1) Heat spreading out as it moves
2) \( J(r) \) is heat flux at some radius \( r \) from center
3) Rate of flow of heat:
\[ \begin{Bmatrix} \mathrm{rate\, of} \\ \mathrm{flow\, of} \\ \mathrm{heat} \\ \end{Bmatrix} = J(r)A(r) \]
where \( A(r) \) is cross-sectional area at \( r \).
\[ J(x) = -k\frac{dU(x)}{dx} \]
\[ J(r) = -k\frac{dU(r)}{dr} \]
\[ J(r) = -k\frac{dU(r)}{dr} \]
\( J(r) \) is the heat flux at \( r \) (Watts)
\( U(r) \) is the temperature at \( r \) (\( ° \) C, \( ° \) F, \( ° \) K)
\( k \) is the conductivity
Heat flux is directly proportional to temperature gradient (heat flows from hot to cold)
\[ A=2\pi rl \]
\[ A(r+\Delta r) = 2\pi (r+\Delta r)l \]
\[ \begin{aligned} \begin{Bmatrix} \mathrm{rate\, heat} \\ \mathrm{conducted } \\ \mathrm{in\, at} ~ r \\ \end{Bmatrix} & = J(r)A(r) \\ \\ \begin{Bmatrix} \mathrm{rate\, heat} \\ \mathrm{conducted } \\ \mathrm{out\, at} ~ r + \Delta r \\ \end{Bmatrix} & = J(r + \Delta r)A(r + \Delta r) \end{aligned} \]
\[ J(r)A(r) - J(r + \Delta r)A(r + \Delta r) = 0 \]
\[ -[J(r+\Delta r)A(t+\Delta r) - J(r)A(r)] = 0 \]
\[ -\left[\frac{J(t+\Delta r)A(r+\Delta r)-J(r)A(r)}{\Delta r}\right] = 0 \]
\[ \frac{d}{dr}[J(r)A(r)] = 0 \]
\[ \frac{d}{dr}[J(r)A(r)] = 0 \]
\[ -\frac{d}{dr}(-2k\pi lr \frac{dU}{dr}) = 0 \]
\[ \frac{d}{dr}(r\frac{dU}{dr}) = 0 \]