Total Admissions Revenue for Amusement Parks and Arcades, Establishments Subject to Federal Income Tax (ADM7131TAXABL144QNSA)

symbol <-fredr_series_observations(series_id = "ADM7131TAXABL144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
41 2019-01-01 2435
42 2019-04-01 3578
43 2019-07-01 4206
44 2019-10-01 3142
45 2020-01-01 2152
46 2020-04-01 608
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of dollars",
      title = "Admissions Revenue for Amusement Parks and Arcades",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of dollars",
      title = "Admissions Revenue for Amusement Parks and Arcades _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Revenues from Business for Motion Picture and Sound Recording Industries, Establishments Subject to Federal Income Tax (BUS512TAXABL144QNSA)

symbol <-fredr_series_observations(series_id = "BUS512TAXABL144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
62 2019-01-01 21023
63 2019-04-01 21312
64 2019-07-01 20103
65 2019-10-01 21370
66 2020-01-01 18427
67 2020-04-01 15148
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of dollars",
      title = "Revenues _ Motion Picture and Sound Recording Industries",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of dollars",
      title = "Revenues Motion Picture and Sound Recording Industries _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Discharges for General Medical and Surgical Hospitals, All Establishments (DISC6221ALLEST176QNSA)

symbol <-fredr_series_observations(series_id = "DISC6221ALLEST176QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
27 2019-01-01 9236
28 2019-04-01 9216
29 2019-07-01 9095
30 2019-10-01 9152
31 2020-01-01 8942
32 2020-04-01 7513
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Thousands of Patents",
      title = " Total Discharges for General Medical and Surgical Hospitals",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Thousands of Patents",
      title = "Total Discharges for General Medical and Surgical Hospitals _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Expense for Ambulatory Health Care Services, All Establishments (EXP621ALLEST144QNSA)

symbol <-fredr_series_observations(series_id = "EXP621ALLEST144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
41 2019-01-01 226693
42 2019-04-01 234386
43 2019-07-01 235022
44 2019-10-01 247626
45 2020-01-01 233781
46 2020-04-01 205704
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = " Total Expense for Ambulatory Health Care Services",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Expense for Ambulatory Health Care Services _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Expense for Child Day Care Services, All Establishments (EXP6244ALLEST144QNSA)

symbol <-fredr_series_observations(series_id = "EXP6244ALLEST144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
41 2019-01-01 10243
42 2019-04-01 10311
43 2019-07-01 10032
44 2019-10-01 10824
45 2020-01-01 10796
46 2020-04-01 7783
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = " Total Expense for Child Day Care Services",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Expense for Child Day Care Services _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()