setwd(“~/PyEitson”)

Regresion lineal simple parte 2

para este eje,plo usaremos datos de arboles de cereza negros

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
head(trees)
##   Girth Height Volume
## 1   8.3     70   10.3
## 2   8.6     65   10.3
## 3   8.8     63   10.2
## 4  10.5     72   16.4
## 5  10.7     81   18.8
## 6  10.8     83   19.7
glimpse(trees)
## Rows: 31
## Columns: 3
## $ Girth  <dbl> 8.3, 8.6, 8.8, 10.5, 10.7, 10.8, 11.0, 11.0, 11.1, 11.2, 11....
## $ Height <dbl> 70, 65, 63, 72, 81, 83, 66, 75, 80, 75, 79, 76, 76, 69, 75, ...
## $ Volume <dbl> 10.3, 10.3, 10.2, 16.4, 18.8, 19.7, 15.6, 18.2, 22.6, 19.9, ...
summary(trees)
##      Girth           Height       Volume     
##  Min.   : 8.30   Min.   :63   Min.   :10.20  
##  1st Qu.:11.05   1st Qu.:72   1st Qu.:19.40  
##  Median :12.90   Median :76   Median :24.20  
##  Mean   :13.25   Mean   :76   Mean   :30.17  
##  3rd Qu.:15.25   3rd Qu.:80   3rd Qu.:37.30  
##  Max.   :20.60   Max.   :87   Max.   :77.00

Analisis de correlacion

Matriza de diagramas de dispersion

pairs(trees)

Matriz de coheficientes de correlacion

cor(trees)
##            Girth    Height    Volume
## Girth  1.0000000 0.5192801 0.9671194
## Height 0.5192801 1.0000000 0.5982497
## Volume 0.9671194 0.5982497 1.0000000

Pueba de correlacion de pearson

cor.test(x=trees$Girth, y=trees$Volume, method = "pearson", digits=3)
## 
##  Pearson's product-moment correlation
## 
## data:  trees$Girth and trees$Volume
## t = 20.478, df = 29, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.9322519 0.9841887
## sample estimates:
##       cor 
## 0.9671194

Resumen de análisis de correlacion

library(GGally)
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
ggpairs(trees, lower = list(continuous= "smooth"), diag=list(continuous="bar"), axislab="none")
## Warning in warn_if_args_exist(list(...)): Extra arguments: "axislab" are being
## ignored. If these are meant to be aesthetics, submit them using the 'mapping'
## variable within ggpairs with ggplot2::aes or ggplot2::aes_string.
## Warning in check_and_set_ggpairs_defaults("diag", diag, continuous =
## "densityDiag", : Changing diag$continuous from 'bar' to 'barDiag'
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Conclusiones del analisis de correlacion:

1-Observando las graficas de diagramas de dispersion, tenemos que : el diametro(girth) está relacionado con el volumen (volume)

2- El coheficiente de correlacion de pearson es bastante alto y tenemos un valor de P significativo

3- Tiene sentido realizar un modelo de regresion lineal

Calculo del modelo de regresion lineal simple

modelo.lineal = lm(Volume ~ Girth, data= trees)
summary(modelo.lineal)
## 
## Call:
## lm(formula = Volume ~ Girth, data = trees)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -8.065 -3.107  0.152  3.495  9.587 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -36.9435     3.3651  -10.98 7.62e-12 ***
## Girth         5.0659     0.2474   20.48  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared:  0.9353, Adjusted R-squared:  0.9331 
## F-statistic: 419.4 on 1 and 29 DF,  p-value: < 2.2e-16

Ecuacion de la recta de minimos cuadrados \[ y= -36.9435 + 5.0659x \]

names(modelo.lineal)
##  [1] "coefficients"  "residuals"     "effects"       "rank"         
##  [5] "fitted.values" "assign"        "qr"            "df.residual"  
##  [9] "xlevels"       "call"          "terms"         "model"
confint(modelo.lineal)
##                  2.5 %     97.5 %
## (Intercept) -43.825953 -30.060965
## Girth         4.559914   5.571799

Condiciones para aceptar el modelo

Análisis residuales

par(mfrow=c(1,2))
plot(modelo.lineal)

Tarea

  • Correlacion de pearson
  • Prueba de confianza
  • Saphiro-wilk
  • Residuales
  • Grafico de q-q

======================================== CORRELACION DE PEARSON El coeficiente de correlación de Pearson es una prueba que mide la relación estadística entre dos variables continuas. Si la asociación entre los elementos no es lineal, entonces el coeficiente no se encuentra representado adecuadamente.

El coeficiente de correlación puede tomar un rango de valores de +1 a -1. Un valor de 0 indica que no hay asociación entre las dos variables. Un valor mayor que 0 indica una asociación positiva. Es decir, a medida que aumenta el valor de una variable, también lo hace el valor de la otra. Un valor menor que 0 indica una asociación negativa; es decir, a medida que aumenta el valor de una variable, el valor de la otra disminuye.

https://www.questionpro.com/blog/es/coeficiente-de-correlacion-de-pearson/ ======================================== PRUEBDA DE CONFIANZA En estadística, se llama intervalo de confianza a un par o varios pares de números entre los cuales se estima que estará cierto valor desconocido con un determinado nivel de confianza. Formalmente, estos números determinan un intervalo, que se calcula a partir de datos de una muestra, y el valor desconocido es un parámetro poblacional. El nivel de confianza representa el porcentaje de intervalos que tomados de 100 muestras independientes distintas contienen en realidad el valor desconocido. En estas circunstancias, α es el llamado error aleatorio o nivel de significación, esto es, el número de intervalos sobre 100 que no contienen el valor.

El nivel de confianza y la amplitud del intervalo varían conjuntamente, de forma que un intervalo más amplio tendrá más probabilidad de acierto (mayor nivel de confianza), mientras que para un intervalo más pequeño, que ofrece una estimación más precisa, aumenta su probabilidad de error.

https://es.wikipedia.org/wiki/Intervalo_de_confianza ======================================== SHAPIRO WILK El test de Shapiro-Wilks plantea la hipótesis nula que una muestra proviene de una distribución normal. Eligimos un nivel de significanza, por ejemplo 0,05, y tenemos una hipótesis alternativa que sostiene que la distribución no es normal.

https://bookdown.org/dietrichson/metodos-cuantitativos/test-de-normalidad.html

======================================== RESIDUALES Residual es un adjetivo que se emplea para hacer referencia a lo perteneciente o relativo al residuo. Un residuo es la parte o porción que queda o sobra de un todo, bien sea a causa de su descomposición o destrucción, bien porque su utilidad ya fue aprovechada.

https://www.significados.com/residual/ ======================================== GRAFICO DE Q-Q Un gráfico Cuantil-Cuantil permite observar cuan cerca está la distribución de un conjunto de datos a alguna distribución ideal ó comparar la distribución de dos conjuntos de datos.

http://www.dm.uba.ar/materias/analisis_de_datos/2008/1/teoricas/Teor5.pdf