*Este ejemplo se hará con datos de árboles de cerezas negras “Black Cherry”
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
head(trees)
## Girth Height Volume
## 1 8.3 70 10.3
## 2 8.6 65 10.3
## 3 8.8 63 10.2
## 4 10.5 72 16.4
## 5 10.7 81 18.8
## 6 10.8 83 19.7
glimpse(trees)
## Rows: 31
## Columns: 3
## $ Girth <dbl> 8.3, 8.6, 8.8, 10.5, 10.7, 10.8, 11.0, 11.0, 11.1, 11.2, 11....
## $ Height <dbl> 70, 65, 63, 72, 81, 83, 66, 75, 80, 75, 79, 76, 76, 69, 75, ...
## $ Volume <dbl> 10.3, 10.3, 10.2, 16.4, 18.8, 19.7, 15.6, 18.2, 22.6, 19.9, ...
summary(trees)
## Girth Height Volume
## Min. : 8.30 Min. :63 Min. :10.20
## 1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40
## Median :12.90 Median :76 Median :24.20
## Mean :13.25 Mean :76 Mean :30.17
## 3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30
## Max. :20.60 Max. :87 Max. :77.00
pairs(trees)
cor(trees)
## Girth Height Volume
## Girth 1.0000000 0.5192801 0.9671194
## Height 0.5192801 1.0000000 0.5982497
## Volume 0.9671194 0.5982497 1.0000000
cor.test(x = trees$Girth, y = trees$Volume, method = "pearson", digits= 3)
##
## Pearson's product-moment correlation
##
## data: trees$Girth and trees$Volume
## t = 20.478, df = 29, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9322519 0.9841887
## sample estimates:
## cor
## 0.9671194
library(GGally)
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
ggpairs(trees, lower = list( continous = "smooth"), diag = list(continous = "bar"), axislabels = "nome")
## Warning in warn_if_args_exist(list(...)): Extra arguments: "axislabels" are
## being ignored. If these are meant to be aesthetics, submit them using the
## 'mapping' variable within ggpairs with ggplot2::aes or ggplot2::aes_string.
De lo que se pudo analizar, se puede concluir que:
Se Observa que los diagrmas de dispersión que la variable de diametro y volumen estan relacionados.
En el coeficiente de correlación de pearson es bastante alto (r=0.9671194) y tenemos un valor de p significativo (p-value < 2.2e-16)
modelo.lineal <- lm(Volume ~ Girth, data = trees)
summary(modelo.lineal)
##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
Ecuación de la recta de mímino cuadrados
\[ y = -36.9435 + 5.0659x\] * Intervalos de confianza
confint(modelo.lineal)
## 2.5 % 97.5 %
## (Intercept) -43.825953 -30.060965
## Girth 4.559914 5.571799
*Investigación acerca: prueba de pearson, intervalos de confianza, valor de P. Prueba de Pearson: El coeficiente de correlación de Pearson es una prueba que mide la relación estadística entre dos variables continuas. Si la asociación entre los elementos no es lineal, entonces el coeficiente no se encuentra representado adecuadamente.
Intervalo de confianza: En estadística, se llama intervalo de confianza a un par o varios pares de números entre los cuales se estima que estará cierto valor desconocido con un determinado nivel de confianza.
Valor de P: Se define como la probabilidad de que un valor estadístico calculado sea posible dada una hipótesis nula cierta. En términos simples, el valor p ayuda a diferenciar resultados que son producto del azar del muestreo, de resultados que son estadísticamente significativos.