library(tidyverse)
## -- Attaching packages -------------------------------------------------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2 v purrr 0.3.4
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
## -- Conflicts ----------------------------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(ggplot2)
library(rvest)
## Loading required package: xml2
##
## Attaching package: 'rvest'
## The following object is masked from 'package:purrr':
##
## pluck
## The following object is masked from 'package:readr':
##
## guess_encoding
library(httr)
library(readr)
1
[here is a package of data on old faithful] (https://cran.r-project.org/web/packages/MASS/index.html)
[here is a package of reading googles API] (https://cran.r-project.org/web/packages/googleAuthR/readme/README.html)
[Here is data from github] (https://github.com/rudeboybert/resampledata)
[here is a data set from ICSR on Adolescent and Adult Health] (https://www.icpsr.umich.edu/web/ICPSR/studies/21600/summary)
2
lab4dataA <- read.csv("https://raw.githubusercontent.com/prlitics/Election-Data-Science-Fall-2020/master/Data/wk4_challenge2.a.txt")
lab4dataB <- read.csv("https://raw.githubusercontent.com/prlitics/Election-Data-Science-Fall-2020/master/Data/wk4_challenge2.b.txt")
lab4dataC <- read.csv("https://raw.githubusercontent.com/prlitics/Election-Data-Science-Fall-2020/master/Data/wk4_challenge2.c.txt")
3
firstset<- read.csv ("https://raw.githubusercontent.com/prlitics/Election-Data-Science-Fall-2020/master/Data/wk4_challenge2.a.txt", nrows=1000)
firstset$contribution_receipt_date <- as.Date.character(firstset$contribution_receipt_date)
4
wear_a_mask <- read.csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/mask-use/mask-use-by-county.csv")
this could be done with out too much difficulty. Once you know which codes go with which states you could then group_by county codes so say 1:100 is California then take the averages of each column 1:100 to get the average of each column for each of californias 100 districts. Do this for each state then chart them all. This sounds like a lot though. What would be a more efficent way? ###
5
url <- "https://en.wikipedia.org/wiki/Cats_(musical)"
wiki <- read_html(url) %>%
html_node( xpath = "/html/body/div[3]/div[3]/div[5]/div[1]/table[2]" ) %>%
html_table()