\[ \mathbf{u}. * \mathbf{v} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} . * \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix} =\begin{bmatrix} 12 \\ 0 \\ 8 \end{bmatrix} \]
\[ \begin{aligned} \mathbf{u} & = \begin{bmatrix} u_1, & u_2, & \ldots, & u_n \end{bmatrix} \\ \mathbf{v} & = \begin{bmatrix} v_1, & v_2, & \ldots, & v_n \end{bmatrix} \end{aligned} \]
\[ \mathbf{u}. * \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} . * \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} =\begin{bmatrix} u_1 v_1 \\ u_2 v_2 \\ \vdots \\ u_n v_n \end{bmatrix} \]
\[ \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} . * \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = ~~ ? \]
u <- c(1,-2,3); v <- c(4,5,6)
u * v = ?
Your answer here!
\[ \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} . * \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} =\begin{bmatrix} 4 \\ -10 \\ 18 \end{bmatrix} \]
u <- c(1,-2,3); v <- c(4,5,6)
u * v
[1] 4 -10 18
\[ \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} . * \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = ~~ ? \]
u <- c(1,-2,3)
u * u = ?
Your answer here!
\[ \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} . * \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} =\begin{bmatrix} 1 \\ 4 \\ 9 \end{bmatrix} \]
u <- c(1,-2,3)
u * u
[1] 1 4 9
u^2
[1] 1 4 9
\[ \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} . * \begin{bmatrix} 5 \\ 6 \end{bmatrix} = ~~ \mathrm{Error} \]
u <- c(2,3,4)
v <- c(5,6)
u * v
[1] 10 18 20
\[ \matrix{ x_1 & + & 2x_2 & = & 5 \cr 3x_1 & - & 4 x_2 & = & 6 } ~~ \Leftrightarrow \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix} \]
\[ \begin{aligned} \mathbf{u} & = \begin{bmatrix} u_1, & u_2, & \ldots, & u_n \end{bmatrix} \\ \mathbf{v} & = \begin{bmatrix} v_1, & v_2, & \ldots, & v_n \end{bmatrix} \end{aligned} \]
\[ \mathbf{u} \cdot \mathbf{v} = \sum_{i = 1}^n u_i v_i \]
\[ \begin{aligned} \mathbf{u} & = \begin{bmatrix} 2, & 0, & 3 \end{bmatrix} \\ \mathbf{v} & = \begin{bmatrix} -1, & 1, & 4 \end{bmatrix} \end{aligned} \]
\[ \mathbf{u} \cdot \mathbf{v} = (2)(-1) + (0)(1) + (3)(4) = 10 \]
\[ \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = ~~ ? \]
u <- c(1,-2,3); v <- c(4,5,6)
u %*% v = ?
Your answer here!
\[ \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = 12 \]
u <- c(1,-2,3); v <- c(4,5,6)
u %*% v
[,1]
[1,] 12
\[ \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = ~~ ? \]
u <- c(1,-2,3)
u * u = ?
Your answer here!
\[ \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = 14 \]
u <- c(1,-2,3)
u %*% u
[,1]
[1,] 14
u^2
[1] 1 4 9
sum(u^2)
[1] 14
\[ \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} . * \begin{bmatrix} 5 \\ 6 \end{bmatrix} = ~~ \mathrm{Error} \]
u <- c(2,3,4)
v <- c(5,6)
u %*% v
Error in u %*% v : non-conformable arguments
\[ \mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 0 \]
\[ \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 4 \\ 2 \end{bmatrix} = (2)(-3) + (1)(4) + (1)(2) =0 \]
u <- c(2,1,1); w <- c(-3,4,2)
u %*% w
[,1]
[1,] 0