportamiento y dispersion de ciertos datos en este caso de arboles en relacion al diametro y volumen. se evaluo el comportamiento de el coeficiente de correlacion de pearson el cual opera con dos variables de una forma dependiente, ademas evaluamos los intervalos de confianza el cual consiste en un par o varios para estimar un determinado valor de confianza de un determinado valor x.