Total Admissions Revenue for Amusement Parks and Arcades, Establishments Subject to Federal Income Tax (ADM7131TAXABL144QNSA)
symbol <-fredr_series_observations(series_id = "ADM7131TAXABL144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
41
|
2019-01-01
|
2435
|
42
|
2019-04-01
|
3578
|
43
|
2019-07-01
|
4206
|
44
|
2019-10-01
|
3142
|
45
|
2020-01-01
|
2152
|
46
|
2020-04-01
|
608
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of dollars",
title = "Admissions Revenue for Amusement Parks and Arcades",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of dollars",
title = "Admissions Revenue for Amusement Parks and Arcades _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Revenues from Business for Motion Picture and Sound Recording Industries, Establishments Subject to Federal Income Tax (BUS512TAXABL144QNSA)
symbol <-fredr_series_observations(series_id = "BUS512TAXABL144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
62
|
2019-01-01
|
21023
|
63
|
2019-04-01
|
21312
|
64
|
2019-07-01
|
20103
|
65
|
2019-10-01
|
21370
|
66
|
2020-01-01
|
18427
|
67
|
2020-04-01
|
15148
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of dollars",
title = "Revenues _ Motion Picture and Sound Recording Industries",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of dollars",
title = "Revenues Motion Picture and Sound Recording Industries _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Discharges for General Medical and Surgical Hospitals, All Establishments (DISC6221ALLEST176QNSA)
symbol <-fredr_series_observations(series_id = "DISC6221ALLEST176QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
27
|
2019-01-01
|
9236
|
28
|
2019-04-01
|
9216
|
29
|
2019-07-01
|
9095
|
30
|
2019-10-01
|
9152
|
31
|
2020-01-01
|
8942
|
32
|
2020-04-01
|
7513
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Thousands of Patents",
title = " Total Discharges for General Medical and Surgical Hospitals",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Thousands of Patents",
title = "Total Discharges for General Medical and Surgical Hospitals _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Expense for Ambulatory Health Care Services, All Establishments (EXP621ALLEST144QNSA)
symbol <-fredr_series_observations(series_id = "EXP621ALLEST144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
41
|
2019-01-01
|
226693
|
42
|
2019-04-01
|
234386
|
43
|
2019-07-01
|
235022
|
44
|
2019-10-01
|
247626
|
45
|
2020-01-01
|
233781
|
46
|
2020-04-01
|
205704
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = " Total Expense for Ambulatory Health Care Services",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Expense for Ambulatory Health Care Services _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Expense for Child Day Care Services, All Establishments (EXP6244ALLEST144QNSA)
symbol <-fredr_series_observations(series_id = "EXP6244ALLEST144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
41
|
2019-01-01
|
10243
|
42
|
2019-04-01
|
10311
|
43
|
2019-07-01
|
10032
|
44
|
2019-10-01
|
10824
|
45
|
2020-01-01
|
10796
|
46
|
2020-04-01
|
7783
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = " Total Expense for Child Day Care Services",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Expense for Child Day Care Services _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()
