The overall goal of this assignment is to explore the National Emissions Inventory database and see what it say about fine particulate matter pollution in the United states over the 10-year period 1999 to 2008.
setwd("C:/Users/angul/OneDrive/R/ExploreData/Data")
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(RColorBrewer)
NEI <- readRDS("summarySCC_PM25.rds")
SCC <- readRDS("Source_Classification_Code.rds")
# emissions by year
total_emmissions <- aggregate(Emissions ~ year, NEI, sum)
png("Q1_53pcdropspike.png", width=480, height=480)
barplot(
(total_emmissions$Emissions)/10^6,
names.arg=total_emmissions$year,
xlab="Year",
ylab="PM2.5 Emissions (10^6 Tons)",
ylim = c(0, 7.5),
col="black",
border="red",
main="53% PM2.5 emission drop from 1999 to 2008, over the USA")
dev.off()
## png
## 2
print("Percent Total emissions change: ")
## [1] "Percent Total emissions change: "
pcdiff <- ((total_emmissions[4,2] - total_emmissions[1,2])/total_emmissions[1,2])*100
print(pcdiff)
## [1] -52.75847
scratch space
NEI <- readRDS("summarySCC_PM25.rds")
SCC <- readRDS("Source_Classification_Code.rds")
head(total_emmissions)
## year Emissions
## 1 1999 7332967
## 2 2002 5635780
## 3 2005 5454703
## 4 2008 3464206
totUS1999 <- total_emmissions[1,2]
print("The total US PM2.5 emmissions in 1999 were:")
## [1] "The total US PM2.5 emmissions in 1999 were:"
print(totUS1999, useSource=TRUE)
## [1] 7332967
totUS2008 <- total_emmissions[4,2]
print("while that of 2008 sttod at:")
## [1] "while that of 2008 sttod at:"
print(totUS2008, useSource=TRUE)
## [1] 3464206
difftotUS <- total_emmissions[1,2] - total_emmissions[4,2]
pcdiff <- (total_emmissions[1,2] - total_emmissions[4,2])/total_emmissions[1,2]
setwd("C:/Users/angul/OneDrive/R/ExploreData/Data")
library(ggplot2)
library(dplyr)
library(RColorBrewer)
NEI <- readRDS("summarySCC_PM25.rds")
SCC <- readRDS("Source_Classification_Code.rds")
baltimore <- subset(NEI, fips=="24510")
totPM25_Baltimore <- aggregate(Emissions ~ year, baltimore, sum)
png("Q2_43dropBalt2015spike.png", width=480, height=480)
barplot(
totPM25_Baltimore$Emissions,
names.arg=totPM25_Baltimore$year,
xlab="Year",
ylab="PM2.5 Emissions, in Tons",
ylim=c(0,3500),
col="black",
border="red",
main="43% drop: despite 2005 spike in Baltimore City" )
dev.off()
## png
## 2
pcdiffBalt <- (totPM25_Baltimore[1,2] - totPM25_Baltimore[4,2])/totPM25_Baltimore[1,2]
print("Percent Total emissions change: ")
## [1] "Percent Total emissions change: "
print(pcdiffBalt)
## [1] 0.431222
scratch space
head(totPM25_Baltimore)
## year Emissions
## 1 1999 3274.180
## 2 2002 2453.916
## 3 2005 3091.354
## 4 2008 1862.282
totBalt1999 <- totPM25_Baltimore[1,2]
print("The total Baltimore PM2.5 emmissions in 1999 were:")
## [1] "The total Baltimore PM2.5 emmissions in 1999 were:"
print(totBalt1999, useSource=TRUE)
## [1] 3274.18
totBalt2008 <- totPM25_Baltimore[1,2]
print("while that of 2008 stood at:")
## [1] "while that of 2008 stood at:"
print(totBalt2008, useSource=TRUE)
## [1] 3274.18
difftotBalt <- totPM25_Baltimore[1,2] - totPM25_Baltimore[4,2]
pcdiffBalt <- (totPM25_Baltimore[1,2] - totPM25_Baltimore[4,2])/totPM25_Baltimore[1,2]
print("Percent Total emissions change: ")
## [1] "Percent Total emissions change: "
print(pcdiffBalt)
## [1] 0.431222
setwd("C:/Users/angul/OneDrive/R/ExploreData/Data")
library(ggplot2)
library(dplyr)
library(RColorBrewer)
NEI <- readRDS("summarySCC_PM25.rds")
SCC <- readRDS("Source_Classification_Code.rds")
tot_emi_24510_by_type <- NEI %>%
filter(fips == 24510) %>%
select(fips, type, Emissions, year) %>%
group_by(year, type) %>%
summarise(Total_Emissions = sum(Emissions, na.rm = TRUE))
## `summarise()` regrouping output by 'year' (override with `.groups` argument)
SourcePM25Baltimore <- ggplot(tot_emi_24510_by_type, aes(x = factor(year), y = Total_Emissions, fill = type)) +
geom_bar(stat = "identity") +
facet_grid(.~type) +
labs(x = "Year", y = "PM2.5 emissions in Tons", title = "Sources of PM25 emissions in Baltimore City, 2019-2008")+
theme(plot.title = element_text(size = 14),
axis.title.x = element_text(size = 12),
axis.title.y = element_text(size = 12)) +
scale_fill_hue(c=45, l=80) +
theme_dark() +
ggsave("Q3_SourcePM25Baltimore.png", width = 25, height = 20, units = "cm")
print(SourcePM25Baltimore)
scratch space
head(tot_emi_24510_by_type)
## # A tibble: 6 x 3
## # Groups: year [2]
## year type Total_Emissions
## <int> <chr> <dbl>
## 1 1999 NON-ROAD 523.
## 2 1999 NONPOINT 2108.
## 3 1999 ON-ROAD 347.
## 4 1999 POINT 297.
## 5 2002 NON-ROAD 241.
## 6 2002 NONPOINT 1510.
print("Nonpoint sources continue to pollute the most, even if PM2.5 emissions dropped, from 1999 to 2008. There was a peak in the point source, which indicates a pollution incident there in 2005. Both non-road & on_road sources are relatively low and have a downward trend ")
## [1] "Nonpoint sources continue to pollute the most, even if PM2.5 emissions dropped, from 1999 to 2008. There was a peak in the point source, which indicates a pollution incident there in 2005. Both non-road & on_road sources are relatively low and have a downward trend "
setwd("C:/Users/angul/OneDrive/R/ExploreData/Data")
library(ggplot2)
library(dplyr)
library(RColorBrewer)
NEI <- readRDS("summarySCC_PM25.rds")
SCC <- readRDS("Source_Classification_Code.rds")
SCC_Vehicles <- SCC %>%
filter(grepl('[Vv]ehicle', SCC.Level.Two)) %>%
select(SCC, SCC.Level.Two)
Tot_Emi_24510_V <- NEI %>%
filter(fips == "24510") %>%
select(SCC, fips, Emissions, year) %>%
inner_join(SCC_Vehicles, by = "SCC") %>%
group_by(year) %>%
summarise(Total_Emissions = sum(Emissions, na.rm = TRUE)) %>%
select(Total_Emissions, year)
## `summarise()` ungrouping output (override with `.groups` argument)
BaltimoreVehicles_bar <- ggplot(Tot_Emi_24510_V, aes(factor(year), Total_Emissions)) +
geom_bar(stat = "identity", fill = "black", width = 0.5,
col="yellow") + labs(x = "Year", y = "PM2.5 emissions, in Tons",
title = " PM2.5 emissions in Baltimore City, 1999-2008",
subtitle = " from Vehicle related particulate emissions") +
theme(plot.title = element_text(size = 14),
axis.title.x = element_text(size = 12),
axis.title.y = element_text(size = 12)) +
ggsave("Q5_BaltimoreVehicles_bar.png", width = 25, height = 20,
units = "cm")
print(BaltimoreVehicles_bar)
scratch space
head(Tot_Emi_24510_V)
## # A tibble: 4 x 2
## Total_Emissions year
## <dbl> <int>
## 1 404. 1999
## 2 192. 2002
## 3 185. 2005
## 4 138. 2008
print("Motor vehicle emissions dropped from 404 in 1999 to 138 Tons in 2008, in Baltimore City.")
## [1] "Motor vehicle emissions dropped from 404 in 1999 to 138 Tons in 2008, in Baltimore City."
setwd("C:/Users/angul/OneDrive/R/ExploreData/Data")
library(ggplot2)
library(dplyr)
library(RColorBrewer)
SCC_Vehicles <- SCC %>%
filter(grepl('[Vv]ehicle', SCC.Level.Two)) %>%
select(SCC, SCC.Level.Two)
Tot_Emi_Two_Locs <- NEI %>%
filter(fips == "24510" | fips == "06037") %>%
select(fips, SCC, Emissions, year) %>%
inner_join(SCC_Vehicles, by = "SCC") %>%
group_by(fips, year) %>%
summarise(Total_Emissions = sum(Emissions, na.rm = TRUE)) %>%
select(Total_Emissions, fips, year)
## `summarise()` regrouping output by 'fips' (override with `.groups` argument)
Tot_Emi_Two_Locs$fips <- gsub("24510", "Baltimore City", Tot_Emi_Two_Locs$fips)
Tot_Emi_Two_Locs$fips <- gsub("06037", "Los Angeles County", Tot_Emi_Two_Locs$fips)
Vehicle_BaltLA_bar <- ggplot(Tot_Emi_Two_Locs, aes(x = factor(year), y = Total_Emissions, fill = fips )) +
geom_bar(stat = "identity", width = 0.7) +
facet_grid(.~fips) +
labs(x = "Year", y = "PM2.5 emissions, in Tons", title = "Vehicle related PM2.5 emissions, 1999-2008") +
theme(plot.title = element_text(size = 14),
axis.title.x = element_text(size = 12),
axis.title.y = element_text(size = 12),
strip.text.x = element_text(size = 12)) +
scale_fill_hue(c=45, l=80) +
theme_dark() +
ggsave("Q6_Vehicle_BaltLA_bar.png", width = 25, height = 20, units = "cm")
print(Vehicle_BaltLA_bar)
scratch space
print(summary(Tot_Emi_Two_Locs))
## Total_Emissions fips year
## Min. : 138.2 Length:8 Min. :1999
## 1st Qu.: 190.4 Class :character 1st Qu.:2001
## Median :3256.7 Mode :character Median :2004
## Mean :3492.9 Mean :2004
## 3rd Qu.:6612.9 3rd Qu.:2006
## Max. :7304.1 Max. :2008
Tot_Emi_Two_Locs
## # A tibble: 8 x 3
## # Groups: fips [2]
## Total_Emissions fips year
## <dbl> <chr> <int>
## 1 6110. Los Angeles County 1999
## 2 7189. Los Angeles County 2002
## 3 7304. Los Angeles County 2005
## 4 6421. Los Angeles County 2008
## 5 404. Baltimore City 1999
## 6 192. Baltimore City 2002
## 7 185. Baltimore City 2005
## 8 138. Baltimore City 2008
scratch space
print((Tot_Emi_Two_Locs[4,1]/Tot_Emi_Two_Locs[8,1] +
Tot_Emi_Two_Locs[3,1]/Tot_Emi_Two_Locs[7,1] +
Tot_Emi_Two_Locs[2,1]/Tot_Emi_Two_Locs[6,1]+
Tot_Emi_Two_Locs[1,1]/Tot_Emi_Two_Locs[5,1])/4)
## Total_Emissions
## 1 34.60322
print("Vehicle related emission in Los Angeles County were on average 35 times that of Baltimore City, during the period 1999-2008")
## [1] "Vehicle related emission in Los Angeles County were on average 35 times that of Baltimore City, during the period 1999-2008"
print("The change from 1999 to 2008 followed a steady downward trend and resulted in a shift of: ")
## [1] "The change from 1999 to 2008 followed a steady downward trend and resulted in a shift of: "
print(Tot_Emi_Two_Locs[5,1]-Tot_Emi_Two_Locs[8,1])
## Total_Emissions
## 1 265.5298
print("in Baltimore City, while in Los Angeles County vehicle related emissions rose from 6110 to 7304 Tons from 1999 to 2005, then went down to 6421 Tons in 2008, this is an increase of: ")
## [1] "in Baltimore City, while in Los Angeles County vehicle related emissions rose from 6110 to 7304 Tons from 1999 to 2005, then went down to 6421 Tons in 2008, this is an increase of: "
print(Tot_Emi_Two_Locs[1,1]-Tot_Emi_Two_Locs[4,1])
## Total_Emissions
## 1 -311.327
print("311 Tons of vehicle related emissions")
## [1] "311 Tons of vehicle related emissions"
print("Vehicle related emission in Los Angeles County were on average 35 times that of Baltimore City, during the period 1999-2008. In Baltimore city there was a steady downward trend and resulted in a sheading of 266 Tons of PM2.5 emissions. While in Los Angeles County vehicle related emissions rose from 6110 to 7304 Tons from 1999 to 2005, then went down to 6421 Tons in 2008, this resulted in a net increase of 311 Tons of vehicle related emissions when comparing 1999 to 2008.")
## [1] "Vehicle related emission in Los Angeles County were on average 35 times that of Baltimore City, during the period 1999-2008. In Baltimore city there was a steady downward trend and resulted in a sheading of 266 Tons of PM2.5 emissions. While in Los Angeles County vehicle related emissions rose from 6110 to 7304 Tons from 1999 to 2005, then went down to 6421 Tons in 2008, this resulted in a net increase of 311 Tons of vehicle related emissions when comparing 1999 to 2008."