\[ \begin{aligned} A &= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}, ~ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, ~ \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \\ \\ A \mathbf{x} & = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \mathbf{b} \end{aligned} \]
\[ \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} (2)(1) + (-1)(3) + (3)(2) \\ (0)(1) + (1)(3) + (4)(2) \end{bmatrix} = \begin{bmatrix} 5 \\ 11 \end{bmatrix} \]
\[ \begin{bmatrix} 1 & 4 & -2 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \\ -1 \end{bmatrix} = ~~ ? \]
A <- matrix(c(1,3,4,0,-2,1),2,3)
x <- c(5,1,-1)
A %*% x
\[ \begin{bmatrix} 1 & 4 & -2 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} (1)(5) + (4)(1) + (-2)(-1) \\ (3)(5) + (0)(1) + (1)(-1) \end{bmatrix} = \begin{bmatrix} 11 \\ 14 \end{bmatrix} \]
A <- matrix(c(1,3,4,0,-2,1),2,3)
x <- c(5,1,-1)
A %*% x
[,1]
[1,] 11
[2,] 14
\[ \begin{bmatrix} 1 & 4 \\ -2 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = ~~ ? \]
A <- matrix(c(1,-2,0,4,3,1),3,2)
x <- c(5,2)
A %*% x
\[ \begin{bmatrix} 1 & 4 \\ -2 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} (1)(5) + (4)(2) \\ (-2)(5) + (3)(2) \\ (0)(5) + (1)(2) \end{bmatrix} = \begin{bmatrix} 13 \\ -4 \\ 2 \end{bmatrix} \]
A <- matrix(c(1,-2,0,4,3,1),3,2)
x <- c(5,2)
A %*% x
[,1]
[1,] 13
[2,] -4
[3,] 2
\[ \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 4 \end{bmatrix} .* \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} = ~? \]
A <- matrix(c(2,0,-1,1,3,4),2,3)
x <- c(1,3,5)
A * x
[,1] [,2] [,3]
[1,] 2 -5 9
[2,] 0 1 20
\[ \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 4 \end{bmatrix} .* \begin{bmatrix} 1 \\ 3 \end{bmatrix} = ~? \]
A <- matrix(c(2,0,-1,1,3,4),2,3)
x <- c(1,3)
A * x
[,1] [,2] [,3]
[1,] 2 -1 3
[2,] 0 3 12
\[ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} .* \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} = ~? \]
R result:
A <- matrix(c(1,1,1,1,1,1),2,3)
x <- c(2,3,4,5)
A * x
[,1] [,2] [,3]
[1,] 2 4 2
[2,] 3 5 3
\[ A= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix}, ~~ B= \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1r} \\ b_{21} & b_{22} & \cdots & b_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{m2} & \cdots & b_{nr} \\ \end{bmatrix} \]
\[ \begin{aligned} AB &= \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 3 & 8 \\ 2 & 0 \end{bmatrix} \\ &= \begin{bmatrix} (2)(1) + (-1)(3) + (3)(2) & (2)(5) + (-1)(8) + (3)(0) \\ (0)(1) + (1)(3) + (4)(2) & (0)(5) + (1)(8) + (4)(0) \end{bmatrix} \\ & = \begin{bmatrix} 5 & 2 \\ 11 & 8 \end{bmatrix} \end{aligned} \]
\[ AB = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 3 & 8 \\ 2 & 0 \end{bmatrix} = ? \]
A <- matrix(c(2,0,-1,1,3,4),2,3)
B <- matrix(c(1,3,2,5,8,0),3,2)
A %*% B = ?
Your answer here!
\[ AB = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 3 & 8 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 11 & 8 \end{bmatrix} \]
A <- matrix(c(2,0,-1,1,3,4),2,3)
B <- matrix(c(1,3,2,5,8,0),3,2)
A %*% B
[,1] [,2]
[1,] 5 2
[2,] 11 8
\[ \begin{aligned} BA &= \begin{bmatrix} 1 & 5 \\ 3 & 8 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 4 \end{bmatrix} = ~~? \end{aligned} \]
B <- matrix(c(1,3,2,5,8,0),3,2)
A <- matrix(c(2,0,-1,1,3,4),2,3)
B %*% A = ?
Your answer here!
\[ \begin{aligned} BA &= \begin{bmatrix} 1 & 5 \\ 3 & 8 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 4 \end{bmatrix} \\ &= \begin{bmatrix} (1)(2) + (5)(0) & (1)(-1) + (5)(1) & (1)(3) + (5)(4) \\ (3)(2) + (8)(0) & (3)(-1) + (8)(1) & (3)(3) + (8)(4) \\ (2)(2) + (0)(0) & (2)(-1) + (0)(1) & (2)(3) + (0)(4) \end{bmatrix} \\ & = \begin{bmatrix} 2 & 4 & 23 \\ 6 & 5 & 41 \\ 4 & -2 & 6 \end{bmatrix} \end{aligned} \]
\[ BA = \begin{bmatrix} 1 & 5 \\ 3 & 8 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 23 \\ 6 & 5 & 41 \\ 4 & -2 & 6 \end{bmatrix} \]
B <- matrix(c(1,3,2,5,8,0),3,2)
A <- matrix(c(2,0,-1,1,3,4),2,3)
B %*% A
[,1] [,2] [,3]
[1,] 2 4 23
[2,] 6 5 41
[3,] 4 -2 6
(C <- A %*% B)
[,1] [,2]
[1,] 5 2
[2,] 11 8
dim(C)
[1] 2 2
(D <- B %*% A)
[,1] [,2] [,3]
[1,] 2 4 23
[2,] 6 5 41
[3,] 4 -2 6
dim(D)
[1] 3 3
\[ A= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix}, ~~ B= \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \\ \end{bmatrix} \]
[,1] [,2] [,3]
[1,] 2 -1 3
[2,] 3 2 4
[,1] [,2] [,3]
[1,] 1 2 8
[2,] 4 5 0
A * B
[,1] [,2] [,3]
[1,] 2 -2 24
[2,] 12 10 0
B * A
[,1] [,2] [,3]
[1,] 2 -2 24
[2,] 12 10 0
[,1] [,2] [,3]
[1,] 2 -1 3
[2,] 3 1 4
[,1] [,2]
[1,] 1 5
[2,] 4 8
[3,] 2 0
dim(A)
[1] 2 3
dim(B)
[1] 3 2
A * B
Error in A * B : non-conformable arrays