1 Cargar librerías
library(readr)
library (ggplot2)
library(resumeRdesc)
set.seed(2020)
n <-100
media.edad <- 60; ds.edad <- 15
media.peso <- 80; ds.peso <- 20
media.estatura <- 1.80; ds.estatura <- 0.15
edad <- round(rnorm(n = n, mean = media.edad, sd = ds.edad),0)
peso <- round(rnorm(n = n, mean = media.peso, sd = ds.peso),2)
estatura <- round(rnorm(n = n, mean = media.estatura, sd = ds.estatura),2)
personas <- data.frame(edad, peso, estatura)
head(personas); tail(personas)
## edad peso estatura
## 1 66 45.42 1.69
## 2 65 60.17 1.93
## 3 44 68.29 1.74
## 4 43 87.67 1.86
## 5 18 94.93 1.64
## 6 71 61.43 1.61
## edad peso estatura
## 95 57 65.46 1.85
## 96 48 92.53 1.70
## 97 65 58.17 1.72
## 98 70 69.68 2.07
## 99 52 80.34 1.66
## 100 50 93.22 1.71
cuartiles <- quantile(personas$edad, probs = c(0.25, 0.50, 0.75), type = 6)
cuartiles[1]
## 25%
## 51.25
cuartiles[2]
## 50%
## 62
cuartiles[3]
## 75%
## 71.75
cuartiles <- quantile(personas$peso, probs = c(0.25, 0.50, 0.75), type = 6)
cuartiles[1]
## 25%
## 59.375
cuartiles[2]
## 50%
## 78.855
cuartiles[3]
## 75%
## 94.505
cuartiles <- quantile(personas$estatura, probs = c(0.25, 0.50, 0.75), type = 6)
cuartiles[1]
## 25%
## 1.6625
cuartiles[2]
## 50%
## 1.785
cuartiles[3]
## 75%
## 1.9
percentil <- quantile(personas$edad, probs = c(0.10, 0.30, 0.50, 0.70, 0.90), type = 7)
percentil[1]
## 10%
## 41.8
percentil[2]
## 30%
## 54.7
percentil[3]
## 50%
## 62
percentil[4]
## 70%
## 69
percentil[5]
## 90%
## 85.1
percentil <- quantile(personas$peso, probs = c(0.10, 0.30, 0.50, 0.70, 0.90), type = 7)
percentil[1]
## 10%
## 47.878
percentil[2]
## 30%
## 64.406
percentil[3]
## 50%
## 78.855
percentil[4]
## 70%
## 90.152
percentil[5]
## 90%
## 104.931
percentil <- quantile(personas$estatura, probs = c(0.10, 0.30, 0.50, 0.70, 0.90), type = 7)
percentil[1]
## 10%
## 1.568
percentil[2]
## 30%
## 1.69
percentil[3]
## 50%
## 1.785
percentil[4]
## 70%
## 1.873
percentil[5]
## 90%
## 1.99
*Histograma de edad con ggplot
ggplot(data = personas, aes(edad, color = 'edad')) +
geom_histogram(position = "stack", bins = 30)
*Densidad de edad con ggplot
ggplot(data = personas, aes(edad, colour = 'edad')) +
geom_density()
*Histograma media, mediana juntos
ggplot(data = personas, aes(edad)) +
geom_histogram(bins = 30) +
geom_vline(aes(xintercept = median(edad),
color = "mediana"),
linetype = "dashed",
size = 1) +
geom_vline(aes(xintercept = mean(edad),
color = "media"),
linetype = "dashed",
size = 1) +
labs(title = "Histograma de Edad",subtitle = paste("Media = ", round(mean(edad),2), ", Mediana = ", round(median(edad),2)))
*Histograma y cuartiles juntos
ggplot(data = personas, aes(edad)) +
geom_histogram(bins = 30) +
geom_vline(aes(xintercept = cuartiles[1],
color = "Q1"),
linetype = "dashed",
size = 1) +
geom_vline(aes(xintercept = cuartiles[2],
color = "Q2"),
linetype = "dashed",
size = 1) +
geom_vline(aes(xintercept = cuartiles[3],
color = "Q3"),
linetype = "dashed",
size = 1) +
labs(title = "Histograma de Edad",subtitle = paste("Cuartil 1 al 25% = ",round(cuartiles[1],2), ", Cuartil 2 al 50% = ",round(cuartiles[2],2), ", Cuartil 3 al 75% = ",round(cuartiles[3],2)))
*Histograma y percentiles juntos
ggplot(data = personas, aes(edad)) +
geom_histogram(bins = 30) +
geom_vline(aes(xintercept = percentil[1],
color = "Perc1"),
linetype = "solid",
size = 2) +
geom_vline(aes(xintercept = percentil[2],
color = "Perc2"),
linetype = "solid",
size = 2) +
geom_vline(aes(xintercept = percentil[3],
color = "Perc3"),
linetype = "solid",
size = 2) +
geom_vline(aes(xintercept = percentil[4],
color = "Perc4"),
linetype = "solid",
size = 2) +
geom_vline(aes(xintercept = percentil[5],
color = "Perc5"),
linetype = "solid",
size = 2) +
labs(title = "Histograma de Edad. Perc = Percentiles",subtitle = paste("Perc al 10% = ",round(percentil[1],2), "Perc al 30% = ",round(percentil[2],2),"Perc al 50% = ",round(percentil[3],2),"Perc al 70% = ",round(percentil[4],2),"Perc al 90% = ",round(percentil[5],2)))