library(tidyverse)
Registered S3 methods overwritten by 'dbplyr':
method from
print.tbl_lazy
print.tbl_sql
-- Attaching packages --------------------------------------- tidyverse 1.3.0 --
v ggplot2 3.3.2 v purrr 0.3.4
v tibble 3.0.3 v dplyr 1.0.2
v tidyr 1.1.2 v stringr 1.4.0
v readr 1.3.1 v forcats 0.5.0
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
View(mpg)
Homework
repeat the box plots and bar graphs with horizontal axis
box plots
ggplot(mpg, aes(x = class, y = hwy)) +geom_boxplot() +
theme(axis.text.x = element_text(angle = 70, vjust = 0.5, color = "red")) +
xlab("Class") + ylab("Highway Milage") +
ggtitle("Class Vs Hwy Box Plot") + coord_flip()

bar graphs
use diamonds data to plot bar graphs
View(diamonds)
ggplot(data = diamonds) + ggtitle("Count Vs Cut Horizontal Bar Graph")+
theme(axis.text.x = element_text(angle = 70, vjust = 0.5, color = "black"))+
xlab("Count") + ylab("Cut") +
geom_bar(mapping = aes(x = cut)) + coord_flip()

ggplot(data = diamonds) + ggtitle("Horizontal Bar Graph")+
theme(axis.text.x = element_text(angle = 70, vjust = 0.5, color = "black"))+
geom_bar(mapping = aes(x = cut, color = cut))+ coord_flip()

ggplot(data = diamonds) + ggtitle("Horizontal Bar Graph with different cut color")+
theme(axis.text.x = element_text(angle = 70, vjust = 0.5, color = "black"))+
geom_bar(mapping = aes(x = cut, fill = cut)) + coord_flip()

stacked bar graph
ggplot(data = diamonds) + ggtitle("Horizontal Stacked Bar Graph ")+
theme(axis.text.x = element_text(angle = 70, vjust = 0.5, color = "black"))+
geom_bar(mapping = aes(x = cut, fill = clarity)) + coord_flip()

position = fill shows its easy to compare proportions
ggplot(data = diamonds) + ggtitle("Horizontal Stacked Bar Graph for proportion comparison ") +
theme(axis.text.x = element_text(angle = 70, vjust = 0.5, color = "black")) +
geom_bar(
mapping = aes(x = cut, fill = clarity),
position= "fill"
) + coord_flip()

ggplot(data = diamonds) + ggtitle("Horizontal Stacked Bar Graph for side by side comparison ") +
theme(axis.text.x = element_text(angle = 70, vjust = 0.5, color = "black")) +
geom_bar(
mapping = aes(x = cut, fill = clarity),
position = "dodge"
) + coord_flip()

Histogram
ggplot(diamonds, aes(x=depth,fill = clarity)) + geom_histogram(binwidth = 2)+
scale_x_continuous("Depth", breaks = seq(40,80,by = 10))+
scale_y_continuous("Count", breaks = seq(0,25000,by = 5000))+
labs(title = "Histogram") + coord_flip()

plot a line graph of cty vs hwy in mpg dataset
ggplot(data = mpg)+ ggtitle("cty vs hwy line graph")+
geom_line(
mapping = aes(x = cty, y = hwy, colour="darkred", linetype = drv)
)

plot line graph of depth vs price for each color in diamonds dataset
ggplot(data = diamonds)+ ggtitle("depth vs price line graph")+
geom_line(
mapping = aes(x = depth, y = price, linetype = clarity, colour="blue")
)

legends are added to all graphs
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmBgYA0KYGBge3J9DQpWaWV3KG1wZykNCmBgYA0KIyBIb21ld29yayANCiMjIyByZXBlYXQgdGhlIGJveCBwbG90cyBhbmQgYmFyIGdyYXBocyB3aXRoIGhvcml6b250YWwgYXhpcw0KIyMjIGJveCBwbG90cw0KDQpgYGB7cn0NCmdncGxvdChtcGcsIGFlcyh4ID0gY2xhc3MsIHkgPSBod3kpKSArZ2VvbV9ib3hwbG90KCkgKw0KICB0aGVtZShheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDcwLCB2anVzdCA9IDAuNSwgY29sb3IgPSAicmVkIikpICsNCiAgeGxhYigiQ2xhc3MiKSArIHlsYWIoIkhpZ2h3YXkgTWlsYWdlIikgKyANCiAgZ2d0aXRsZSgiQ2xhc3MgVnMgSHd5IEJveCBQbG90IikgKyBjb29yZF9mbGlwKCkNCmBgYA0KIyMjIGJhciBncmFwaHMNCg0KIyB1c2UgZGlhbW9uZHMgZGF0YSB0byBwbG90IGJhciBncmFwaHMgDQpgYGB7cn0NClZpZXcoZGlhbW9uZHMpDQpgYGANCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGRpYW1vbmRzKSArIGdndGl0bGUoIkNvdW50IFZzIEN1dCBIb3Jpem9udGFsIEJhciBHcmFwaCIpKw0KICB0aGVtZShheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDcwLCB2anVzdCA9IDAuNSwgY29sb3IgPSAiYmxhY2siKSkgKw0KICBnZW9tX2JhcihtYXBwaW5nID0gYWVzKHggPSBjdXQpKSArIGNvb3JkX2ZsaXAoKQ0KYGBgDQoNCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGRpYW1vbmRzKSArIGdndGl0bGUoIkhvcml6b250YWwgQmFyIEdyYXBoIikrDQogIHRoZW1lKGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gNzAsIHZqdXN0ID0gMC41LCBjb2xvciA9ICJibGFjayIpKSsNCiAgZ2VvbV9iYXIobWFwcGluZyA9IGFlcyh4ID0gY3V0LCBjb2xvciA9IGN1dCkpKyBjb29yZF9mbGlwKCkNCmBgYA0KDQpgYGB7cn0NCmdncGxvdChkYXRhID0gZGlhbW9uZHMpICsgZ2d0aXRsZSgiSG9yaXpvbnRhbCBCYXIgR3JhcGggd2l0aCBkaWZmZXJlbnQgY3V0IGZpbGxlZCB3aXRoIGNvbG9yIikrDQogIHRoZW1lKGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gNzAsIHZqdXN0ID0gMC41LCBjb2xvciA9ICJibGFjayIpKSsNCiAgZ2VvbV9iYXIobWFwcGluZyA9IGFlcyh4ID0gY3V0LCBmaWxsID0gY3V0KSkgKyBjb29yZF9mbGlwKCkNCmBgYA0KDQojIyMgc3RhY2tlZCBiYXIgZ3JhcGggDQoNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBkaWFtb25kcykgKyBnZ3RpdGxlKCJIb3Jpem9udGFsIFN0YWNrZWQgQmFyIEdyYXBoICIpKw0KICB0aGVtZShheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDcwLCB2anVzdCA9IDAuNSwgY29sb3IgPSAiYmxhY2siKSkrDQogIGdlb21fYmFyKG1hcHBpbmcgPSBhZXMoeCA9IGN1dCwgZmlsbCA9IGNsYXJpdHkpKSArIGNvb3JkX2ZsaXAoKQ0KYGBgDQoNCg0KIyMgcG9zaXRpb24gPSBmaWxsIHNob3dzIGl0cyBlYXN5IHRvIGNvbXBhcmUgcHJvcG9ydGlvbnMNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBkaWFtb25kcykgKyBnZ3RpdGxlKCJIb3Jpem9udGFsIFN0YWNrZWQgQmFyIEdyYXBoIGZvciBwcm9wb3J0aW9uIGNvbXBhcmlzb24gIikgKw0KICB0aGVtZShheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDcwLCB2anVzdCA9IDAuNSwgY29sb3IgPSAiYmxhY2siKSkgICArDQogIGdlb21fYmFyKA0KICAgIG1hcHBpbmcgPSBhZXMoeCA9IGN1dCwgZmlsbCA9IGNsYXJpdHkpLA0KICAgIHBvc2l0aW9uPSAiZmlsbCINCiAgKSArIGNvb3JkX2ZsaXAoKQ0KYGBgDQoNCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGRpYW1vbmRzKSArIGdndGl0bGUoIkhvcml6b250YWwgU3RhY2tlZCBCYXIgR3JhcGggZm9yIHNpZGUgYnkgc2lkZSBjb21wYXJpc29uICIpICsNCiAgdGhlbWUoYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoYW5nbGUgPSA3MCwgdmp1c3QgPSAwLjUsIGNvbG9yID0gImJsYWNrIikpICAgKw0KICBnZW9tX2JhcigNCiAgICBtYXBwaW5nID0gYWVzKHggPSBjdXQsIGZpbGwgPSBjbGFyaXR5KSwNCiAgICBwb3NpdGlvbiA9ICJkb2RnZSINCiAgKSArIGNvb3JkX2ZsaXAoKQ0KYGBgDQojIyMgSGlzdG9ncmFtDQoNCmBgYHtyfQ0KZ2dwbG90KGRpYW1vbmRzLCBhZXMoeD1kZXB0aCxmaWxsID0gY2xhcml0eSkpICsgZ2VvbV9oaXN0b2dyYW0oYmlud2lkdGggPSAyKSsNCiAgc2NhbGVfeF9jb250aW51b3VzKCJEZXB0aCIsIGJyZWFrcyA9IHNlcSg0MCw4MCxieSA9IDEwKSkrDQogIHNjYWxlX3lfY29udGludW91cygiQ291bnQiLCBicmVha3MgPSBzZXEoMCwyNTAwMCxieSA9IDUwMDApKSsNCiAgbGFicyh0aXRsZSA9ICJIaXN0b2dyYW0iKSArIGNvb3JkX2ZsaXAoKQ0KYGBgDQoNCiMjIHBsb3QgYSBsaW5lIGdyYXBoIG9mIGN0eSB2cyBod3kgaW4gbXBnIGRhdGFzZXQNCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IG1wZykrIGdndGl0bGUoImN0eSB2cyBod3kgbGluZSBncmFwaCIpKw0KICBnZW9tX2xpbmUoDQogICAgbWFwcGluZyA9IGFlcyh4ID0gY3R5LCB5ID0gaHd5LCBjb2xvdXI9ImRhcmtyZWQiLCBsaW5ldHlwZSA9IGRydikgDQogICkNCmBgYA0KDQojIHBsb3QgbGluZSBncmFwaCBvZiBkZXB0aCB2cyBwcmljZSBmb3IgZWFjaCBjb2xvciBpbiBkaWFtb25kcyBkYXRhc2V0DQoNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBkaWFtb25kcykrIGdndGl0bGUoImRlcHRoIHZzIHByaWNlIGxpbmUgZ3JhcGgiKSsNCiAgZ2VvbV9saW5lKA0KICAgIG1hcHBpbmcgPSBhZXMoeCA9IGRlcHRoLCB5ID0gcHJpY2UsIGxpbmV0eXBlID0gY2xhcml0eSwgY29sb3VyPSJibHVlIikNCiAgKSANCmBgYA0KDQojIyBsZWdlbmRzIGFyZSBhZGRlZCB0byBhbGwgZ3JhcGhzIA0KDQo=