Realizar cálculos para determinar medidas de localización y tendencia central como CUARTILES Y PERCENTILES con un conjunto de datos de personas
Con un conjunto de datos de personas y con variables de interés como la edad, peso y estatura, determinar medidas de localización y tendencia central, se pide mostrar los datos, identificar las medidas visualizar gráficamente e interpretar las medidas.
Pendiente
library(readr)
library (ggplot2)
library(resumeRdesc) # No se si la usamos pero ...
set.seed(2020)
Simular los datos, utilizar rnorm()
n Total de observaciones de la muestra
edades en donde la media sea 45 años y desviación stándard igual a 10 años
pesos en donde la media sea 75 kgs y desviación standard = 15 kgs
estaturas en donde la media sea 1.70 y desviación estándard igual a 0.10
Construir un conjunto de datos llamado personas
Modificar en caso necesario el nombre del conjunto de datos personas a ‘edad’, ‘peso’ y ‘estatura’ con la función name()
Mostrar el conjunto de datos personas
Pimero los datos de las medias de las variables de inicio y de interés: edad, peso y estatura
n <- 100
media.edad <- 45; ds.edad <- 10
media.peso <- 75; ds.peso <- 15
media.estatura <- 1.70; ds.estatura <- 0.10
edad <- round(rnorm(n = n, mean = media.edad, sd = ds.edad),0)
peso <- round(rnorm(n = n, mean = media.peso, sd = ds.peso),2)
estatura <- round(rnorm(n = n, mean = media.estatura, sd = ds.estatura),2)
personas <- data.frame(edad, peso, estatura)
head(personas); tail(personas)
## edad peso estatura
## 1 49 49.07 1.63
## 2 48 60.13 1.79
## 3 34 66.22 1.66
## 4 34 80.75 1.74
## 5 17 86.20 1.60
## 6 52 61.07 1.57
## edad peso estatura
## 95 43 64.09 1.73
## 96 37 84.40 1.63
## 97 48 58.63 1.65
## 98 52 67.26 1.88
## 99 40 75.25 1.60
## 100 38 84.91 1.64
cuartiles <- quantile(personas$edad, probs = c(0.25, 0.50, 0.75), type = 6)
cuartiles[1]
## 25%
## 39
cuartiles[2]
## 50%
## 46
cuartiles[3]
## 75%
## 52.75
percentil <- quantile(personas$edad, probs = c(0.10, 0.30, 0.50, 0.70, 0.90), type = 7)
percentil[1]
## 10%
## 32.9
percentil[2]
## 30%
## 41.7
percentil[3]
## 50%
## 46
percentil[4]
## 70%
## 51
percentil[5]
## 90%
## 61.1
ggplot(data = personas, aes(edad, colour = 'edad')) +
geom_histogram(position = "stack", bins = 30)
ggplot(data = personas, aes(edad, colour = 'edad')) +
geom_density()
ggplot(data = personas, aes(edad)) +
geom_histogram(bins = 30) +
geom_vline(aes(xintercept = median(edad),
color = "mediana"),
linetype = "dashed",
size = 1) +
geom_vline(aes(xintercept = mean(edad),
color = "media"),
linetype = "dashed",
size = 1) +
labs(title = "Histograma de Edad",subtitle = paste("Media = ", round(mean(edad),2), ", Mediana = ", round(median(edad),2)))
ggplot(data = personas, aes(edad)) +
geom_histogram(bins = 30) +
geom_vline(aes(xintercept = cuartiles[1],
color = "Q1"),
linetype = "dashed",
size = 1) +
geom_vline(aes(xintercept = cuartiles[2],
color = "Q2"),
linetype = "dashed",
size = 1) +
geom_vline(aes(xintercept = cuartiles[3],
color = "Q3"),
linetype = "dashed",
size = 1) +
labs(title = "Histograma de Edad",subtitle = paste("Cuartil 1 al 25% = ",round(cuartiles[1],2), ", Cuartil 2 al 50% = ",round(cuartiles[2],2), ", Cuartil 3 al 75% = ",round(cuartiles[3],2)))
ggplot(data = personas, aes(edad)) +
geom_histogram(bins = 30) +
geom_vline(aes(xintercept = percentil[1],
color = "Perc1"),
linetype = "solid",
size = 2) +
geom_vline(aes(xintercept = percentil[2],
color = "Perc2"),
linetype = "solid",
size = 2) +
geom_vline(aes(xintercept = percentil[3],
color = "Perc3"),
linetype = "solid",
size = 2) +
geom_vline(aes(xintercept = percentil[4],
color = "Perc4"),
linetype = "solid",
size = 2) +
geom_vline(aes(xintercept = percentil[5],
color = "Perc5"),
linetype = "solid",
size = 2) +
labs(title = "Histograma de Edad. Perc = Percentiles",subtitle = paste("Perc al 10% = ",round(percentil[1],2), "Perc al 30% = ",round(percentil[2],2),"Perc al 50% = ",round(percentil[3],2),"Perc al 70% = ",round(percentil[4],2),"Perc al 90% = ",round(percentil[5],2)))
de 130 a 150 palabras
Los cuartiles son valores que dividen una muestra de datos en cuatro partes iguales. Los cuartiles sirven como una medida de localziación para describir los datos ordenados en cuatro partes.
Los valores de los cuartiles de la variable edad son al 25% es:39, al 50% es: 46 y al 75% es 52.75