library(readr)
library(ggplot2)
library(resumeRdesc)
set.seed(2020)
n <- 100
media.edad <- 80; ds.edad <-45
media.peso <- 100; ds.peso <- 5
media.estatura <- 1.70; ds.estatura <-0.65
edad <- round(rnorm(n = n, mean = media.edad, sd = ds.edad),0)
peso <- round(rnorm(n = n, mean = media.peso, sd = ds.peso),2)
estatura <- round(rnorm(n = n, mean = media.estatura, sd = ds.estatura),2)
personas <- data.frame(edad, peso, estatura)
head(personas); tail(personas)
## edad peso estatura
## 1 97 91.36 1.23
## 2 94 95.04 2.25
## 3 31 97.07 1.44
## 4 29 101.92 1.96
## 5 -46 103.73 1.02
## 6 112 95.36 0.88
## edad peso estatura
## 95 70 96.36 1.91
## 96 45 103.13 1.25
## 97 96 94.54 1.36
## 98 111 97.42 2.88
## 99 56 100.08 1.08
## 100 50 103.30 1.33
cuartiles <- quantile(personas$edad, probs = c(0.25,0.50,0.70), type = 6)
cuartiles[1]
## 25%
## 54.25
cuartiles[2]
## 50%
## 85
cuartiles[3]
## 70%
## 106.7
Percentliles *Percentiles es un Vector de 5 posiciones [1],[2],[3],[4],[5]
percentil <- quantile(personas$edad, probs = c(0.10, 0.30, 0.50, 0.70, 0.90), type = 7)
percentil[1]
## 10%
## 26.3
percentil[2]
## 30%
## 65.1
percentil[3]
## 50%
## 85
percentil[4]
## 70%
## 106.3
percentil[5]
## 90%
## 154.3
*Histograma de edad con ggplot
ggplot(data = personas, aes(edad, colour = 'edad')) +
geom_histogram(position = "stack", bins = 30)
ggplot(data = personas, aes(edad, colour = 'edad')) +
geom_density()
ggplot(data = personas, aes(edad)) +
geom_histogram(bins = 30) +
geom_vline(aes(xintercept = median(edad),
color = "mediana"),
linetype = "dashed",
size = 1) +
geom_vline(aes(xintercept = mean(edad),
color = "media"),
linetype = "dashed",
size = 1) +
labs(title = "Histograma de Edad",subtitle = paste("Media = ", round(mean(edad),2), ", Mediana = ", round(median(edad),2)))
ggplot(data = personas, aes(edad)) +
geom_histogram(bins = 30) +
geom_vline(aes(xintercept = cuartiles[1],
color = "Q1"),
linetype = "dashed",
size = 1) +
geom_vline(aes(xintercept = cuartiles[2],
color = "Q2"),
linetype = "dashed",
size = 1) +
geom_vline(aes(xintercept = cuartiles[3],
color = "Q3"),
linetype = "dashed",
size = 1) +
labs(title = "Histograma de Edad",subtitle = paste("Cuartil 1 al 25% = ",round(cuartiles[1],2), ", Cuartil 2 al 50% = ",round(cuartiles[2],2), ", Cuartil 3 al 75% = ",round(cuartiles[3],2)))
ggplot(data = personas, aes(edad)) +
geom_histogram(bins = 30) +
geom_vline(aes(xintercept = percentil[1],
color = "Perc1"),
linetype = "solid",
size = 2) +
geom_vline(aes(xintercept = percentil[2],
color = "Perc2"),
linetype = "solid",
size = 2) +
geom_vline(aes(xintercept = percentil[3],
color = "Perc3"),
linetype = "solid",
size = 2) +
geom_vline(aes(xintercept = percentil[4],
color = "Perc4"),
linetype = "solid",
size = 2) +
geom_vline(aes(xintercept = percentil[5],
color = "Perc5"),
linetype = "solid",
size = 2) +
labs(title = "Histograma de Edad. Perc = Percentiles",subtitle = paste("Perc al 10% = ",round(percentil[1],2), "Perc al 30% = ",round(percentil[2],2),"Perc al 50% = ",round(percentil[3],2),"Perc al 70% = ",round(percentil[4],2),"Perc al 90% = ",round(percentil[5],2)))
los cuartiles son aquellos que la dividen en curtos, que ser