24/09/2020

Contenidos

  • Recursos y requerimientos

  • Instalar y abrir librería

  • Importar y explorar base de datos

  • Explorar variables del diseño muestral

  • Crear diseño muestral

  • Descriptivos

  • Regresión lineal

  • Regresión logística

  • Plots

Tarea individual n°1 - Curso MSP 3010, 2020

Objetivo de la tarea:

Adquirir habilidades para realizar análisis de variables incluidas en las bases de datos de la Encuesta Nacional de Salud chilena, utilizando un paquete estadístico para “Muestras Complejas”.

Instrucciones:
  1. Revise previamente los cuestionarios de cualquier base de datos ENS disponible al público en Chile.
  2. Elija un tema de su interés y construya un indicador específico que pueda ser dicotomizado (0-1).
  1. Calcule una tasa de prevalencia nacional y según sexo para ese parámetro.

Tarea individual n°1 - Curso MSP 3010, 2020

  1. Calcule las tasas de prevalencia según nivel educacional (bajo, medio, alto).
  2. Estime los Odds Ratio para una comparación entre la prevalencia del nivel educacional bajo vs. Alto ajustado por edad y sexo (utilizando regresión logística en el módulo de muestras complejas).
  3. Ensaye realizar los mismos cálculos del punto 3, 4 y 5 fuera del módulo de muestras complejas. ¿Nota algún cambio? ¿De qué magnitud? ¿Por qué ocurre esto? Discuta con sus compañeros.

Tarea individual n°1 - Curso MSP 3010, 2020

  1. Entregar vía mail 2 archivos:

Archivo 1. Un archivo con 3 tablas (ejemplo):

  1. “Prevalencia de (consumo de 5 o más frutas o verduras al día) según sexo, Chile ENS 20XX”
  2. “Prevalencia de … según nivel educacional, Chile ENS …”
  3. “Odds ratio ajustado por edad y sexo para la comparación de prevalencias de … entre el nivel educacional bajo y Alto”

Archivo 2. Un archivo con la sintaxis utilizada para realizar estos análisis.

Tarea individual n°1 - Curso MSP 3010, 2020

Para realizar este trabajo contará con el siguiente apoyo:

  1. PDF de Clases sobre las bases de datos ENS y sobre la teoría estadística detrás del muestreo complejo.
  2. Lectura y apuntes sobre el uso del módulo de muestras complejas utilizando STATA o R.
  3. Talleres de STATA o R.

Fecha de entrega: miércoles 28 de octubre (hasta las 23.59), enviar archivos rotulados como 1_su nombre.xls y 2_su nombre.doc a Francisco Valenzuela: fjvalen2@uc.cl

Recursos y requerimientos

Bases de datos

Bases de datos

– ENS 2003 (SPSS)

– Base de datos ENS 2003 – Región y comuna (SPSS)

– ENS 2009-2010

  1. SPSS, STATA

(a.1) ENS 2009-2010 Comuna (SPSS)

  1. Base de medicamentos

– ENS 2016-17

  1. Base Formulario 1-Formulario 2 y exámenes

(a.1) Base Formulario 1-Formulario 2 y exámenes – comuna y variables complejas (SPSS)

(a.2) Base Formulario1-Formulario 2 y exámenes – Metales Pesados (SPSS)

  1. Base Formulario 4

  2. Manual de uso (Actualización 14/02/2018)

  3. Libro de códigos F1, F2 , F3 y F4

  4. Base de Medicamentos

  5. Base formuarios y libro de codigos F3

Bases de datos

Cuestionarios y manuales

Opción 1: RStudio cloud

Opción 2: R y RStudio instalados

Ideal si tienes cuenta en Rpubs

Paquetes/librerias R requeridos para el taller

  • library(dplyr) #dplyr: a grammar of data manipulation#
  • library(rio) #To import and export data#
  • library(survey) #to use survey design
  • library(srvyr) #survey design with grammar

Instalar librerias

RStudio te ofrece installar los paquetes por ti. Guarda el archivo. No demora en aparecer un mensaje en amarillo ofreciendo instalar

Instalar librerias

# install.packages("dplyr")
  • Puedes activar el código borrando el # antes del texto

  • Puedes cambiar el “nombre del paquete” a instalar

  • Comillas en install.packages() son importantes

Cargar librerias

library(rio) #To import and export data#
library(reshape2) #Modifiy data set shape design with grammar
library(dplyr) #dplyr: a grammar of data manipulation#
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2) #plot your results
library(survey) #Analise using survey design
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
library(srvyr) #Analise using survey design with grammar
## 
## Attaching package: 'srvyr'
## The following object is masked from 'package:stats':
## 
##     filter

Knitr (ctrl+shift+K)

Knit: Do you see that blue button with knitting sticks? Press it

Importar y explorar base de datos

Importar base de datos

  • Dejar todos los archivos en la misma carpeta de trabajo (working directory: wd)
# Current wd
getwd()
## [1] "/cloud/project"
# Setting wd
# setwd('~/Dropbox/PhD_web/ENS/static/Referencias ENS')
# df0 <- import('F1_F2_EX_V9_20AUG18AP5.dta')
df0 <- rio::import('F1_F2_EX_V9_20AUG18AP5.dta')

rio:: lo utilizas cuando no has cargado la librería “rio” o para asegurar que usas la función “import” del paquete “rio” y no de “otro paquete”.

Explorar base de datos

# View(df0)
# WARNING View() de bases gigante 
# ENS no es gigante

# nombres de variables / columnas
# names(df0)
# total columnas
length(names(df0)) 
## [1] 1160
# total filas
length(df0$IdEncuesta)
## [1] 6233
# options:
# nrow(df0)
# ncol(df0)
# dim(df0)

Explorar base de datos

# A veces es mejor generar un elemento ("namesdf0")
namesdf0 <- names(df0)
# y abrirlo en otra ventana
# View(namesdf0)
namesdf0[1:40]
##  [1] "IdEncuesta"      "FechaInicioF1"   "Region"          "Zona"           
##  [5] "IdSegmento"      "IdPersona_1"     "Ident7"          "Edad"           
##  [9] "Edad_Codificada" "Sexo"            "c1"              "c1_esp"         
## [13] "c2"              "c2a"             "c2b"             "c3"             
## [17] "c3a"             "c3b"             "c3c"             "c5"             
## [21] "c5_otro"         "c5b"             "c6"              "c7_0_nino"      
## [25] "c7_1_nino"       "c7_1_cuidador"   "c7_2_nino"       "c7_2_cuidador"  
## [29] "c7_3_nino"       "c7_3_cuidador"   "c7_4_nino"       "c7_4_cuidador"  
## [33] "c7_5_nino"       "c7_5_cuidador"   "e1"              "e2a"            
## [37] "e2b"             "e2c"             "e2d"             "e3_1"

Explorar base de datos

summary(df0[1:10])
##    IdEncuesta    FechaInicioF1            Region            Zona      
##  Min.   :20006   Min.   :2016-08-04   Min.   : 1.000   Min.   :1.000  
##  1st Qu.:22684   1st Qu.:2016-10-14   1st Qu.: 5.000   1st Qu.:1.000  
##  Median :25698   Median :2016-11-06   Median : 7.000   Median :1.000  
##  Mean   :25764   Mean   :2016-11-07   Mean   : 7.851   Mean   :1.159  
##  3rd Qu.:28501   3rd Qu.:2016-11-28   3rd Qu.:11.000   3rd Qu.:1.000  
##  Max.   :70000   Max.   :2017-02-23   Max.   :15.000   Max.   :2.000  
##    IdSegmento        IdPersona_1        Ident7                Edad      
##  Min.   : 1101101   Min.   :  1.0   Min.   :1918-11-26   Min.   :15.00  
##  1st Qu.: 5109123   1st Qu.: 40.0   1st Qu.:1952-04-23   1st Qu.:33.00  
##  Median : 8301107   Median : 82.0   Median :1966-10-30   Median :50.00  
##  Mean   : 8503764   Mean   :106.6   Mean   :1967-06-20   Mean   :48.91  
##  3rd Qu.:13101108   3rd Qu.:146.0   3rd Qu.:1983-07-25   3rd Qu.:64.00  
##  Max.   :15101204   Max.   :590.0   Max.   :2002-01-19   Max.   :98.00  
##  Edad_Codificada      Sexo      
##  Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:1.000  
##  Median :3.000   Median :2.000  
##  Mean   :2.684   Mean   :1.629  
##  3rd Qu.:3.000   3rd Qu.:2.000  
##  Max.   :4.000   Max.   :2.000

Explorar base de datos

names(df0)[grepl("Vitamina",names(df0))]
## [1] "v_25_OH_Vitamina_D2"         "aux_25_OH_Vitamina_D2"      
## [3] "v_25_OH_Vitamina_D2_D3"      "v_25_OH_Vitamina_D3"        
## [5] "v_25_OH_Vitamina_D2_corr"    "v_25_OH_Vitamina_D3_corr"   
## [7] "v_25_OH_Vitamina_D2_D3_corr"
names(df0)[grepl("Fexp",names(df0))]
## [1] "Fexp_F1p_Corr"      "Fexp_F2p_Corr"      "Fexp_F1F2p_Corr"   
## [4] "Fexp_EX1p_Corr"     "Fexp_F1F2EX1p_Corr" "Fexp_EX2p_Corr"    
## [7] "Fexp_F1F2EX2p_Corr" "Fexp_EX3p_Corr"     "Fexp_F1F2EX3p_Corr"
names(df0)[grepl("Congl",names(df0))]
## [1] "Conglomerado"
names(df0)[grepl("Estr",names(df0))]
## [1] "Estrato"

Extraer y describir variables seleccionadas

df0_ext <- df0[c( "IdEncuesta","FechaInicioF1","Region","Zona", "Edad",
"Edad_Codificada","Sexo","NEDU1",
"Fexp_F1p_Corr","Fexp_F2p_Corr","Fexp_F1F2p_Corr",
"Fexp_EX1p_Corr","Fexp_F1F2EX1p_Corr", "Fexp_EX2p_Corr",
"Fexp_F1F2EX2p_Corr" ,"Fexp_EX3p_Corr","Fexp_F1F2EX3p_Corr",
"Conglomerado","Estrato","v_25_OH_Vitamina_D2_D3_corr")]
summary(df0_ext)
##    IdEncuesta    FechaInicioF1            Region            Zona      
##  Min.   :20006   Min.   :2016-08-04   Min.   : 1.000   Min.   :1.000  
##  1st Qu.:22684   1st Qu.:2016-10-14   1st Qu.: 5.000   1st Qu.:1.000  
##  Median :25698   Median :2016-11-06   Median : 7.000   Median :1.000  
##  Mean   :25764   Mean   :2016-11-07   Mean   : 7.851   Mean   :1.159  
##  3rd Qu.:28501   3rd Qu.:2016-11-28   3rd Qu.:11.000   3rd Qu.:1.000  
##  Max.   :70000   Max.   :2017-02-23   Max.   :15.000   Max.   :2.000  
##                                                                       
##       Edad       Edad_Codificada      Sexo           NEDU1      
##  Min.   :15.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:33.00   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :50.00   Median :3.000   Median :2.000   Median :2.000  
##  Mean   :48.91   Mean   :2.684   Mean   :1.629   Mean   :1.983  
##  3rd Qu.:64.00   3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :98.00   Max.   :4.000   Max.   :2.000   Max.   :3.000  
##                                                  NA's   :59     
##  Fexp_F1p_Corr       Fexp_F2p_Corr       Fexp_F1F2p_Corr    
##  Min.   :    2.594   Min.   :    3.131   Min.   :    3.131  
##  1st Qu.:  414.818   1st Qu.:  454.585   1st Qu.:  454.585  
##  Median : 1084.403   Median : 1209.348   Median : 1209.348  
##  Mean   : 2329.371   Mean   : 2630.248   Mean   : 2630.248  
##  3rd Qu.: 2633.405   3rd Qu.: 3017.059   3rd Qu.: 3017.059  
##  Max.   :24000.000   Max.   :24000.000   Max.   :24000.000  
##                      NA's   :713         NA's   :713        
##  Fexp_EX1p_Corr      Fexp_F1F2EX1p_Corr  Fexp_EX2p_Corr     Fexp_F1F2EX2p_Corr
##  Min.   :    3.163   Min.   :    3.163   Min.   :    4.32   Min.   :    4.34  
##  1st Qu.:  464.486   1st Qu.:  465.550   1st Qu.:  726.64   1st Qu.:  728.37  
##  Median : 1232.532   Median : 1241.019   Median : 1781.00   Median : 1791.02  
##  Mean   : 2666.477   Mean   : 2674.828   Mean   : 3765.63   Mean   : 3774.10  
##  3rd Qu.: 3071.311   3rd Qu.: 3071.912   3rd Qu.: 4341.99   3rd Qu.: 4349.47  
##  Max.   :24000.000   Max.   :24000.000   Max.   :34000.00   Max.   :34000.00  
##  NA's   :788         NA's   :805         NA's   :2386       NA's   :2386      
##  Fexp_EX3p_Corr     Fexp_F1F2EX3p_Corr  Conglomerado         Estrato      
##  Min.   :   10.27   Min.   :   10.41   Min.   : 1101101   Min.   : 11.00  
##  1st Qu.: 1808.85   1st Qu.: 1821.60   1st Qu.: 5109123   1st Qu.: 51.00  
##  Median : 4823.59   Median : 4832.53   Median : 8301107   Median : 81.00  
##  Mean   :10532.52   Mean   :10551.58   Mean   : 8503691   Mean   : 84.27  
##  3rd Qu.:12958.39   3rd Qu.:12962.88   3rd Qu.:13101108   3rd Qu.:131.00  
##  Max.   :98000.00   Max.   :98000.00   Max.   :15101204   Max.   :152.00  
##  NA's   :4857       NA's   :4857                                          
##  v_25_OH_Vitamina_D2_D3_corr
##  Min.   : 1.30              
##  1st Qu.:13.50              
##  Median :18.90              
##  Mean   :19.74              
##  3rd Qu.:24.90              
##  Max.   :59.70              
##  NA's   :3347
by(df0_ext, df0_ext$Sexo, summary)
## df0_ext$Sexo: 1
##    IdEncuesta    FechaInicioF1            Region            Zona      
##  Min.   :20013   Min.   :2016-09-03   Min.   : 1.000   Min.   :1.000  
##  1st Qu.:22616   1st Qu.:2016-10-14   1st Qu.: 5.000   1st Qu.:1.000  
##  Median :25585   Median :2016-11-04   Median : 7.000   Median :1.000  
##  Mean   :25608   Mean   :2016-11-06   Mean   : 7.803   Mean   :1.143  
##  3rd Qu.:28369   3rd Qu.:2016-11-27   3rd Qu.:11.000   3rd Qu.:1.000  
##  Max.   :31839   Max.   :2017-02-23   Max.   :15.000   Max.   :2.000  
##                                                                       
##       Edad       Edad_Codificada      Sexo       NEDU1      
##  Min.   :15.00   Min.   :1.000   Min.   :1   Min.   :1.000  
##  1st Qu.:31.00   1st Qu.:2.000   1st Qu.:1   1st Qu.:2.000  
##  Median :49.00   Median :3.000   Median :1   Median :2.000  
##  Mean   :47.93   Mean   :2.634   Mean   :1   Mean   :2.043  
##  3rd Qu.:63.00   3rd Qu.:3.000   3rd Qu.:1   3rd Qu.:2.000  
##  Max.   :95.00   Max.   :4.000   Max.   :1   Max.   :3.000  
##                                              NA's   :18     
##  Fexp_F1p_Corr       Fexp_F2p_Corr       Fexp_F1F2p_Corr    
##  Min.   :    6.424   Min.   :    8.888   Min.   :    8.888  
##  1st Qu.:  568.766   1st Qu.:  639.303   1st Qu.:  639.303  
##  Median : 1507.263   Median : 1786.075   Median : 1786.075  
##  Mean   : 3080.486   Mean   : 3532.108   Mean   : 3532.108  
##  3rd Qu.: 3768.953   3rd Qu.: 4395.049   3rd Qu.: 4395.049  
##  Max.   :24000.000   Max.   :24000.000   Max.   :24000.000  
##                      NA's   :296         NA's   :296        
##  Fexp_EX1p_Corr      Fexp_F1F2EX1p_Corr  Fexp_EX2p_Corr     Fexp_F1F2EX2p_Corr
##  Min.   :    8.888   Min.   :    8.888   Min.   :    9.11   Min.   :    9.11  
##  1st Qu.:  662.982   1st Qu.:  665.465   1st Qu.: 1038.81   1st Qu.: 1048.51  
##  Median : 1827.887   Median : 1837.309   Median : 2561.75   Median : 2579.03  
##  Mean   : 3567.447   Mean   : 3583.581   Mean   : 5053.01   Mean   : 5068.46  
##  3rd Qu.: 4470.406   3rd Qu.: 4514.441   3rd Qu.: 6300.13   3rd Qu.: 6323.65  
##  Max.   :24000.000   Max.   :24000.000   Max.   :34000.00   Max.   :34000.00  
##  NA's   :316         NA's   :325         NA's   :908        NA's   :908       
##  Fexp_EX3p_Corr     Fexp_F1F2EX3p_Corr  Conglomerado         Estrato      
##  Min.   :   64.65   Min.   :   64.65   Min.   : 1101101   Min.   : 11.00  
##  1st Qu.: 2810.20   1st Qu.: 2813.99   1st Qu.: 5301101   1st Qu.: 51.00  
##  Median : 6550.06   Median : 6554.51   Median : 8301106   Median : 81.00  
##  Mean   :14537.63   Mean   :14553.73   Mean   : 8501529   Mean   : 84.21  
##  3rd Qu.:20210.62   3rd Qu.:20237.63   3rd Qu.:13101108   3rd Qu.:131.00  
##  Max.   :98000.00   Max.   :98000.00   Max.   :15101204   Max.   :152.00  
##  NA's   :1825       NA's   :1825                                          
##  v_25_OH_Vitamina_D2_D3_corr
##  Min.   : 1.30              
##  1st Qu.:14.60              
##  Median :20.45              
##  Mean   :21.14              
##  3rd Qu.:26.75              
##  Max.   :50.10              
##  NA's   :1851               
## ------------------------------------------------------------ 
## df0_ext$Sexo: 2
##    IdEncuesta    FechaInicioF1            Region           Zona      
##  Min.   :20006   Min.   :2016-08-04   Min.   : 1.00   Min.   :1.000  
##  1st Qu.:22707   1st Qu.:2016-10-14   1st Qu.: 5.00   1st Qu.:1.000  
##  Median :25778   Median :2016-11-07   Median : 7.00   Median :1.000  
##  Mean   :25856   Mean   :2016-11-08   Mean   : 7.88   Mean   :1.168  
##  3rd Qu.:28584   3rd Qu.:2016-11-28   3rd Qu.:11.00   3rd Qu.:1.000  
##  Max.   :70000   Max.   :2017-02-22   Max.   :15.00   Max.   :2.000  
##                                                                      
##       Edad       Edad_Codificada      Sexo       NEDU1      
##  Min.   :15.00   Min.   :1.000   Min.   :2   Min.   :1.000  
##  1st Qu.:34.00   1st Qu.:2.000   1st Qu.:2   1st Qu.:1.000  
##  Median :50.00   Median :3.000   Median :2   Median :2.000  
##  Mean   :49.49   Mean   :2.713   Mean   :2   Mean   :1.948  
##  3rd Qu.:64.00   3rd Qu.:3.000   3rd Qu.:2   3rd Qu.:2.000  
##  Max.   :98.00   Max.   :4.000   Max.   :2   Max.   :3.000  
##                                              NA's   :41     
##  Fexp_F1p_Corr       Fexp_F2p_Corr       Fexp_F1F2p_Corr    
##  Min.   :    2.594   Min.   :    3.131   Min.   :    3.131  
##  1st Qu.:  346.014   1st Qu.:  387.065   1st Qu.:  387.065  
##  Median :  876.152   Median :  965.907   Median :  965.907  
##  Mean   : 1885.565   Mean   : 2110.152   Mean   : 2110.152  
##  3rd Qu.: 2138.313   3rd Qu.: 2402.234   3rd Qu.: 2402.234  
##  Max.   :24000.000   Max.   :24000.000   Max.   :24000.000  
##                      NA's   :417         NA's   :417        
##  Fexp_EX1p_Corr      Fexp_F1F2EX1p_Corr  Fexp_EX2p_Corr     Fexp_F1F2EX2p_Corr
##  Min.   :    3.163   Min.   :    3.163   Min.   :    4.32   Min.   :    4.34  
##  1st Qu.:  393.154   1st Qu.:  393.644   1st Qu.:  590.95   1st Qu.:  591.24  
##  Median :  983.557   Median :  984.762   Median : 1446.51   Median : 1448.54  
##  Mean   : 2143.831   Mean   : 2148.820   Mean   : 3023.28   Mean   : 3027.72  
##  3rd Qu.: 2458.421   3rd Qu.: 2461.515   3rd Qu.: 3504.26   3rd Qu.: 3511.23  
##  Max.   :24000.000   Max.   :24000.000   Max.   :34000.00   Max.   :34000.00  
##  NA's   :472         NA's   :480         NA's   :1478       NA's   :1478      
##  Fexp_EX3p_Corr     Fexp_F1F2EX3p_Corr  Conglomerado         Estrato      
##  Min.   :   10.27   Min.   :   10.41   Min.   : 1101101   Min.   : 11.00  
##  1st Qu.: 1473.66   1st Qu.: 1482.27   1st Qu.: 5109122   1st Qu.: 51.00  
##  Median : 3715.37   Median : 3722.69   Median : 8301108   Median : 81.00  
##  Mean   : 8317.50   Mean   : 8338.20   Mean   : 8504969   Mean   : 84.32  
##  3rd Qu.: 9521.39   3rd Qu.: 9521.39   3rd Qu.:13101109   3rd Qu.:131.00  
##  Max.   :98000.00   Max.   :98000.00   Max.   :15101204   Max.   :152.00  
##  NA's   :3032       NA's   :3032                                          
##  v_25_OH_Vitamina_D2_D3_corr
##  Min.   : 2.00              
##  1st Qu.:13.20              
##  Median :18.60              
##  Mean   :19.47              
##  3rd Qu.:24.60              
##  Max.   :59.70              
##  NA's   :1496

Extraer y describir variables seleccionadas

# # Hmisc Trae conflictos con paquetes library(dplyr) y library(srvyr)
library(summarytools)
## Registered S3 method overwritten by 'pryr':
##   method      from
##   print.bytes Rcpp
## Warning in fun(libname, pkgname): couldn't connect to display ":0"
## system might not have X11 capabilities; in case of errors when using dfSummary(), set st_options(use.x11 = FALSE)
## For best results, restart R session and update pander using devtools:: or remotes::install_github('rapporter/pander')

https://dabblingwithdata.wordpress.com/2018/01/02/my-favourite-r-package-for-summarising-data/

Extraer y describir variables seleccionadas

mydata <- descr(df0_ext)
mydata
## Non-numerical variable(s) ignored: FechaInicioF1
## Descriptive Statistics  
## df0_ext$IdEncuesta  
## Label: IdEncuesta  
## N: 6233  
## 
##                     Conglomerado      Edad   Edad_Codificada   Estrato   Fexp_EX1p_Corr
## ----------------- -------------- --------- ----------------- --------- ----------------
##              Mean     8503691.47     48.91              2.68     84.27          2666.48
##           Std.Dev     4187166.26     19.32              0.99     42.10          3928.00
##               Min     1101101.00     15.00              1.00     11.00             3.16
##                Q1     5109123.00     33.00              2.00     51.00           464.49
##            Median     8301107.00     50.00              3.00     81.00          1232.53
##                Q3    13101108.00     64.00              3.00    131.00          3071.31
##               Max    15101204.00     98.00              4.00    152.00         24000.00
##               MAD     5633900.76     23.72              1.48     59.30          1412.23
##               IQR     7991985.00     31.00              1.00     80.00          2606.82
##                CV           0.49      0.39              0.37      0.50             1.47
##          Skewness          -0.10      0.05             -0.18     -0.08             3.07
##       SE.Skewness           0.03      0.03              0.03      0.03             0.03
##          Kurtosis          -1.16     -0.98             -1.01     -1.19            11.04
##           N.Valid        6233.00   6233.00           6233.00   6233.00          5445.00
##         Pct.Valid         100.00    100.00            100.00    100.00            87.36
## 
## Table: Table continues below
## 
##  
## 
##                     Fexp_EX2p_Corr   Fexp_EX3p_Corr   Fexp_F1F2EX1p_Corr   Fexp_F1F2EX2p_Corr
## ----------------- ---------------- ---------------- -------------------- --------------------
##              Mean          3765.63         10532.52              2674.83              3774.10
##           Std.Dev          5411.16         14973.73              3933.49              5419.26
##               Min             4.32            10.27                 3.16                 4.34
##                Q1           726.04          1808.43               465.53               728.06
##            Median          1781.00          4823.59              1241.02              1791.02
##                Q3          4342.94         13031.06              3072.37              4351.14
##               Max         34000.00         98000.00             24000.00             34000.00
##               MAD          1991.71          5490.85              1424.99              1995.94
##               IQR          3615.35         11149.53              2606.36              3621.10
##                CV             1.44             1.42                 1.47                 1.44
##          Skewness             3.02             2.87                 3.06                 3.02
##       SE.Skewness             0.04             0.07                 0.03                 0.04
##          Kurtosis            10.85            10.18                10.99                10.81
##           N.Valid          3847.00          1376.00              5428.00              3847.00
##         Pct.Valid            61.72            22.08                87.08                61.72
## 
## Table: Table continues below
## 
##  
## 
##                     Fexp_F1F2EX3p_Corr   Fexp_F1F2p_Corr   Fexp_F1p_Corr   Fexp_F2p_Corr
## ----------------- -------------------- ----------------- --------------- ---------------
##              Mean             10551.58           2630.25         2329.37         2630.25
##           Std.Dev             14988.75           3888.86         3526.21         3888.86
##               Min                10.41              3.13            2.59            3.13
##                Q1              1821.15            454.58          414.82          454.58
##            Median              4832.53           1209.35         1084.40         1209.35
##                Q3             13040.05           3018.56         2633.41         3018.56
##               Max             98000.00          24000.00        24000.00        24000.00
##               MAD              5514.50           1388.06         1223.40         1388.06
##               IQR             11141.28           2562.47         2218.59         2562.47
##                CV                 1.42              1.48            1.51            1.48
##          Skewness                 2.87              3.08            3.34            3.08
##       SE.Skewness                 0.07              0.03            0.03            0.03
##          Kurtosis                10.15             11.22           13.68           11.22
##           N.Valid              1376.00           5520.00         6233.00         5520.00
##         Pct.Valid                22.08             88.56          100.00           88.56
## 
## Table: Table continues below
## 
##  
## 
##                     IdEncuesta     NEDU1    Region      Sexo   v_25_OH_Vitamina_D2_D3_corr      Zona
## ----------------- ------------ --------- --------- --------- ----------------------------- ---------
##              Mean     25763.61      1.98      7.85      1.63                         19.74      1.16
##           Std.Dev      3651.47      0.68      3.93      0.48                          8.37      0.37
##               Min     20006.00      1.00      1.00      1.00                          1.30      1.00
##                Q1     22684.00      2.00      5.00      1.00                         13.50      1.00
##            Median     25698.00      2.00      7.00      2.00                         18.90      1.00
##                Q3     28501.00      2.00     11.00      2.00                         24.90      1.00
##               Max     70000.00      3.00     15.00      2.00                         59.70      2.00
##               MAD      4308.44      0.00      4.45      0.00                          8.45      0.00
##               IQR      5817.00      0.00      6.00      1.00                         11.40      0.00
##                CV         0.14      0.34      0.50      0.30                          0.42      0.32
##          Skewness         1.36      0.02      0.06     -0.53                          0.59      1.86
##       SE.Skewness         0.03      0.03      0.03      0.03                          0.05      0.03
##          Kurtosis        13.25     -0.83     -0.89     -1.72                          0.38      1.48
##           N.Valid      6233.00   6174.00   6233.00   6233.00                       2886.00   6233.00
##         Pct.Valid       100.00     99.05    100.00    100.00                         46.30    100.00
# View(mydata)

CHEQUEAR FACTOR DE EXPANSION

FactoresExp1 <- rio::import('ENS2017_FactoresExp.xlsx', sheet=1)
FactoresExp3 <- rio::import('ENS2017_FactoresExp.xlsx', sheet=3)
FactoresExp2 <- rio::import('ENS2017_FactoresExp.xlsx', sheet=2)
FactoresExp2
##                              Examen  FactorExp F1-Examen  FactorExp, F2-Examen 
## 1               v_25_OH_Vitamina_D2       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 2             aux_25_OH_Vitamina_D2       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 3            v_25_OH_Vitamina_D2_D3       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 4               v_25_OH_Vitamina_D3       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 5        Anticuerpos_Anti_Peptido_C       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 6    aux_Anticuerpos_Anti_Peptido_C       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 7     Anticuerpos_Anti_Peroxidasa_T       Fexp_EX3p_Corr    Fexp_F1F2EX3p_Corr 
## 8   aux_Anticuerpos_Anti_Peroxidasa       Fexp_EX3p_Corr    Fexp_F1F2EX3p_Corr 
## 9    Anticuerpos_anti_Trypanosoma_c       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 10   aux_A_Anticuerpos_anti_Tryp_c_       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 11   aux_B_Anticuerpos_anti_Tryp_c_       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 12                     Arsenico_ENS       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 13                       Cadmio_ENS       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 14                   Colesterol_HDL       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 15         Colesterol_LDL_Calculado       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 16      Colesterol_No_HDL_Calculado       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 17                 Colesterol_Total       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 18        Colesterol_VLDL_Calculado       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 19              Creatinina_en_Orina       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 20             Creatinina_en_Sangre       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 21               Factor_Reumatoideo       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 22           aux_Factor_Reumatoideo       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 23      Filtrado_Glomerular_CKD_EPI       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 24                    Folato_Serico       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 25   GGT_Gamma_Glutamil_Transferasa       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 26                          Glucosa       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 27                      Hemoglobina       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 28                  Hemoglobina_A1C       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 29              aux_Hemoglobina_A1C       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 30 Hormona_Estimulante_Tiroides_TSH       Fexp_EX3p_Corr    Fexp_F1F2EX3p_Corr 
## 31      aux_Hormona_Estimulante_TSH       Fexp_EX3p_Corr    Fexp_F1F2EX3p_Corr 
## 32                     Mercurio_ENS       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 33                 Microalbuminuria       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 34             aux_Microalbuminuria       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 35      Microalbuminuria_Creatinina       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 36                        Plomo_ENS       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 37               Potasio_K_en_Orina       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 38               Potasio_Creatinina       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 39 Proteina_C_Reactiva_cuantitativa       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 40    aux_Proteina_C_Reactiva_cuant       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 41    Sangre_deposiciones_1_muestra       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 42                    Sarampion_IgG       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 43                Sodio_Na_en_Orina       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 44                 Sodio_Creatinina       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 45               Tiroxina_Libre_FT4       Fexp_EX3p_Corr    Fexp_F1F2EX3p_Corr 
## 46  Transaminasa_Glutamico_Piruvica       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 47                    Trigliceridos       Fexp_EX2p_Corr    Fexp_F1F2EX2p_Corr 
## 48                  VPH_alto_riesgo       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 49                  VPH_genotipo_16       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 50                  VPH_genotipo_18       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 51                    VPH_resultado       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 
## 52                          Yoduria       Fexp_EX3p_Corr    Fexp_F1F2EX3p_Corr 
## 53                      aux_Yoduria       Fexp_EX3p_Corr    Fexp_F1F2EX3p_Corr 
## 54           Yoduria_mas_Creatinina       Fexp_EX3p_Corr    Fexp_F1F2EX3p_Corr 
## 55       Conf_ISP_Trypanosoma_cruzi       Fexp_EX1p_Corr    Fexp_F1F2EX1p_Corr 

Describir muestra cruda

table(df0$NEDU1)
## 
##    1    2    3 
## 1477 3323 1374
table(df0$NEDU1, useNA = "ifany")
## 
##    1    2    3 <NA> 
## 1477 3323 1374   59
prop.table(table(df0$NEDU1))
## 
##         1         2         3 
## 0.2392290 0.5382248 0.2225462
# Explorar paquetes
# library(epiDisplay)
# tab1(df0$NEDU1, sort.group = "decreasing", cum.percent = TRUE)
# library(janitor)
# tabyl(df0$NEDU1, sort = TRUE)
# library(summarytools)
# summarytools::freq(df0$NEDU1, order = "freq")
# library(questionr)
# questionr::freq(df0$NEDU1, cum = TRUE, sort = "dec", total = TRUE)

Describir muestra cruda

hist(df0$v_25_OH_Vitamina_D2_D3_corr)

Generar variables

df0$Gender <- factor(df0$Sexo,
                   levels=c("1","2"),
                   labels=c("Male",
                            "Female"))
df0$Educational_level <- factor(df0$NEDU1,
                              levels=c("1","2","3"),
                              labels=c("Low",
                                       "Mid",
                                       "High"))
df0$Area <- factor(df0$Zona,
                 levels=c("1","2"),
                 labels=c("Urban",
                          "Rural"))
df0$Age <- factor(df0$Edad_Codificada,
                levels=c("1","2","3","4"),
                labels=c("17-24",
                         "25-44",
                         "45-64",
                         "65+"))

df0$Region_n <- as.numeric(df0$Region)

df0$RM <- NA
df0$RM[(df0$Region_n==7)] <- 1
df0$RM[(df0$Region_n!=7)] <- 2

df0$ENS <- 2017
df0$person <- 1

Survey design

df0$Conglomerado_ <- NA
df0$Conglomerado_ <- df0$Conglomerado
df0$strata_ <- NA
df0$strata_ <- df0$Estrato
df0$fexp <- df0$Fexp_F1F2EX1p_Corr 

Survey design

Explore

res_0b <- df0 %>%
  group_by(Region,Area,strata_) %>%
  summarize(Conglomerado_l = length(unique(Conglomerado_)))
## `summarise()` regrouping output by 'Region', 'Area' (override with `.groups` argument)
res_0b
## # A tibble: 30 x 4
## # Groups:   Region, Area [30]
##    Region Area  strata_ Conglomerado_l
##     <dbl> <fct>   <dbl>          <int>
##  1      1 Urban     151             55
##  2      1 Rural     152              3
##  3      2 Urban      11             52
##  4      2 Rural      12              3
##  5      3 Urban      21             58
##  6      3 Rural      22              1
##  7      4 Urban      31             58
##  8      4 Rural      32              3
##  9      5 Urban      41             49
## 10      5 Rural      42              6
## # … with 20 more rows
res_0b <- df0 %>%
  group_by(Region,Area,strata_) %>%
  summarize(Conglomerado_l = length(unique(Conglomerado_)))
## `summarise()` regrouping output by 'Region', 'Area' (override with `.groups` argument)
res_0b
## # A tibble: 30 x 4
## # Groups:   Region, Area [30]
##    Region Area  strata_ Conglomerado_l
##     <dbl> <fct>   <dbl>          <int>
##  1      1 Urban     151             55
##  2      1 Rural     152              3
##  3      2 Urban      11             52
##  4      2 Rural      12              3
##  5      3 Urban      21             58
##  6      3 Rural      22              1
##  7      4 Urban      31             58
##  8      4 Rural      32              3
##  9      5 Urban      41             49
## 10      5 Rural      42              6
## # … with 20 more rows
res_0b <- df0 %>%
  group_by(Region,Area,strata_) %>%
  summarize(
    is.naFexp_F1F2EX1p_Corr = sum(is.na(Fexp_F1F2EX1p_Corr)),
    Fexp_F1F2EX1p_Corr_valid = sum(!is.na(Fexp_F1F2EX1p_Corr)),
    mean = mean(Fexp_F1F2EX1p_Corr, na.rm=TRUE)
  )
## `summarise()` regrouping output by 'Region', 'Area' (override with `.groups` argument)
res_0b
## # A tibble: 30 x 6
## # Groups:   Region, Area [30]
##    Region Area  strata_ is.naFexp_F1F2EX1p_Corr Fexp_F1F2EX1p_Corr_valid  mean
##     <dbl> <fct>   <dbl>                   <int>                    <int> <dbl>
##  1      1 Urban     151                      58                      261  699.
##  2      1 Rural     152                       1                       39  185.
##  3      2 Urban      11                      68                      241 1061.
##  4      2 Rural      12                       8                       24  245.
##  5      3 Urban      21                      74                      254 1920.
##  6      3 Rural      22                       0                       10  280.
##  7      4 Urban      31                      26                      250  938.
##  8      4 Rural      32                       4                       24  433.
##  9      5 Urban      41                      34                      236 2062.
## 10      5 Rural      42                       9                       51 2604.
## # … with 20 more rows
res_0b <- df0 %>%
  group_by(Age) %>%
  summarize(
    is.naFexp_F1F2EX1p_Corr = sum(is.na(Fexp_F1F2EX1p_Corr)),
    Fexp_F1F2EX1p_Corr_valid = sum(!is.na(Fexp_F1F2EX1p_Corr)),
    mean_ = mean(Fexp_F1F2EX1p_Corr, na.rm=TRUE),
    sum_ = sum(Fexp_F1F2EX1p_Corr, na.rm=TRUE),
    n_ = n()
)
## `summarise()` ungrouping output (override with `.groups` argument)
res_0b
## # A tibble: 4 x 6
##   Age   is.naFexp_F1F2EX1p_Corr Fexp_F1F2EX1p_Corr_valid mean_     sum_    n_
##   <fct>                   <int>                    <int> <dbl>    <dbl> <int>
## 1 17-24                     129                      708 3867. 2737931.   837
## 2 25-44                     267                     1548 3498. 5414690.  1815
## 3 45-64                     233                     1831 2424. 4437480.  2064
## 4 65+                       176                     1341 1438. 1928868.  1517

Survey design

Explore

length(unique(df0$Conglomerado_))
## [1] 1077
table(df0$Conglomerado_,df0$strata_)
##           
##            11 12 21 22 31 32 41 42 51 52 61 62 71 72 81 82 91 92 101 102 111
##   1101101   6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101102   8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101103   8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101104  10  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101105   2  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101106   4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101107   6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101108   5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101109   9  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101110   5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101111   7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101112   8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101114   5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101115   8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101119   7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101120   5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101121   9  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101122   8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101123   3  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101124   9  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101125   7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101126   6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101127   7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101130   9  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101131   6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101132   5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101133   8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101136   2  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1101137   7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1105101   5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1105102   6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1105103   4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1105201   0 17  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107101   8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107102   8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107103   4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107104   5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107105   8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107106   6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107107   8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107108   4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107109   4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107111   4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107112   3  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107113   4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107114   2  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107115   6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107116   7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107117   6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107118   4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107119   4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107120   5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1107121   5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1401201   0  8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   1401202   0  7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101101   0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101102   0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101103   0  0  8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101104   0  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101105   0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101106   0  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101107   0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101108   0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101109   0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101110   0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101111   0  0  8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101112   0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101113   0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101114   0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101115   0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101116   0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101118   0  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101119   0  0  8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101120   0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101121   0  0  2  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101123   0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101125   0  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101126   0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101128   0  0  8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101129   0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101130   0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101131   0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101132   0  0  8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101133   0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101134   0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101135   0  0  9  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101136   0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101137   0  0  9  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101138   0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101139   0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2101140   0  0 10  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201101   0  0  2  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201102   0  0  2  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201103   0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201104   0  0  8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201105   0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201106   0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201107   0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201108   0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201109   0  0  8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201110   0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201111   0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201113   0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201114   0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201115   0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201116   0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201117   0  0  8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2201118   0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2203101   0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2203102   0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2203104   0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2203105   0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2203106   0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   2203201   0  0  0 10  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101101   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101102   0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101103   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101104   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101105   0  0  0  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101106   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101107   0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101108   0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101109   0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101110   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101111   0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101112   0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101113   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101114   0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101115   0  0  0  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101116   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101117   0  0  0  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101118   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101119   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101120   0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101121   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101122   0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101123   0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101124   0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101125   0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101126   0  0  0  0  8  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101127   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101128   0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101129   0  0  0  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101130   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101131   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101132   0  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101133   0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101134   0  0  0  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3101135   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3103101   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3103102   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3103103   0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3103104   0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3103105   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3103106   0  0  0  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3103107   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3103201   0  0  0  0  0 13  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3301101   0  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3301102   0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3301103   0  0  0  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3301104   0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3301105   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3301106   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3301107   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3301108   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3301109   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3301110   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3302201   0  0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3302202   0  0  0  0  0 11  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3304101   0  0  0  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3304102   0  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3304103   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3304104   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3304105   0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   3304106   0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101101   0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101102   0  0  0  0  0  0  9  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101105   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101106   0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101108   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101109   0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101110   0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101111   0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101112   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101113   0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101114   0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101115   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101116   0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4101117   0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102101   0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102102   0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102104   0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102105   0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102106   0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102107   0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102108   0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102109   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102110   0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102111   0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102112   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102113   0  0  0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102114   0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102115   0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102117   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102118   0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4102119   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4106201   0  0  0  0  0  0  0 10  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4106202   0  0  0  0  0  0  0 10  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4201101   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4201102   0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4201103   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4201104   0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4201105   0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4301101   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4301102   0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4301103   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4301104   0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4301105   0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4301106   0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4301107   0  0  0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4301108   0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4301201   0  0  0  0  0  0  0 10  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4301202   0  0  0  0  0  0  0 10  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4303101   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4303102   0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4303103   0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4303104   0  0  0  0  0  0  4  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4303105   0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4304201   0  0  0  0  0  0  0 10  0  0  0  0  0  0  0  0  0  0   0   0   0
##   4304202   0  0  0  0  0  0  0 10  0  0  0  0  0  0  0  0  0  0   0   0   0
##   5101102   0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0  0  0   0   0   0
##   5101103   0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0  0  0   0   0   0
##   5101104   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5101105   0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0  0  0   0   0   0
##   5101106   0  0  0  0  0  0  0  0  9  0  0  0  0  0  0  0  0  0   0   0   0
##   5101107   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5101108   0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0   0   0   0
##   5101109   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5101111   0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0   0   0   0
##   5101112   0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0   0   0   0
##   5101113   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5101115   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5101116   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5101117   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5101118   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5101119   0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0  0  0   0   0   0
##   5101120   0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0   0   0   0
##   5101121   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5101122   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5102101   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5102102   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5102103   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5102104   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5102105   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5103103   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5103104   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5109101   0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0   0   0   0
##   5109102   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5109105   0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0   0   0   0
##   5109106   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5109107   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5109108   0  0  0  0  0  0  0  0  9  0  0  0  0  0  0  0  0  0   0   0   0
##   5109109   0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0   0   0   0
##   5109111   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5109112   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5109113   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5109114   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5109115   0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0   0   0   0
##   5109116   0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0   0   0   0
##   5109117   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5109118   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5109119   0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0  0  0   0   0   0
##   5109120   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5109121   0  0  0  0  0  0  0  0  9  0  0  0  0  0  0  0  0  0   0   0   0
##   5109122   0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0   0   0   0
##   5109123   0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0   0   0   0
##   5109124   0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0   0   0   0
##   5301101   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5301102   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5301103   0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0  0  0   0   0   0
##   5301104   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5304201   0  0  0  0  0  0  0  0  0 10  0  0  0  0  0  0  0  0   0   0   0
##   5304202   0  0  0  0  0  0  0  0  0 10  0  0  0  0  0  0  0  0   0   0   0
##   5402101   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5402102   0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0   0   0   0
##   5402103   0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0   0   0   0
##   5402104   0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0   0   0   0
##   5402105   0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0   0   0   0
##   5501101   0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0   0   0   0
##   5501102   0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0   0   0   0
##   5501103   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5501104   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5501105   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5502101   0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0   0   0   0
##   5502102   0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0   0   0   0
##   5502103   0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0  0  0   0   0   0
##   5502104   0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0   0   0   0
##   5503201   0  0  0  0  0  0  0  0  0  9  0  0  0  0  0  0  0  0   0   0   0
##   5503202   0  0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0  0   0   0   0
##   5601101   0  0  0  0  0  0  0  0  9  0  0  0  0  0  0  0  0  0   0   0   0
##   5601102   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5601103   0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0   0   0   0
##   5601104   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5601105   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5601106   0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0   0   0   0
##   5602101   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5602102   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5602103   0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0   0   0   0
##   5602104   0  0  0  0  0  0  0  0  9  0  0  0  0  0  0  0  0  0   0   0   0
##   5602105   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5701101   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5701102   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5701103   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5701104   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5703101   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5703102   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5703103   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5703104   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5703105   0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0   0   0   0
##   5705201   0  0  0  0  0  0  0  0  0  9  0  0  0  0  0  0  0  0   0   0   0
##   5705202   0  0  0  0  0  0  0  0  0 10  0  0  0  0  0  0  0  0   0   0   0
##   5801101   0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0   0   0   0
##   5801102   0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0   0   0   0
##   5801103   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5801104   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5801105   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5801106   0  0  0  0  0  0  0  0  9  0  0  0  0  0  0  0  0  0   0   0   0
##   5801107   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5801108   0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0   0   0   0
##   5801109   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5801110   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5801111   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5802101   0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0   0   0   0
##   5802102   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5802103   0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0  0  0   0   0   0
##   5804101   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5804102   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5804103   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5804104   0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0  0  0   0   0   0
##   5804105   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5804107   0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0   0   0   0
##   5804108   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   5804109   0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0  0  0   0   0   0
##   5804110   0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0  0  0   0   0   0
##   6101102   0  0  0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0   0   0   0
##   6101103   0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0   0   0   0
##   6101104   0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0   0   0   0
##   6101105   0  0  0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0   0   0   0
##   6101106   0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0   0   0   0
##   6101107   0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0   0   0   0
##   6101108   0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0   0   0   0
##   6101109   0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0   0   0   0
##   6101111   0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0   0   0   0
##   6101112   0  0  0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0   0   0   0
##   6101113   0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0   0   0   0
##   6101114   0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0   0   0   0
##   6101115   0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0   0   0   0
##   6101116   0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0   0   0   0
##   6101117   0  0  0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0   0   0   0
##   6101118   0  0  0  0  0  0  0  0  0  0  8  0  0  0  0  0  0  0   0   0   0
##   6105101   0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0   0   0   0
##   6105102   0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0   0   0   0
##   6105103   0  0  0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0   0   0   0
##   6105104   0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0   0   0   0
##   6105105   0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0   0   0   0
##   6107201   0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0  0  0   0   0   0
##   6107202   0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0  0  0   0   0   0
##   6108101   0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0   0   0   0
##   6108102   0  0  0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0   0   0   0
##   6108103   0  0  0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0   0   0   0
##   6108104   0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0   0   0   0
##   6110101   0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0   0   0   0
##   6110102   0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0   0   0   0
##   6110103   0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0   0   0   0
##   6110104   0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0   0   0   0
##   6110105   0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0   0   0   0
##   6114201   0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0  0  0   0   0   0
##   6114202   0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0  0  0   0   0   0
##   6115101   0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0   0   0   0
##   6115102   0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0   0   0   0
##   6115103   0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0   0   0   0
##   6117101   0  0  0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0   0   0   0
##   6117102   0  0  0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0   0   0   0
##   6117103   0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0   0   0   0
##   6117104   0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0   0   0   0
##   6117105   0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0   0   0   0
##   6117201   0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0  0  0   0   0   0
##   6117202   0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0  0  0   0   0   0
##   6301101   0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0   0   0   0
##   6301102   0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0   0   0   0
##   6301103   0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0   0   0   0
##   6301104   0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0   0   0   0
##   6303201   0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0  0  0   0   0   0
##   6303202   0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0  0  0   0   0   0
##   6305101   0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0   0   0   0
##   6305102   0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0  0  0   0   0   0
##   6305103   0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0   0   0   0
##   6305104   0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0  0  0   0   0   0
##   6305105   0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0  0  0   0   0   0
##   6310201   0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0  0  0   0   0   0
##   6310202   0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0  0  0   0   0   0
##   7101101   0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0   0   0   0
##   7101102   0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0  0  0   0   0   0
##   7101103   0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0  0  0   0   0   0
##   7101104   0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0   0   0   0
##   7101105   0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0   0   0   0
##   7101106   0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0   0   0   0
##   7101107   0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0   0   0   0
##   7101108   0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0  0  0   0   0   0
##   7101109   0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0   0   0   0
##   7101110   0  0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0  0   0   0   0
##   7101111   0  0  0  0  0  0  0  0  0  0  0  0  3  0  0  0  0  0   0   0   0
##   7101112   0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0   0   0   0
##   7101113   0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0   0   0   0
##   7101114   0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0   0   0   0
##   7102101   0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0  0  0   0   0   0
##   7102102   0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0   0   0   0
##   7102103   0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0   0   0   0
##   7104201   0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0   0   0   0
##   7104202   0  0  0  0  0  0  0  0  0  0  0  0  0 14  0  0  0  0   0   0   0
##   7105101   0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0   0   0   0
##   7105102   0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0   0   0   0
##   7105103   0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0   0   0   0
##   7105104   0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0   0   0   0
##   7105105   0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0   0   0   0
##   7109201   0  0  0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0   0   0   0
##   7109202   0  0  0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0   0   0   0
##   7201101   0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0   0   0   0
##   7201102   0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0   0   0   0
##   7301101   0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0   0   0   0
##   7301102   0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0   0   0   0
##   7301103   0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0   0   0   0
##   7301104   0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0   0   0   0
##   7301105   0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0   0   0   0
##   7301106   0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0   0   0   0
##   7301107   0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0   0   0   0
##   7301108   0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0   0   0   0
##   7301201   0  0  0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0   0   0   0
##   7301202   0  0  0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0   0   0   0
##   7304101   0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0   0   0   0
##   7304102   0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0   0   0   0
##   7307201   0  0  0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0   0   0   0
##   7307202   0  0  0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0   0   0   0
##   7401101   0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0   0   0   0
##   7401102   0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0  0  0   0   0   0
##   7401103   0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0   0   0   0
##   7401104   0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0  0  0   0   0   0
##   7401105   0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0   0   0   0
##   7402201   0  0  0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0   0   0   0
##   7402202   0  0  0  0  0  0  0  0  0  0  0  0  0  9  0  0  0  0   0   0   0
##   7404101   0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0  0  0   0   0   0
##   7404102   0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0   0   0   0
##   7404103   0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0   0   0   0
##   7404104   0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0  0  0   0   0   0
##   7404105   0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0  0  0   0   0   0
##   7404106   0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0  0  0   0   0   0
##   7405201   0  0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0  0   0   0   0
##   7405202   0  0  0  0  0  0  0  0  0  0  0  0  0 10  0  0  0  0   0   0   0
##   8101101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8101102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8101103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8101104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8101105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  9  0  0  0   0   0   0
##   8101106   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8101107   0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  0  0  0   0   0   0
##   8101108   0  0  0  0  0  0  0  0  0  0  0  0  0  0  9  0  0  0   0   0   0
##   8101110   0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0  0  0   0   0   0
##   8101112   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8101113   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8101114   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8102101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8102102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8102103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8102104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0  0  0   0   0   0
##   8102105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8102106   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8103101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8103102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8103103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8103104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8103105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8103106   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8106101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8106102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8106103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8107101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8107102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8107103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8108101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0   0   0   0
##   8108102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8108103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  9  0  0  0   0   0   0
##   8108104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  0  0  0   0   0   0
##   8108105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8109101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8109102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0   0   0   0
##   8109103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8109104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8109105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8109106   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8110101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8110102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8110103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0   0   0   0
##   8110104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8110105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8110106   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8110107   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8110108   0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  0  0  0   0   0   0
##   8110109   0  0  0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0   0   0   0
##   8110110   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8110201   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 10  0  0   0   0   0
##   8110202   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 10  0  0   0   0   0
##   8111101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8111102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8111103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8112101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8112102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8112103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8112104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8112105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8112106   0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0   0   0   0
##   8205101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8205102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8206101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8206102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  0  0  0   0   0   0
##   8206103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8206104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8206105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8206106   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8301101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0   0   0   0
##   8301102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8301103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8301104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8301105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0   0   0   0
##   8301106   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8301107   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8301108   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8301201   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 14  0  0   0   0   0
##   8301202   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 11  0  0   0   0   0
##   8307101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8307102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8307103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8307104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8307105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8307106   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8309201   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 10  0  0   0   0   0
##   8309202   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 10  0  0   0   0   0
##   8401101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  0  0  0   0   0   0
##   8401102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8401103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8401104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8401105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8401106   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8401107   0  0  0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0   0   0   0
##   8401108   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8401109   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8405201   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 12  0  0   0   0   0
##   8405202   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 15  0  0   0   0   0
##   8406101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8406102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8406103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8406104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0   0   0   0
##   8406105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8406106   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8416101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0   0   0   0
##   8416102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0  0  0   0   0   0
##   8416201   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 16  0  0   0   0   0
##   8416202   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 15  0  0   0   0   0
##   9101102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0   0   0   0
##   9101103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0   0   0   0
##   9101104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9101105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0   0   0   0
##   9101106   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9101107   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9101108   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0   0   0   0
##   9101109   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9101110   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0   0   0   0
##   9101111   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0   0   0   0
##   9101112   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  8  0   0   0   0
##   9101113   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  9  0   0   0   0
##   9101114   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0   0   0   0
##   9101115   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  0   0   0   0
##   9101116   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0   0   0   0
##   9101117   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9101118   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0   0   0   0
##   9101119   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9101201   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 10   0   0   0
##   9101202   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  9   0   0   0
##   9105101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0   0   0   0
##   9105102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0   0   0   0
##   9105103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0   0   0   0
##   9105104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0   0   0   0
##   9105105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0   0   0   0
##   9106201   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 10   0   0   0
##   9106202   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 12   0   0   0
##   9111101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  0   0   0   0
##   9111102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9111103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0   0   0   0
##   9111104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9111105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9112101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0   0   0   0
##   9112102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0   0   0   0
##   9112103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9112201   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 10   0   0   0
##   9112202   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 10   0   0   0
##   9116201   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 10   0   0   0
##   9116202   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 10   0   0   0
##   9118101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9118102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9118103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9118104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9118105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9120101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0   0   0   0
##   9120102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0   0   0   0
##   9201101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0   0   0   0
##   9201102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9201103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9202201   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 10   0   0   0
##   9202202   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 10   0   0   0
##   9209101   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0   0   0   0
##   9209102   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0   0   0   0
##   9209103   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  0   0   0   0
##   9209104   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   9209105   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  0   0   0   0
##   10101101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   2   0   0
##   10101102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   3   0   0
##   10101103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   5   0   0
##   10101104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   2   0   0
##   10101105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   4   0   0
##   10101106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   5   0   0
##   10101107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10101108  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10101109  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   9   0   0
##   10101112  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10101113  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   8   0   0
##   10101114  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   5   0   0
##   10101115  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   4   0   0
##   10101116  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   7   0   0
##   10101117  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   1   0   0
##   10101118  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   4   0   0
##   10101201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0  15   0
##   10101202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0  18   0
##   10105101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   4   0   0
##   10105102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10105103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10105104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   5   0   0
##   10105201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0  10   0
##   10105202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0  13   0
##   10109101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   1   0   0
##   10109102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   8   0   0
##   10201101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10201102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10201103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   2   0   0
##   10201201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0  10   0
##   10201202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0  10   0
##   10202101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10202102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   8   0   0
##   10203101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   4   0   0
##   10203102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   5   0   0
##   10203103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   5   0   0
##   10203104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10207201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0  10   0
##   10207202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0  10   0
##   10301101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10301102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   9   0   0
##   10301103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   4   0   0
##   10301104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   3   0   0
##   10301105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10301106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   7   0   0
##   10301107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   2   0   0
##   10301108  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10301109  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   5   0   0
##   10301110  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10301111  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   3   0   0
##   10303101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   4   0   0
##   10303102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   7   0   0
##   10303103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   1   0   0
##   10303104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   6   0   0
##   10303201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0  10   0
##   10303202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0  10   0
##   11101101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   3
##   11101102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   5
##   11101103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   7
##   11101105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   3
##   11101106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   5
##   11101107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   2
##   11101108  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   4
##   11101109  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   5
##   11101110  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   3
##   11101111  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   3
##   11101112  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   1
##   11101113  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   4
##   11101114  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   6
##   11101115  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   7
##   11101116  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   4
##   11101117  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   7
##   11101118  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   8
##   11101120  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   4
##   11101121  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   7
##   11101122  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   3
##   11101123  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   6
##   11101124  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   7
##   11101125  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   5
##   11101127  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   5
##   11101128  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   5
##   11101129  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   6
##   11101130  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   9
##   11101131  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   6
##   11101132  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   8
##   11101133  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   6
##   11101134  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   1
##   11101135  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   8
##   11101136  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   4
##   11101137  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   4
##   11101201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   11101202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   11101203  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   11201101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   5
##   11201102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   2
##   11201103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   5
##   11201104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   4
##   11201105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   6
##   11201106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   5
##   11201107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   3
##   11201108  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   7
##   11201109  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   6
##   11201110  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   6
##   11201111  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   8
##   11201112  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   7
##   11201113  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   5
##   11201114  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   6
##   11201115  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   6
##   11201116  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   4
##   11201117  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   8
##   11201118  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   6
##   11201119  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   7
##   11201201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   11201202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101108  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101109  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101110  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101111  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101112  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101113  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101114  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101115  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101116  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101117  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101118  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101119  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101120  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101121  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101122  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101123  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101124  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101125  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101126  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101127  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101128  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101129  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101131  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101132  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101133  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101134  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101135  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101136  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101137  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101138  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101139  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101140  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101141  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101142  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101143  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101144  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101145  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101146  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101147  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101148  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101149  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101150  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12101201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12301101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12301102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12301103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12301104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12301105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12301106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12301107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12301108  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12301109  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12301110  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   12401201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13101101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13101102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13101104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13101105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13101106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13101107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13101108  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13101109  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13101110  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13102101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13102102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13103101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13103102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13103103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13103104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13104101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13104102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13104103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13105101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13105102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13105103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13105104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13105105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13106101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13106102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13106103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13106104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13107101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13107102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13108101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13108102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13109101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13109102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13110101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13110102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13110103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13110104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13110105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13110106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13110108  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13110109  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13110110  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13110111  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13111101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13111102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13111103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13111104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13112101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13112102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13112103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13112104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13112105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13113102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13113103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13114101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13114103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13114105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13114107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13115101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13115102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13116101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13116102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13116103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13117101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13117102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13117103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13118101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13118102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13118103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13119101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13119102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13119103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13119104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13119105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13119106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13119107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13119108  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13119109  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13119110  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13119111  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13119112  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13119113  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13120102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13120104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13120105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13120106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13121101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13121102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13121103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13122101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13122102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13122104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13122105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13122106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13122107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13123101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13123102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13123105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13124101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13124102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13124103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13124104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13124105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13124106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13125101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13125102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13125103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13125104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13125105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13126101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13126102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13126103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13127101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13127102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13127103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13127104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13128101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13128102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13128103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13128104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13129101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13129102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13129104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13130101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13130103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13131101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13131102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13132101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13132102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13201102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13201103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13201106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13201107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13201109  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13201110  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13201111  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13201112  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13201113  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13201114  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13201115  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13201116  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13201117  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13301101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13301102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13301201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13301202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13302101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13302102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13401101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13401102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13401103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13401104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13401105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13401106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13401107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13402102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13403101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13404101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13501101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13501102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13501201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13501202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13601101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13602101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13603101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13604101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13605101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   13605102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101108  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101109  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101110  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101111  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101112  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101113  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101114  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101115  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101117  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101118  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101119  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101120  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101121  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101122  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101123  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101124  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101125  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14101202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14104101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14104102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14104103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14104104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14104105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14104201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14104202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14107101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14107102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14107103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14107104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14107105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14107201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14107202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14201101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14201102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14201103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14201104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14201105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14201201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14201202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14203201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14203202  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14204101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14204102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14204103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14204104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   14204105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101107  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101108  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101109  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101110  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101111  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101112  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101113  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101114  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101115  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101116  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101118  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101119  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101120  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101121  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101122  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101123  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101124  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101125  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101126  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101127  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101128  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101129  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101130  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101131  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101132  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101133  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101134  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101135  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101136  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101137  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101138  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101139  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101140  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101141  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101142  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101143  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101144  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101146  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101148  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101149  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101150  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101151  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101152  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101153  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101154  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101155  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101156  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101157  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101158  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101201  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101203  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##   15101204  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0   0   0
##           
##            112 121 122 131 132 141 142 151 152
##   1101101    0   0   0   0   0   0   0   0   0
##   1101102    0   0   0   0   0   0   0   0   0
##   1101103    0   0   0   0   0   0   0   0   0
##   1101104    0   0   0   0   0   0   0   0   0
##   1101105    0   0   0   0   0   0   0   0   0
##   1101106    0   0   0   0   0   0   0   0   0
##   1101107    0   0   0   0   0   0   0   0   0
##   1101108    0   0   0   0   0   0   0   0   0
##   1101109    0   0   0   0   0   0   0   0   0
##   1101110    0   0   0   0   0   0   0   0   0
##   1101111    0   0   0   0   0   0   0   0   0
##   1101112    0   0   0   0   0   0   0   0   0
##   1101114    0   0   0   0   0   0   0   0   0
##   1101115    0   0   0   0   0   0   0   0   0
##   1101119    0   0   0   0   0   0   0   0   0
##   1101120    0   0   0   0   0   0   0   0   0
##   1101121    0   0   0   0   0   0   0   0   0
##   1101122    0   0   0   0   0   0   0   0   0
##   1101123    0   0   0   0   0   0   0   0   0
##   1101124    0   0   0   0   0   0   0   0   0
##   1101125    0   0   0   0   0   0   0   0   0
##   1101126    0   0   0   0   0   0   0   0   0
##   1101127    0   0   0   0   0   0   0   0   0
##   1101130    0   0   0   0   0   0   0   0   0
##   1101131    0   0   0   0   0   0   0   0   0
##   1101132    0   0   0   0   0   0   0   0   0
##   1101133    0   0   0   0   0   0   0   0   0
##   1101136    0   0   0   0   0   0   0   0   0
##   1101137    0   0   0   0   0   0   0   0   0
##   1105101    0   0   0   0   0   0   0   0   0
##   1105102    0   0   0   0   0   0   0   0   0
##   1105103    0   0   0   0   0   0   0   0   0
##   1105201    0   0   0   0   0   0   0   0   0
##   1107101    0   0   0   0   0   0   0   0   0
##   1107102    0   0   0   0   0   0   0   0   0
##   1107103    0   0   0   0   0   0   0   0   0
##   1107104    0   0   0   0   0   0   0   0   0
##   1107105    0   0   0   0   0   0   0   0   0
##   1107106    0   0   0   0   0   0   0   0   0
##   1107107    0   0   0   0   0   0   0   0   0
##   1107108    0   0   0   0   0   0   0   0   0
##   1107109    0   0   0   0   0   0   0   0   0
##   1107111    0   0   0   0   0   0   0   0   0
##   1107112    0   0   0   0   0   0   0   0   0
##   1107113    0   0   0   0   0   0   0   0   0
##   1107114    0   0   0   0   0   0   0   0   0
##   1107115    0   0   0   0   0   0   0   0   0
##   1107116    0   0   0   0   0   0   0   0   0
##   1107117    0   0   0   0   0   0   0   0   0
##   1107118    0   0   0   0   0   0   0   0   0
##   1107119    0   0   0   0   0   0   0   0   0
##   1107120    0   0   0   0   0   0   0   0   0
##   1107121    0   0   0   0   0   0   0   0   0
##   1401201    0   0   0   0   0   0   0   0   0
##   1401202    0   0   0   0   0   0   0   0   0
##   2101101    0   0   0   0   0   0   0   0   0
##   2101102    0   0   0   0   0   0   0   0   0
##   2101103    0   0   0   0   0   0   0   0   0
##   2101104    0   0   0   0   0   0   0   0   0
##   2101105    0   0   0   0   0   0   0   0   0
##   2101106    0   0   0   0   0   0   0   0   0
##   2101107    0   0   0   0   0   0   0   0   0
##   2101108    0   0   0   0   0   0   0   0   0
##   2101109    0   0   0   0   0   0   0   0   0
##   2101110    0   0   0   0   0   0   0   0   0
##   2101111    0   0   0   0   0   0   0   0   0
##   2101112    0   0   0   0   0   0   0   0   0
##   2101113    0   0   0   0   0   0   0   0   0
##   2101114    0   0   0   0   0   0   0   0   0
##   2101115    0   0   0   0   0   0   0   0   0
##   2101116    0   0   0   0   0   0   0   0   0
##   2101118    0   0   0   0   0   0   0   0   0
##   2101119    0   0   0   0   0   0   0   0   0
##   2101120    0   0   0   0   0   0   0   0   0
##   2101121    0   0   0   0   0   0   0   0   0
##   2101123    0   0   0   0   0   0   0   0   0
##   2101125    0   0   0   0   0   0   0   0   0
##   2101126    0   0   0   0   0   0   0   0   0
##   2101128    0   0   0   0   0   0   0   0   0
##   2101129    0   0   0   0   0   0   0   0   0
##   2101130    0   0   0   0   0   0   0   0   0
##   2101131    0   0   0   0   0   0   0   0   0
##   2101132    0   0   0   0   0   0   0   0   0
##   2101133    0   0   0   0   0   0   0   0   0
##   2101134    0   0   0   0   0   0   0   0   0
##   2101135    0   0   0   0   0   0   0   0   0
##   2101136    0   0   0   0   0   0   0   0   0
##   2101137    0   0   0   0   0   0   0   0   0
##   2101138    0   0   0   0   0   0   0   0   0
##   2101139    0   0   0   0   0   0   0   0   0
##   2101140    0   0   0   0   0   0   0   0   0
##   2201101    0   0   0   0   0   0   0   0   0
##   2201102    0   0   0   0   0   0   0   0   0
##   2201103    0   0   0   0   0   0   0   0   0
##   2201104    0   0   0   0   0   0   0   0   0
##   2201105    0   0   0   0   0   0   0   0   0
##   2201106    0   0   0   0   0   0   0   0   0
##   2201107    0   0   0   0   0   0   0   0   0
##   2201108    0   0   0   0   0   0   0   0   0
##   2201109    0   0   0   0   0   0   0   0   0
##   2201110    0   0   0   0   0   0   0   0   0
##   2201111    0   0   0   0   0   0   0   0   0
##   2201113    0   0   0   0   0   0   0   0   0
##   2201114    0   0   0   0   0   0   0   0   0
##   2201115    0   0   0   0   0   0   0   0   0
##   2201116    0   0   0   0   0   0   0   0   0
##   2201117    0   0   0   0   0   0   0   0   0
##   2201118    0   0   0   0   0   0   0   0   0
##   2203101    0   0   0   0   0   0   0   0   0
##   2203102    0   0   0   0   0   0   0   0   0
##   2203104    0   0   0   0   0   0   0   0   0
##   2203105    0   0   0   0   0   0   0   0   0
##   2203106    0   0   0   0   0   0   0   0   0
##   2203201    0   0   0   0   0   0   0   0   0
##   3101101    0   0   0   0   0   0   0   0   0
##   3101102    0   0   0   0   0   0   0   0   0
##   3101103    0   0   0   0   0   0   0   0   0
##   3101104    0   0   0   0   0   0   0   0   0
##   3101105    0   0   0   0   0   0   0   0   0
##   3101106    0   0   0   0   0   0   0   0   0
##   3101107    0   0   0   0   0   0   0   0   0
##   3101108    0   0   0   0   0   0   0   0   0
##   3101109    0   0   0   0   0   0   0   0   0
##   3101110    0   0   0   0   0   0   0   0   0
##   3101111    0   0   0   0   0   0   0   0   0
##   3101112    0   0   0   0   0   0   0   0   0
##   3101113    0   0   0   0   0   0   0   0   0
##   3101114    0   0   0   0   0   0   0   0   0
##   3101115    0   0   0   0   0   0   0   0   0
##   3101116    0   0   0   0   0   0   0   0   0
##   3101117    0   0   0   0   0   0   0   0   0
##   3101118    0   0   0   0   0   0   0   0   0
##   3101119    0   0   0   0   0   0   0   0   0
##   3101120    0   0   0   0   0   0   0   0   0
##   3101121    0   0   0   0   0   0   0   0   0
##   3101122    0   0   0   0   0   0   0   0   0
##   3101123    0   0   0   0   0   0   0   0   0
##   3101124    0   0   0   0   0   0   0   0   0
##   3101125    0   0   0   0   0   0   0   0   0
##   3101126    0   0   0   0   0   0   0   0   0
##   3101127    0   0   0   0   0   0   0   0   0
##   3101128    0   0   0   0   0   0   0   0   0
##   3101129    0   0   0   0   0   0   0   0   0
##   3101130    0   0   0   0   0   0   0   0   0
##   3101131    0   0   0   0   0   0   0   0   0
##   3101132    0   0   0   0   0   0   0   0   0
##   3101133    0   0   0   0   0   0   0   0   0
##   3101134    0   0   0   0   0   0   0   0   0
##   3101135    0   0   0   0   0   0   0   0   0
##   3103101    0   0   0   0   0   0   0   0   0
##   3103102    0   0   0   0   0   0   0   0   0
##   3103103    0   0   0   0   0   0   0   0   0
##   3103104    0   0   0   0   0   0   0   0   0
##   3103105    0   0   0   0   0   0   0   0   0
##   3103106    0   0   0   0   0   0   0   0   0
##   3103107    0   0   0   0   0   0   0   0   0
##   3103201    0   0   0   0   0   0   0   0   0
##   3301101    0   0   0   0   0   0   0   0   0
##   3301102    0   0   0   0   0   0   0   0   0
##   3301103    0   0   0   0   0   0   0   0   0
##   3301104    0   0   0   0   0   0   0   0   0
##   3301105    0   0   0   0   0   0   0   0   0
##   3301106    0   0   0   0   0   0   0   0   0
##   3301107    0   0   0   0   0   0   0   0   0
##   3301108    0   0   0   0   0   0   0   0   0
##   3301109    0   0   0   0   0   0   0   0   0
##   3301110    0   0   0   0   0   0   0   0   0
##   3302201    0   0   0   0   0   0   0   0   0
##   3302202    0   0   0   0   0   0   0   0   0
##   3304101    0   0   0   0   0   0   0   0   0
##   3304102    0   0   0   0   0   0   0   0   0
##   3304103    0   0   0   0   0   0   0   0   0
##   3304104    0   0   0   0   0   0   0   0   0
##   3304105    0   0   0   0   0   0   0   0   0
##   3304106    0   0   0   0   0   0   0   0   0
##   4101101    0   0   0   0   0   0   0   0   0
##   4101102    0   0   0   0   0   0   0   0   0
##   4101105    0   0   0   0   0   0   0   0   0
##   4101106    0   0   0   0   0   0   0   0   0
##   4101108    0   0   0   0   0   0   0   0   0
##   4101109    0   0   0   0   0   0   0   0   0
##   4101110    0   0   0   0   0   0   0   0   0
##   4101111    0   0   0   0   0   0   0   0   0
##   4101112    0   0   0   0   0   0   0   0   0
##   4101113    0   0   0   0   0   0   0   0   0
##   4101114    0   0   0   0   0   0   0   0   0
##   4101115    0   0   0   0   0   0   0   0   0
##   4101116    0   0   0   0   0   0   0   0   0
##   4101117    0   0   0   0   0   0   0   0   0
##   4102101    0   0   0   0   0   0   0   0   0
##   4102102    0   0   0   0   0   0   0   0   0
##   4102104    0   0   0   0   0   0   0   0   0
##   4102105    0   0   0   0   0   0   0   0   0
##   4102106    0   0   0   0   0   0   0   0   0
##   4102107    0   0   0   0   0   0   0   0   0
##   4102108    0   0   0   0   0   0   0   0   0
##   4102109    0   0   0   0   0   0   0   0   0
##   4102110    0   0   0   0   0   0   0   0   0
##   4102111    0   0   0   0   0   0   0   0   0
##   4102112    0   0   0   0   0   0   0   0   0
##   4102113    0   0   0   0   0   0   0   0   0
##   4102114    0   0   0   0   0   0   0   0   0
##   4102115    0   0   0   0   0   0   0   0   0
##   4102117    0   0   0   0   0   0   0   0   0
##   4102118    0   0   0   0   0   0   0   0   0
##   4102119    0   0   0   0   0   0   0   0   0
##   4106201    0   0   0   0   0   0   0   0   0
##   4106202    0   0   0   0   0   0   0   0   0
##   4201101    0   0   0   0   0   0   0   0   0
##   4201102    0   0   0   0   0   0   0   0   0
##   4201103    0   0   0   0   0   0   0   0   0
##   4201104    0   0   0   0   0   0   0   0   0
##   4201105    0   0   0   0   0   0   0   0   0
##   4301101    0   0   0   0   0   0   0   0   0
##   4301102    0   0   0   0   0   0   0   0   0
##   4301103    0   0   0   0   0   0   0   0   0
##   4301104    0   0   0   0   0   0   0   0   0
##   4301105    0   0   0   0   0   0   0   0   0
##   4301106    0   0   0   0   0   0   0   0   0
##   4301107    0   0   0   0   0   0   0   0   0
##   4301108    0   0   0   0   0   0   0   0   0
##   4301201    0   0   0   0   0   0   0   0   0
##   4301202    0   0   0   0   0   0   0   0   0
##   4303101    0   0   0   0   0   0   0   0   0
##   4303102    0   0   0   0   0   0   0   0   0
##   4303103    0   0   0   0   0   0   0   0   0
##   4303104    0   0   0   0   0   0   0   0   0
##   4303105    0   0   0   0   0   0   0   0   0
##   4304201    0   0   0   0   0   0   0   0   0
##   4304202    0   0   0   0   0   0   0   0   0
##   5101102    0   0   0   0   0   0   0   0   0
##   5101103    0   0   0   0   0   0   0   0   0
##   5101104    0   0   0   0   0   0   0   0   0
##   5101105    0   0   0   0   0   0   0   0   0
##   5101106    0   0   0   0   0   0   0   0   0
##   5101107    0   0   0   0   0   0   0   0   0
##   5101108    0   0   0   0   0   0   0   0   0
##   5101109    0   0   0   0   0   0   0   0   0
##   5101111    0   0   0   0   0   0   0   0   0
##   5101112    0   0   0   0   0   0   0   0   0
##   5101113    0   0   0   0   0   0   0   0   0
##   5101115    0   0   0   0   0   0   0   0   0
##   5101116    0   0   0   0   0   0   0   0   0
##   5101117    0   0   0   0   0   0   0   0   0
##   5101118    0   0   0   0   0   0   0   0   0
##   5101119    0   0   0   0   0   0   0   0   0
##   5101120    0   0   0   0   0   0   0   0   0
##   5101121    0   0   0   0   0   0   0   0   0
##   5101122    0   0   0   0   0   0   0   0   0
##   5102101    0   0   0   0   0   0   0   0   0
##   5102102    0   0   0   0   0   0   0   0   0
##   5102103    0   0   0   0   0   0   0   0   0
##   5102104    0   0   0   0   0   0   0   0   0
##   5102105    0   0   0   0   0   0   0   0   0
##   5103103    0   0   0   0   0   0   0   0   0
##   5103104    0   0   0   0   0   0   0   0   0
##   5109101    0   0   0   0   0   0   0   0   0
##   5109102    0   0   0   0   0   0   0   0   0
##   5109105    0   0   0   0   0   0   0   0   0
##   5109106    0   0   0   0   0   0   0   0   0
##   5109107    0   0   0   0   0   0   0   0   0
##   5109108    0   0   0   0   0   0   0   0   0
##   5109109    0   0   0   0   0   0   0   0   0
##   5109111    0   0   0   0   0   0   0   0   0
##   5109112    0   0   0   0   0   0   0   0   0
##   5109113    0   0   0   0   0   0   0   0   0
##   5109114    0   0   0   0   0   0   0   0   0
##   5109115    0   0   0   0   0   0   0   0   0
##   5109116    0   0   0   0   0   0   0   0   0
##   5109117    0   0   0   0   0   0   0   0   0
##   5109118    0   0   0   0   0   0   0   0   0
##   5109119    0   0   0   0   0   0   0   0   0
##   5109120    0   0   0   0   0   0   0   0   0
##   5109121    0   0   0   0   0   0   0   0   0
##   5109122    0   0   0   0   0   0   0   0   0
##   5109123    0   0   0   0   0   0   0   0   0
##   5109124    0   0   0   0   0   0   0   0   0
##   5301101    0   0   0   0   0   0   0   0   0
##   5301102    0   0   0   0   0   0   0   0   0
##   5301103    0   0   0   0   0   0   0   0   0
##   5301104    0   0   0   0   0   0   0   0   0
##   5304201    0   0   0   0   0   0   0   0   0
##   5304202    0   0   0   0   0   0   0   0   0
##   5402101    0   0   0   0   0   0   0   0   0
##   5402102    0   0   0   0   0   0   0   0   0
##   5402103    0   0   0   0   0   0   0   0   0
##   5402104    0   0   0   0   0   0   0   0   0
##   5402105    0   0   0   0   0   0   0   0   0
##   5501101    0   0   0   0   0   0   0   0   0
##   5501102    0   0   0   0   0   0   0   0   0
##   5501103    0   0   0   0   0   0   0   0   0
##   5501104    0   0   0   0   0   0   0   0   0
##   5501105    0   0   0   0   0   0   0   0   0
##   5502101    0   0   0   0   0   0   0   0   0
##   5502102    0   0   0   0   0   0   0   0   0
##   5502103    0   0   0   0   0   0   0   0   0
##   5502104    0   0   0   0   0   0   0   0   0
##   5503201    0   0   0   0   0   0   0   0   0
##   5503202    0   0   0   0   0   0   0   0   0
##   5601101    0   0   0   0   0   0   0   0   0
##   5601102    0   0   0   0   0   0   0   0   0
##   5601103    0   0   0   0   0   0   0   0   0
##   5601104    0   0   0   0   0   0   0   0   0
##   5601105    0   0   0   0   0   0   0   0   0
##   5601106    0   0   0   0   0   0   0   0   0
##   5602101    0   0   0   0   0   0   0   0   0
##   5602102    0   0   0   0   0   0   0   0   0
##   5602103    0   0   0   0   0   0   0   0   0
##   5602104    0   0   0   0   0   0   0   0   0
##   5602105    0   0   0   0   0   0   0   0   0
##   5701101    0   0   0   0   0   0   0   0   0
##   5701102    0   0   0   0   0   0   0   0   0
##   5701103    0   0   0   0   0   0   0   0   0
##   5701104    0   0   0   0   0   0   0   0   0
##   5703101    0   0   0   0   0   0   0   0   0
##   5703102    0   0   0   0   0   0   0   0   0
##   5703103    0   0   0   0   0   0   0   0   0
##   5703104    0   0   0   0   0   0   0   0   0
##   5703105    0   0   0   0   0   0   0   0   0
##   5705201    0   0   0   0   0   0   0   0   0
##   5705202    0   0   0   0   0   0   0   0   0
##   5801101    0   0   0   0   0   0   0   0   0
##   5801102    0   0   0   0   0   0   0   0   0
##   5801103    0   0   0   0   0   0   0   0   0
##   5801104    0   0   0   0   0   0   0   0   0
##   5801105    0   0   0   0   0   0   0   0   0
##   5801106    0   0   0   0   0   0   0   0   0
##   5801107    0   0   0   0   0   0   0   0   0
##   5801108    0   0   0   0   0   0   0   0   0
##   5801109    0   0   0   0   0   0   0   0   0
##   5801110    0   0   0   0   0   0   0   0   0
##   5801111    0   0   0   0   0   0   0   0   0
##   5802101    0   0   0   0   0   0   0   0   0
##   5802102    0   0   0   0   0   0   0   0   0
##   5802103    0   0   0   0   0   0   0   0   0
##   5804101    0   0   0   0   0   0   0   0   0
##   5804102    0   0   0   0   0   0   0   0   0
##   5804103    0   0   0   0   0   0   0   0   0
##   5804104    0   0   0   0   0   0   0   0   0
##   5804105    0   0   0   0   0   0   0   0   0
##   5804107    0   0   0   0   0   0   0   0   0
##   5804108    0   0   0   0   0   0   0   0   0
##   5804109    0   0   0   0   0   0   0   0   0
##   5804110    0   0   0   0   0   0   0   0   0
##   6101102    0   0   0   0   0   0   0   0   0
##   6101103    0   0   0   0   0   0   0   0   0
##   6101104    0   0   0   0   0   0   0   0   0
##   6101105    0   0   0   0   0   0   0   0   0
##   6101106    0   0   0   0   0   0   0   0   0
##   6101107    0   0   0   0   0   0   0   0   0
##   6101108    0   0   0   0   0   0   0   0   0
##   6101109    0   0   0   0   0   0   0   0   0
##   6101111    0   0   0   0   0   0   0   0   0
##   6101112    0   0   0   0   0   0   0   0   0
##   6101113    0   0   0   0   0   0   0   0   0
##   6101114    0   0   0   0   0   0   0   0   0
##   6101115    0   0   0   0   0   0   0   0   0
##   6101116    0   0   0   0   0   0   0   0   0
##   6101117    0   0   0   0   0   0   0   0   0
##   6101118    0   0   0   0   0   0   0   0   0
##   6105101    0   0   0   0   0   0   0   0   0
##   6105102    0   0   0   0   0   0   0   0   0
##   6105103    0   0   0   0   0   0   0   0   0
##   6105104    0   0   0   0   0   0   0   0   0
##   6105105    0   0   0   0   0   0   0   0   0
##   6107201    0   0   0   0   0   0   0   0   0
##   6107202    0   0   0   0   0   0   0   0   0
##   6108101    0   0   0   0   0   0   0   0   0
##   6108102    0   0   0   0   0   0   0   0   0
##   6108103    0   0   0   0   0   0   0   0   0
##   6108104    0   0   0   0   0   0   0   0   0
##   6110101    0   0   0   0   0   0   0   0   0
##   6110102    0   0   0   0   0   0   0   0   0
##   6110103    0   0   0   0   0   0   0   0   0
##   6110104    0   0   0   0   0   0   0   0   0
##   6110105    0   0   0   0   0   0   0   0   0
##   6114201    0   0   0   0   0   0   0   0   0
##   6114202    0   0   0   0   0   0   0   0   0
##   6115101    0   0   0   0   0   0   0   0   0
##   6115102    0   0   0   0   0   0   0   0   0
##   6115103    0   0   0   0   0   0   0   0   0
##   6117101    0   0   0   0   0   0   0   0   0
##   6117102    0   0   0   0   0   0   0   0   0
##   6117103    0   0   0   0   0   0   0   0   0
##   6117104    0   0   0   0   0   0   0   0   0
##   6117105    0   0   0   0   0   0   0   0   0
##   6117201    0   0   0   0   0   0   0   0   0
##   6117202    0   0   0   0   0   0   0   0   0
##   6301101    0   0   0   0   0   0   0   0   0
##   6301102    0   0   0   0   0   0   0   0   0
##   6301103    0   0   0   0   0   0   0   0   0
##   6301104    0   0   0   0   0   0   0   0   0
##   6303201    0   0   0   0   0   0   0   0   0
##   6303202    0   0   0   0   0   0   0   0   0
##   6305101    0   0   0   0   0   0   0   0   0
##   6305102    0   0   0   0   0   0   0   0   0
##   6305103    0   0   0   0   0   0   0   0   0
##   6305104    0   0   0   0   0   0   0   0   0
##   6305105    0   0   0   0   0   0   0   0   0
##   6310201    0   0   0   0   0   0   0   0   0
##   6310202    0   0   0   0   0   0   0   0   0
##   7101101    0   0   0   0   0   0   0   0   0
##   7101102    0   0   0   0   0   0   0   0   0
##   7101103    0   0   0   0   0   0   0   0   0
##   7101104    0   0   0   0   0   0   0   0   0
##   7101105    0   0   0   0   0   0   0   0   0
##   7101106    0   0   0   0   0   0   0   0   0
##   7101107    0   0   0   0   0   0   0   0   0
##   7101108    0   0   0   0   0   0   0   0   0
##   7101109    0   0   0   0   0   0   0   0   0
##   7101110    0   0   0   0   0   0   0   0   0
##   7101111    0   0   0   0   0   0   0   0   0
##   7101112    0   0   0   0   0   0   0   0   0
##   7101113    0   0   0   0   0   0   0   0   0
##   7101114    0   0   0   0   0   0   0   0   0
##   7102101    0   0   0   0   0   0   0   0   0
##   7102102    0   0   0   0   0   0   0   0   0
##   7102103    0   0   0   0   0   0   0   0   0
##   7104201    0   0   0   0   0   0   0   0   0
##   7104202    0   0   0   0   0   0   0   0   0
##   7105101    0   0   0   0   0   0   0   0   0
##   7105102    0   0   0   0   0   0   0   0   0
##   7105103    0   0   0   0   0   0   0   0   0
##   7105104    0   0   0   0   0   0   0   0   0
##   7105105    0   0   0   0   0   0   0   0   0
##   7109201    0   0   0   0   0   0   0   0   0
##   7109202    0   0   0   0   0   0   0   0   0
##   7201101    0   0   0   0   0   0   0   0   0
##   7201102    0   0   0   0   0   0   0   0   0
##   7301101    0   0   0   0   0   0   0   0   0
##   7301102    0   0   0   0   0   0   0   0   0
##   7301103    0   0   0   0   0   0   0   0   0
##   7301104    0   0   0   0   0   0   0   0   0
##   7301105    0   0   0   0   0   0   0   0   0
##   7301106    0   0   0   0   0   0   0   0   0
##   7301107    0   0   0   0   0   0   0   0   0
##   7301108    0   0   0   0   0   0   0   0   0
##   7301201    0   0   0   0   0   0   0   0   0
##   7301202    0   0   0   0   0   0   0   0   0
##   7304101    0   0   0   0   0   0   0   0   0
##   7304102    0   0   0   0   0   0   0   0   0
##   7307201    0   0   0   0   0   0   0   0   0
##   7307202    0   0   0   0   0   0   0   0   0
##   7401101    0   0   0   0   0   0   0   0   0
##   7401102    0   0   0   0   0   0   0   0   0
##   7401103    0   0   0   0   0   0   0   0   0
##   7401104    0   0   0   0   0   0   0   0   0
##   7401105    0   0   0   0   0   0   0   0   0
##   7402201    0   0   0   0   0   0   0   0   0
##   7402202    0   0   0   0   0   0   0   0   0
##   7404101    0   0   0   0   0   0   0   0   0
##   7404102    0   0   0   0   0   0   0   0   0
##   7404103    0   0   0   0   0   0   0   0   0
##   7404104    0   0   0   0   0   0   0   0   0
##   7404105    0   0   0   0   0   0   0   0   0
##   7404106    0   0   0   0   0   0   0   0   0
##   7405201    0   0   0   0   0   0   0   0   0
##   7405202    0   0   0   0   0   0   0   0   0
##   8101101    0   0   0   0   0   0   0   0   0
##   8101102    0   0   0   0   0   0   0   0   0
##   8101103    0   0   0   0   0   0   0   0   0
##   8101104    0   0   0   0   0   0   0   0   0
##   8101105    0   0   0   0   0   0   0   0   0
##   8101106    0   0   0   0   0   0   0   0   0
##   8101107    0   0   0   0   0   0   0   0   0
##   8101108    0   0   0   0   0   0   0   0   0
##   8101110    0   0   0   0   0   0   0   0   0
##   8101112    0   0   0   0   0   0   0   0   0
##   8101113    0   0   0   0   0   0   0   0   0
##   8101114    0   0   0   0   0   0   0   0   0
##   8102101    0   0   0   0   0   0   0   0   0
##   8102102    0   0   0   0   0   0   0   0   0
##   8102103    0   0   0   0   0   0   0   0   0
##   8102104    0   0   0   0   0   0   0   0   0
##   8102105    0   0   0   0   0   0   0   0   0
##   8102106    0   0   0   0   0   0   0   0   0
##   8103101    0   0   0   0   0   0   0   0   0
##   8103102    0   0   0   0   0   0   0   0   0
##   8103103    0   0   0   0   0   0   0   0   0
##   8103104    0   0   0   0   0   0   0   0   0
##   8103105    0   0   0   0   0   0   0   0   0
##   8103106    0   0   0   0   0   0   0   0   0
##   8106101    0   0   0   0   0   0   0   0   0
##   8106102    0   0   0   0   0   0   0   0   0
##   8106103    0   0   0   0   0   0   0   0   0
##   8107101    0   0   0   0   0   0   0   0   0
##   8107102    0   0   0   0   0   0   0   0   0
##   8107103    0   0   0   0   0   0   0   0   0
##   8108101    0   0   0   0   0   0   0   0   0
##   8108102    0   0   0   0   0   0   0   0   0
##   8108103    0   0   0   0   0   0   0   0   0
##   8108104    0   0   0   0   0   0   0   0   0
##   8108105    0   0   0   0   0   0   0   0   0
##   8109101    0   0   0   0   0   0   0   0   0
##   8109102    0   0   0   0   0   0   0   0   0
##   8109103    0   0   0   0   0   0   0   0   0
##   8109104    0   0   0   0   0   0   0   0   0
##   8109105    0   0   0   0   0   0   0   0   0
##   8109106    0   0   0   0   0   0   0   0   0
##   8110101    0   0   0   0   0   0   0   0   0
##   8110102    0   0   0   0   0   0   0   0   0
##   8110103    0   0   0   0   0   0   0   0   0
##   8110104    0   0   0   0   0   0   0   0   0
##   8110105    0   0   0   0   0   0   0   0   0
##   8110106    0   0   0   0   0   0   0   0   0
##   8110107    0   0   0   0   0   0   0   0   0
##   8110108    0   0   0   0   0   0   0   0   0
##   8110109    0   0   0   0   0   0   0   0   0
##   8110110    0   0   0   0   0   0   0   0   0
##   8110201    0   0   0   0   0   0   0   0   0
##   8110202    0   0   0   0   0   0   0   0   0
##   8111101    0   0   0   0   0   0   0   0   0
##   8111102    0   0   0   0   0   0   0   0   0
##   8111103    0   0   0   0   0   0   0   0   0
##   8112101    0   0   0   0   0   0   0   0   0
##   8112102    0   0   0   0   0   0   0   0   0
##   8112103    0   0   0   0   0   0   0   0   0
##   8112104    0   0   0   0   0   0   0   0   0
##   8112105    0   0   0   0   0   0   0   0   0
##   8112106    0   0   0   0   0   0   0   0   0
##   8205101    0   0   0   0   0   0   0   0   0
##   8205102    0   0   0   0   0   0   0   0   0
##   8206101    0   0   0   0   0   0   0   0   0
##   8206102    0   0   0   0   0   0   0   0   0
##   8206103    0   0   0   0   0   0   0   0   0
##   8206104    0   0   0   0   0   0   0   0   0
##   8206105    0   0   0   0   0   0   0   0   0
##   8206106    0   0   0   0   0   0   0   0   0
##   8301101    0   0   0   0   0   0   0   0   0
##   8301102    0   0   0   0   0   0   0   0   0
##   8301103    0   0   0   0   0   0   0   0   0
##   8301104    0   0   0   0   0   0   0   0   0
##   8301105    0   0   0   0   0   0   0   0   0
##   8301106    0   0   0   0   0   0   0   0   0
##   8301107    0   0   0   0   0   0   0   0   0
##   8301108    0   0   0   0   0   0   0   0   0
##   8301201    0   0   0   0   0   0   0   0   0
##   8301202    0   0   0   0   0   0   0   0   0
##   8307101    0   0   0   0   0   0   0   0   0
##   8307102    0   0   0   0   0   0   0   0   0
##   8307103    0   0   0   0   0   0   0   0   0
##   8307104    0   0   0   0   0   0   0   0   0
##   8307105    0   0   0   0   0   0   0   0   0
##   8307106    0   0   0   0   0   0   0   0   0
##   8309201    0   0   0   0   0   0   0   0   0
##   8309202    0   0   0   0   0   0   0   0   0
##   8401101    0   0   0   0   0   0   0   0   0
##   8401102    0   0   0   0   0   0   0   0   0
##   8401103    0   0   0   0   0   0   0   0   0
##   8401104    0   0   0   0   0   0   0   0   0
##   8401105    0   0   0   0   0   0   0   0   0
##   8401106    0   0   0   0   0   0   0   0   0
##   8401107    0   0   0   0   0   0   0   0   0
##   8401108    0   0   0   0   0   0   0   0   0
##   8401109    0   0   0   0   0   0   0   0   0
##   8405201    0   0   0   0   0   0   0   0   0
##   8405202    0   0   0   0   0   0   0   0   0
##   8406101    0   0   0   0   0   0   0   0   0
##   8406102    0   0   0   0   0   0   0   0   0
##   8406103    0   0   0   0   0   0   0   0   0
##   8406104    0   0   0   0   0   0   0   0   0
##   8406105    0   0   0   0   0   0   0   0   0
##   8406106    0   0   0   0   0   0   0   0   0
##   8416101    0   0   0   0   0   0   0   0   0
##   8416102    0   0   0   0   0   0   0   0   0
##   8416201    0   0   0   0   0   0   0   0   0
##   8416202    0   0   0   0   0   0   0   0   0
##   9101102    0   0   0   0   0   0   0   0   0
##   9101103    0   0   0   0   0   0   0   0   0
##   9101104    0   0   0   0   0   0   0   0   0
##   9101105    0   0   0   0   0   0   0   0   0
##   9101106    0   0   0   0   0   0   0   0   0
##   9101107    0   0   0   0   0   0   0   0   0
##   9101108    0   0   0   0   0   0   0   0   0
##   9101109    0   0   0   0   0   0   0   0   0
##   9101110    0   0   0   0   0   0   0   0   0
##   9101111    0   0   0   0   0   0   0   0   0
##   9101112    0   0   0   0   0   0   0   0   0
##   9101113    0   0   0   0   0   0   0   0   0
##   9101114    0   0   0   0   0   0   0   0   0
##   9101115    0   0   0   0   0   0   0   0   0
##   9101116    0   0   0   0   0   0   0   0   0
##   9101117    0   0   0   0   0   0   0   0   0
##   9101118    0   0   0   0   0   0   0   0   0
##   9101119    0   0   0   0   0   0   0   0   0
##   9101201    0   0   0   0   0   0   0   0   0
##   9101202    0   0   0   0   0   0   0   0   0
##   9105101    0   0   0   0   0   0   0   0   0
##   9105102    0   0   0   0   0   0   0   0   0
##   9105103    0   0   0   0   0   0   0   0   0
##   9105104    0   0   0   0   0   0   0   0   0
##   9105105    0   0   0   0   0   0   0   0   0
##   9106201    0   0   0   0   0   0   0   0   0
##   9106202    0   0   0   0   0   0   0   0   0
##   9111101    0   0   0   0   0   0   0   0   0
##   9111102    0   0   0   0   0   0   0   0   0
##   9111103    0   0   0   0   0   0   0   0   0
##   9111104    0   0   0   0   0   0   0   0   0
##   9111105    0   0   0   0   0   0   0   0   0
##   9112101    0   0   0   0   0   0   0   0   0
##   9112102    0   0   0   0   0   0   0   0   0
##   9112103    0   0   0   0   0   0   0   0   0
##   9112201    0   0   0   0   0   0   0   0   0
##   9112202    0   0   0   0   0   0   0   0   0
##   9116201    0   0   0   0   0   0   0   0   0
##   9116202    0   0   0   0   0   0   0   0   0
##   9118101    0   0   0   0   0   0   0   0   0
##   9118102    0   0   0   0   0   0   0   0   0
##   9118103    0   0   0   0   0   0   0   0   0
##   9118104    0   0   0   0   0   0   0   0   0
##   9118105    0   0   0   0   0   0   0   0   0
##   9120101    0   0   0   0   0   0   0   0   0
##   9120102    0   0   0   0   0   0   0   0   0
##   9201101    0   0   0   0   0   0   0   0   0
##   9201102    0   0   0   0   0   0   0   0   0
##   9201103    0   0   0   0   0   0   0   0   0
##   9202201    0   0   0   0   0   0   0   0   0
##   9202202    0   0   0   0   0   0   0   0   0
##   9209101    0   0   0   0   0   0   0   0   0
##   9209102    0   0   0   0   0   0   0   0   0
##   9209103    0   0   0   0   0   0   0   0   0
##   9209104    0   0   0   0   0   0   0   0   0
##   9209105    0   0   0   0   0   0   0   0   0
##   10101101   0   0   0   0   0   0   0   0   0
##   10101102   0   0   0   0   0   0   0   0   0
##   10101103   0   0   0   0   0   0   0   0   0
##   10101104   0   0   0   0   0   0   0   0   0
##   10101105   0   0   0   0   0   0   0   0   0
##   10101106   0   0   0   0   0   0   0   0   0
##   10101107   0   0   0   0   0   0   0   0   0
##   10101108   0   0   0   0   0   0   0   0   0
##   10101109   0   0   0   0   0   0   0   0   0
##   10101112   0   0   0   0   0   0   0   0   0
##   10101113   0   0   0   0   0   0   0   0   0
##   10101114   0   0   0   0   0   0   0   0   0
##   10101115   0   0   0   0   0   0   0   0   0
##   10101116   0   0   0   0   0   0   0   0   0
##   10101117   0   0   0   0   0   0   0   0   0
##   10101118   0   0   0   0   0   0   0   0   0
##   10101201   0   0   0   0   0   0   0   0   0
##   10101202   0   0   0   0   0   0   0   0   0
##   10105101   0   0   0   0   0   0   0   0   0
##   10105102   0   0   0   0   0   0   0   0   0
##   10105103   0   0   0   0   0   0   0   0   0
##   10105104   0   0   0   0   0   0   0   0   0
##   10105201   0   0   0   0   0   0   0   0   0
##   10105202   0   0   0   0   0   0   0   0   0
##   10109101   0   0   0   0   0   0   0   0   0
##   10109102   0   0   0   0   0   0   0   0   0
##   10201101   0   0   0   0   0   0   0   0   0
##   10201102   0   0   0   0   0   0   0   0   0
##   10201103   0   0   0   0   0   0   0   0   0
##   10201201   0   0   0   0   0   0   0   0   0
##   10201202   0   0   0   0   0   0   0   0   0
##   10202101   0   0   0   0   0   0   0   0   0
##   10202102   0   0   0   0   0   0   0   0   0
##   10203101   0   0   0   0   0   0   0   0   0
##   10203102   0   0   0   0   0   0   0   0   0
##   10203103   0   0   0   0   0   0   0   0   0
##   10203104   0   0   0   0   0   0   0   0   0
##   10207201   0   0   0   0   0   0   0   0   0
##   10207202   0   0   0   0   0   0   0   0   0
##   10301101   0   0   0   0   0   0   0   0   0
##   10301102   0   0   0   0   0   0   0   0   0
##   10301103   0   0   0   0   0   0   0   0   0
##   10301104   0   0   0   0   0   0   0   0   0
##   10301105   0   0   0   0   0   0   0   0   0
##   10301106   0   0   0   0   0   0   0   0   0
##   10301107   0   0   0   0   0   0   0   0   0
##   10301108   0   0   0   0   0   0   0   0   0
##   10301109   0   0   0   0   0   0   0   0   0
##   10301110   0   0   0   0   0   0   0   0   0
##   10301111   0   0   0   0   0   0   0   0   0
##   10303101   0   0   0   0   0   0   0   0   0
##   10303102   0   0   0   0   0   0   0   0   0
##   10303103   0   0   0   0   0   0   0   0   0
##   10303104   0   0   0   0   0   0   0   0   0
##   10303201   0   0   0   0   0   0   0   0   0
##   10303202   0   0   0   0   0   0   0   0   0
##   11101101   0   0   0   0   0   0   0   0   0
##   11101102   0   0   0   0   0   0   0   0   0
##   11101103   0   0   0   0   0   0   0   0   0
##   11101105   0   0   0   0   0   0   0   0   0
##   11101106   0   0   0   0   0   0   0   0   0
##   11101107   0   0   0   0   0   0   0   0   0
##   11101108   0   0   0   0   0   0   0   0   0
##   11101109   0   0   0   0   0   0   0   0   0
##   11101110   0   0   0   0   0   0   0   0   0
##   11101111   0   0   0   0   0   0   0   0   0
##   11101112   0   0   0   0   0   0   0   0   0
##   11101113   0   0   0   0   0   0   0   0   0
##   11101114   0   0   0   0   0   0   0   0   0
##   11101115   0   0   0   0   0   0   0   0   0
##   11101116   0   0   0   0   0   0   0   0   0
##   11101117   0   0   0   0   0   0   0   0   0
##   11101118   0   0   0   0   0   0   0   0   0
##   11101120   0   0   0   0   0   0   0   0   0
##   11101121   0   0   0   0   0   0   0   0   0
##   11101122   0   0   0   0   0   0   0   0   0
##   11101123   0   0   0   0   0   0   0   0   0
##   11101124   0   0   0   0   0   0   0   0   0
##   11101125   0   0   0   0   0   0   0   0   0
##   11101127   0   0   0   0   0   0   0   0   0
##   11101128   0   0   0   0   0   0   0   0   0
##   11101129   0   0   0   0   0   0   0   0   0
##   11101130   0   0   0   0   0   0   0   0   0
##   11101131   0   0   0   0   0   0   0   0   0
##   11101132   0   0   0   0   0   0   0   0   0
##   11101133   0   0   0   0   0   0   0   0   0
##   11101134   0   0   0   0   0   0   0   0   0
##   11101135   0   0   0   0   0   0   0   0   0
##   11101136   0   0   0   0   0   0   0   0   0
##   11101137   0   0   0   0   0   0   0   0   0
##   11101201   9   0   0   0   0   0   0   0   0
##   11101202   8   0   0   0   0   0   0   0   0
##   11101203   8   0   0   0   0   0   0   0   0
##   11201101   0   0   0   0   0   0   0   0   0
##   11201102   0   0   0   0   0   0   0   0   0
##   11201103   0   0   0   0   0   0   0   0   0
##   11201104   0   0   0   0   0   0   0   0   0
##   11201105   0   0   0   0   0   0   0   0   0
##   11201106   0   0   0   0   0   0   0   0   0
##   11201107   0   0   0   0   0   0   0   0   0
##   11201108   0   0   0   0   0   0   0   0   0
##   11201109   0   0   0   0   0   0   0   0   0
##   11201110   0   0   0   0   0   0   0   0   0
##   11201111   0   0   0   0   0   0   0   0   0
##   11201112   0   0   0   0   0   0   0   0   0
##   11201113   0   0   0   0   0   0   0   0   0
##   11201114   0   0   0   0   0   0   0   0   0
##   11201115   0   0   0   0   0   0   0   0   0
##   11201116   0   0   0   0   0   0   0   0   0
##   11201117   0   0   0   0   0   0   0   0   0
##   11201118   0   0   0   0   0   0   0   0   0
##   11201119   0   0   0   0   0   0   0   0   0
##   11201201   9   0   0   0   0   0   0   0   0
##   11201202  16   0   0   0   0   0   0   0   0
##   12101101   0   3   0   0   0   0   0   0   0
##   12101102   0   6   0   0   0   0   0   0   0
##   12101103   0   6   0   0   0   0   0   0   0
##   12101104   0   4   0   0   0   0   0   0   0
##   12101105   0   4   0   0   0   0   0   0   0
##   12101106   0   6   0   0   0   0   0   0   0
##   12101107   0   5   0   0   0   0   0   0   0
##   12101108   0   2   0   0   0   0   0   0   0
##   12101109   0   7   0   0   0   0   0   0   0
##   12101110   0   6   0   0   0   0   0   0   0
##   12101111   0   5   0   0   0   0   0   0   0
##   12101112   0   2   0   0   0   0   0   0   0
##   12101113   0   5   0   0   0   0   0   0   0
##   12101114   0   5   0   0   0   0   0   0   0
##   12101115   0   4   0   0   0   0   0   0   0
##   12101116   0   5   0   0   0   0   0   0   0
##   12101117   0   4   0   0   0   0   0   0   0
##   12101118   0   4   0   0   0   0   0   0   0
##   12101119   0   4   0   0   0   0   0   0   0
##   12101120   0   3   0   0   0   0   0   0   0
##   12101121   0   9   0   0   0   0   0   0   0
##   12101122   0   2   0   0   0   0   0   0   0
##   12101123   0   9   0   0   0   0   0   0   0
##   12101124   0   6   0   0   0   0   0   0   0
##   12101125   0   4   0   0   0   0   0   0   0
##   12101126   0   2   0   0   0   0   0   0   0
##   12101127   0   4   0   0   0   0   0   0   0
##   12101128   0   6   0   0   0   0   0   0   0
##   12101129   0   6   0   0   0   0   0   0   0
##   12101131   0   5   0   0   0   0   0   0   0
##   12101132   0   5   0   0   0   0   0   0   0
##   12101133   0   4   0   0   0   0   0   0   0
##   12101134   0   3   0   0   0   0   0   0   0
##   12101135   0   3   0   0   0   0   0   0   0
##   12101136   0   6   0   0   0   0   0   0   0
##   12101137   0   5   0   0   0   0   0   0   0
##   12101138   0   6   0   0   0   0   0   0   0
##   12101139   0   5   0   0   0   0   0   0   0
##   12101140   0   5   0   0   0   0   0   0   0
##   12101141   0   5   0   0   0   0   0   0   0
##   12101142   0   6   0   0   0   0   0   0   0
##   12101143   0   4   0   0   0   0   0   0   0
##   12101144   0   4   0   0   0   0   0   0   0
##   12101145   0   6   0   0   0   0   0   0   0
##   12101146   0   7   0   0   0   0   0   0   0
##   12101147   0   8   0   0   0   0   0   0   0
##   12101148   0   4   0   0   0   0   0   0   0
##   12101149   0   1   0   0   0   0   0   0   0
##   12101150   0   3   0   0   0   0   0   0   0
##   12101201   0   0  15   0   0   0   0   0   0
##   12301101   0   4   0   0   0   0   0   0   0
##   12301102   0   5   0   0   0   0   0   0   0
##   12301103   0   2   0   0   0   0   0   0   0
##   12301104   0   3   0   0   0   0   0   0   0
##   12301105   0   3   0   0   0   0   0   0   0
##   12301106   0   5   0   0   0   0   0   0   0
##   12301107   0   6   0   0   0   0   0   0   0
##   12301108   0   3   0   0   0   0   0   0   0
##   12301109   0   4   0   0   0   0   0   0   0
##   12301110   0   4   0   0   0   0   0   0   0
##   12401201   0   0  18   0   0   0   0   0   0
##   13101101   0   0   0   2   0   0   0   0   0
##   13101102   0   0   0   5   0   0   0   0   0
##   13101104   0   0   0   2   0   0   0   0   0
##   13101105   0   0   0   6   0   0   0   0   0
##   13101106   0   0   0   4   0   0   0   0   0
##   13101107   0   0   0   9   0   0   0   0   0
##   13101108   0   0   0   8   0   0   0   0   0
##   13101109   0   0   0   5   0   0   0   0   0
##   13101110   0   0   0   4   0   0   0   0   0
##   13102101   0   0   0   2   0   0   0   0   0
##   13102102   0   0   0   5   0   0   0   0   0
##   13103101   0   0   0   5   0   0   0   0   0
##   13103102   0   0   0   3   0   0   0   0   0
##   13103103   0   0   0   5   0   0   0   0   0
##   13103104   0   0   0   6   0   0   0   0   0
##   13104101   0   0   0   5   0   0   0   0   0
##   13104102   0   0   0   6   0   0   0   0   0
##   13104103   0   0   0   4   0   0   0   0   0
##   13105101   0   0   0   5   0   0   0   0   0
##   13105102   0   0   0   3   0   0   0   0   0
##   13105103   0   0   0   3   0   0   0   0   0
##   13105104   0   0   0   8   0   0   0   0   0
##   13105105   0   0   0   7   0   0   0   0   0
##   13106101   0   0   0   7   0   0   0   0   0
##   13106102   0   0   0   5   0   0   0   0   0
##   13106103   0   0   0   7   0   0   0   0   0
##   13106104   0   0   0   5   0   0   0   0   0
##   13107101   0   0   0   5   0   0   0   0   0
##   13107102   0   0   0   6   0   0   0   0   0
##   13108101   0   0   0   5   0   0   0   0   0
##   13108102   0   0   0   5   0   0   0   0   0
##   13109101   0   0   0   5   0   0   0   0   0
##   13109102   0   0   0   5   0   0   0   0   0
##   13110101   0   0   0   6   0   0   0   0   0
##   13110102   0   0   0   5   0   0   0   0   0
##   13110103   0   0   0   2   0   0   0   0   0
##   13110104   0   0   0   4   0   0   0   0   0
##   13110105   0   0   0   7   0   0   0   0   0
##   13110106   0   0   0   8   0   0   0   0   0
##   13110108   0   0   0   7   0   0   0   0   0
##   13110109   0   0   0   6   0   0   0   0   0
##   13110110   0   0   0   5   0   0   0   0   0
##   13110111   0   0   0   6   0   0   0   0   0
##   13111101   0   0   0   4   0   0   0   0   0
##   13111102   0   0   0   5   0   0   0   0   0
##   13111103   0   0   0   5   0   0   0   0   0
##   13111104   0   0   0   4   0   0   0   0   0
##   13112101   0   0   0   4   0   0   0   0   0
##   13112102   0   0   0   6   0   0   0   0   0
##   13112103   0   0   0   5   0   0   0   0   0
##   13112104   0   0   0   7   0   0   0   0   0
##   13112105   0   0   0   6   0   0   0   0   0
##   13113102   0   0   0   6   0   0   0   0   0
##   13113103   0   0   0   3   0   0   0   0   0
##   13114101   0   0   0   1   0   0   0   0   0
##   13114103   0   0   0   3   0   0   0   0   0
##   13114105   0   0   0   2   0   0   0   0   0
##   13114107   0   0   0   6   0   0   0   0   0
##   13115101   0   0   0   2   0   0   0   0   0
##   13115102   0   0   0   7   0   0   0   0   0
##   13116101   0   0   0   5   0   0   0   0   0
##   13116102   0   0   0   7   0   0   0   0   0
##   13116103   0   0   0   6   0   0   0   0   0
##   13117101   0   0   0   2   0   0   0   0   0
##   13117102   0   0   0   3   0   0   0   0   0
##   13117103   0   0   0   6   0   0   0   0   0
##   13118101   0   0   0   8   0   0   0   0   0
##   13118102   0   0   0   9   0   0   0   0   0
##   13118103   0   0   0   4   0   0   0   0   0
##   13119101   0   0   0   4   0   0   0   0   0
##   13119102   0   0   0   7   0   0   0   0   0
##   13119103   0   0   0   7   0   0   0   0   0
##   13119104   0   0   0   8   0   0   0   0   0
##   13119105   0   0   0   9   0   0   0   0   0
##   13119106   0   0   0   2   0   0   0   0   0
##   13119107   0   0   0   8   0   0   0   0   0
##   13119108   0   0   0   4   0   0   0   0   0
##   13119109   0   0   0   8   0   0   0   0   0
##   13119110   0   0   0   6   0   0   0   0   0
##   13119111   0   0   0   7   0   0   0   0   0
##   13119112   0   0   0   4   0   0   0   0   0
##   13119113   0   0   0   2   0   0   0   0   0
##   13120102   0   0   0   6   0   0   0   0   0
##   13120104   0   0   0   6   0   0   0   0   0
##   13120105   0   0   0   6   0   0   0   0   0
##   13120106   0   0   0   5   0   0   0   0   0
##   13121101   0   0   0   4   0   0   0   0   0
##   13121102   0   0   0   3   0   0   0   0   0
##   13121103   0   0   0   5   0   0   0   0   0
##   13122101   0   0   0   6   0   0   0   0   0
##   13122102   0   0   0   3   0   0   0   0   0
##   13122104   0   0   0   4   0   0   0   0   0
##   13122105   0   0   0   8   0   0   0   0   0
##   13122106   0   0   0   6   0   0   0   0   0
##   13122107   0   0   0   6   0   0   0   0   0
##   13123101   0   0   0   2   0   0   0   0   0
##   13123102   0   0   0   6   0   0   0   0   0
##   13123105   0   0   0   6   0   0   0   0   0
##   13124101   0   0   0   7   0   0   0   0   0
##   13124102   0   0   0   6   0   0   0   0   0
##   13124103   0   0   0   3   0   0   0   0   0
##   13124104   0   0   0   6   0   0   0   0   0
##   13124105   0   0   0   7   0   0   0   0   0
##   13124106   0   0   0   4   0   0   0   0   0
##   13125101   0   0   0   6   0   0   0   0   0
##   13125102   0   0   0   4   0   0   0   0   0
##   13125103   0   0   0   5   0   0   0   0   0
##   13125104   0   0   0   5   0   0   0   0   0
##   13125105   0   0   0   7   0   0   0   0   0
##   13126101   0   0   0   5   0   0   0   0   0
##   13126102   0   0   0   3   0   0   0   0   0
##   13126103   0   0   0   5   0   0   0   0   0
##   13127101   0   0   0   4   0   0   0   0   0
##   13127102   0   0   0   6   0   0   0   0   0
##   13127103   0   0   0   5   0   0   0   0   0
##   13127104   0   0   0   4   0   0   0   0   0
##   13128101   0   0   0   5   0   0   0   0   0
##   13128102   0   0   0   4   0   0   0   0   0
##   13128103   0   0   0   5   0   0   0   0   0
##   13128104   0   0   0   6   0   0   0   0   0
##   13129101   0   0   0   4   0   0   0   0   0
##   13129102   0   0   0   3   0   0   0   0   0
##   13129104   0   0   0   6   0   0   0   0   0
##   13130101   0   0   0   7   0   0   0   0   0
##   13130103   0   0   0   6   0   0   0   0   0
##   13131101   0   0   0   6   0   0   0   0   0
##   13131102   0   0   0   7   0   0   0   0   0
##   13132101   0   0   0   4   0   0   0   0   0
##   13132102   0   0   0   3   0   0   0   0   0
##   13201102   0   0   0   7   0   0   0   0   0
##   13201103   0   0   0   6   0   0   0   0   0
##   13201106   0   0   0   8   0   0   0   0   0
##   13201107   0   0   0   6   0   0   0   0   0
##   13201109   0   0   0   4   0   0   0   0   0
##   13201110   0   0   0   6   0   0   0   0   0
##   13201111   0   0   0   3   0   0   0   0   0
##   13201112   0   0   0   4   0   0   0   0   0
##   13201113   0   0   0   5   0   0   0   0   0
##   13201114   0   0   0   6   0   0   0   0   0
##   13201115   0   0   0   7   0   0   0   0   0
##   13201116   0   0   0   6   0   0   0   0   0
##   13201117   0   0   0   8   0   0   0   0   0
##   13301101   0   0   0   9   0   0   0   0   0
##   13301102   0   0   0   8   0   0   0   0   0
##   13301201   0   0   0   0   7   0   0   0   0
##   13301202   0   0   0   0   8   0   0   0   0
##   13302101   0   0   0   7   0   0   0   0   0
##   13302102   0   0   0   4   0   0   0   0   0
##   13401101   0   0   0   6   0   0   0   0   0
##   13401102   0   0   0   8   0   0   0   0   0
##   13401103   0   0   0   9   0   0   0   0   0
##   13401104   0   0   0   6   0   0   0   0   0
##   13401105   0   0   0   2   0   0   0   0   0
##   13401106   0   0   0   6   0   0   0   0   0
##   13401107   0   0   0   3   0   0   0   0   0
##   13402102   0   0   0   7   0   0   0   0   0
##   13403101   0   0   0   6   0   0   0   0   0
##   13404101   0   0   0   7   0   0   0   0   0
##   13501101   0   0   0   9   0   0   0   0   0
##   13501102   0   0   0   4   0   0   0   0   0
##   13501201   0   0   0   0  15   0   0   0   0
##   13501202   0   0   0   0  12   0   0   0   0
##   13601101   0   0   0   5   0   0   0   0   0
##   13602101   0   0   0   5   0   0   0   0   0
##   13603101   0   0   0   3   0   0   0   0   0
##   13604101   0   0   0   5   0   0   0   0   0
##   13605101   0   0   0   4   0   0   0   0   0
##   13605102   0   0   0   6   0   0   0   0   0
##   14101101   0   0   0   0   0   7   0   0   0
##   14101103   0   0   0   0   0   5   0   0   0
##   14101104   0   0   0   0   0  10   0   0   0
##   14101105   0   0   0   0   0   1   0   0   0
##   14101106   0   0   0   0   0   7   0   0   0
##   14101107   0   0   0   0   0   1   0   0   0
##   14101108   0   0   0   0   0   7   0   0   0
##   14101109   0   0   0   0   0   6   0   0   0
##   14101110   0   0   0   0   0   7   0   0   0
##   14101111   0   0   0   0   0   7   0   0   0
##   14101112   0   0   0   0   0   2   0   0   0
##   14101113   0   0   0   0   0   7   0   0   0
##   14101114   0   0   0   0   0   6   0   0   0
##   14101115   0   0   0   0   0   6   0   0   0
##   14101117   0   0   0   0   0   5   0   0   0
##   14101118   0   0   0   0   0   1   0   0   0
##   14101119   0   0   0   0   0   7   0   0   0
##   14101120   0   0   0   0   0   6   0   0   0
##   14101121   0   0   0   0   0   8   0   0   0
##   14101122   0   0   0   0   0   8   0   0   0
##   14101123   0   0   0   0   0   7   0   0   0
##   14101124   0   0   0   0   0   1   0   0   0
##   14101125   0   0   0   0   0   3   0   0   0
##   14101201   0   0   0   0   0   0  10   0   0
##   14101202   0   0   0   0   0   0  10   0   0
##   14104101   0   0   0   0   0   4   0   0   0
##   14104102   0   0   0   0   0   5   0   0   0
##   14104103   0   0   0   0   0   8   0   0   0
##   14104104   0   0   0   0   0   5   0   0   0
##   14104105   0   0   0   0   0   5   0   0   0
##   14104201   0   0   0   0   0   0  10   0   0
##   14104202   0   0   0   0   0   0  10   0   0
##   14107101   0   0   0   0   0   5   0   0   0
##   14107102   0   0   0   0   0   5   0   0   0
##   14107103   0   0   0   0   0   6   0   0   0
##   14107104   0   0   0   0   0   3   0   0   0
##   14107105   0   0   0   0   0   6   0   0   0
##   14107201   0   0   0   0   0   0  10   0   0
##   14107202   0   0   0   0   0   0  10   0   0
##   14201101   0   0   0   0   0   5   0   0   0
##   14201102   0   0   0   0   0   5   0   0   0
##   14201103   0   0   0   0   0   5   0   0   0
##   14201104   0   0   0   0   0   5   0   0   0
##   14201105   0   0   0   0   0   6   0   0   0
##   14201201   0   0   0   0   0   0  10   0   0
##   14201202   0   0   0   0   0   0  10   0   0
##   14203201   0   0   0   0   0   0  10   0   0
##   14203202   0   0   0   0   0   0  10   0   0
##   14204101   0   0   0   0   0   3   0   0   0
##   14204102   0   0   0   0   0   5   0   0   0
##   14204103   0   0   0   0   0   4   0   0   0
##   14204104   0   0   0   0   0   4   0   0   0
##   14204105   0   0   0   0   0   4   0   0   0
##   15101101   0   0   0   0   0   0   0   1   0
##   15101102   0   0   0   0   0   0   0   5   0
##   15101103   0   0   0   0   0   0   0   5   0
##   15101104   0   0   0   0   0   0   0   7   0
##   15101105   0   0   0   0   0   0   0   4   0
##   15101106   0   0   0   0   0   0   0   5   0
##   15101107   0   0   0   0   0   0   0   7   0
##   15101108   0   0   0   0   0   0   0   7   0
##   15101109   0   0   0   0   0   0   0   5   0
##   15101110   0   0   0   0   0   0   0   6   0
##   15101111   0   0   0   0   0   0   0   7   0
##   15101112   0   0   0   0   0   0   0   7   0
##   15101113   0   0   0   0   0   0   0   4   0
##   15101114   0   0   0   0   0   0   0   4   0
##   15101115   0   0   0   0   0   0   0   6   0
##   15101116   0   0   0   0   0   0   0   7   0
##   15101118   0   0   0   0   0   0   0   6   0
##   15101119   0   0   0   0   0   0   0   4   0
##   15101120   0   0   0   0   0   0   0   6   0
##   15101121   0   0   0   0   0   0   0   6   0
##   15101122   0   0   0   0   0   0   0   5   0
##   15101123   0   0   0   0   0   0   0   6   0
##   15101124   0   0   0   0   0   0   0   7   0
##   15101125   0   0   0   0   0   0   0   5   0
##   15101126   0   0   0   0   0   0   0   4   0
##   15101127   0   0   0   0   0   0   0   6   0
##   15101128   0   0   0   0   0   0   0   5   0
##   15101129   0   0   0   0   0   0   0   6   0
##   15101130   0   0   0   0   0   0   0   5   0
##   15101131   0   0   0   0   0   0   0   7   0
##   15101132   0   0   0   0   0   0   0   4   0
##   15101133   0   0   0   0   0   0   0   5   0
##   15101134   0   0   0   0   0   0   0   6   0
##   15101135   0   0   0   0   0   0   0   7   0
##   15101136   0   0   0   0   0   0   0   5   0
##   15101137   0   0   0   0   0   0   0   6   0
##   15101138   0   0   0   0   0   0   0   7   0
##   15101139   0   0   0   0   0   0   0   6   0
##   15101140   0   0   0   0   0   0   0   4   0
##   15101141   0   0   0   0   0   0   0   7   0
##   15101142   0   0   0   0   0   0   0   6   0
##   15101143   0   0   0   0   0   0   0   7   0
##   15101144   0   0   0   0   0   0   0   7   0
##   15101146   0   0   0   0   0   0   0   7   0
##   15101148   0   0   0   0   0   0   0   5   0
##   15101149   0   0   0   0   0   0   0   7   0
##   15101150   0   0   0   0   0   0   0   6   0
##   15101151   0   0   0   0   0   0   0   7   0
##   15101152   0   0   0   0   0   0   0   7   0
##   15101153   0   0   0   0   0   0   0   7   0
##   15101154   0   0   0   0   0   0   0   7   0
##   15101155   0   0   0   0   0   0   0   6   0
##   15101156   0   0   0   0   0   0   0   6   0
##   15101157   0   0   0   0   0   0   0   6   0
##   15101158   0   0   0   0   0   0   0   6   0
##   15101201   0   0   0   0   0   0   0   0  20
##   15101203   0   0   0   0   0   0   0   0  10
##   15101204   0   0   0   0   0   0   0   0  10

Survey design

Explore using ggplot

ggplot(df0)+
  geom_point(aes(x=Edad, y=Fexp_F1F2EX1p_Corr))

Survey design

ggplot(df0)+
  geom_point(aes(x=Edad, y=Fexp_F1F2EX1p_Corr, 
                 col=Educational_level, shape=Gender))

Subset of valid values for Survey design

create a subset with valid values: fexp, strata_ Conglomerado_

# drop cases
df0 <- subset(df0,!is.na(fexp)& !is.na(strata_)& !is.na(Conglomerado_))
# I do not step over df0 in case I want to use another fexp

Recycle the code <- Identify exposure & outcome

df0$exposure <- df0$Educational_level
df0$outcome <- df0$v_25_OH_Vitamina_D2_D3_corr
df0$outcome1 <- as.numeric(df0$v_25_OH_Vitamina_D2_D3_corr<30)
df0$outcome2 <- as.numeric(df0$v_25_OH_Vitamina_D2_D3_corr<20)
df0$outcome3 <- as.numeric(df0$v_25_OH_Vitamina_D2_D3_corr<12)
df0$outcome5_ <- NA
df0$outcome5_[df0$v_25_OH_Vitamina_D2_D3_corr>=30] <- 0
df0$outcome5_[df0$v_25_OH_Vitamina_D2_D3_corr<30] <- 1
df0$outcome5_[df0$v_25_OH_Vitamina_D2_D3_corr<20] <- 2
df0$outcome5_[df0$v_25_OH_Vitamina_D2_D3_corr<12] <- 3
df0$outcome5_ <- as.factor(df0$outcome5_)

ALL VARIABLES NEEDS TO BE CREATED BEFORE USING THE “as_survey_design”

Creating Survey design

survey_design <- df0 %>%
  as_survey_design(id=Conglomerado_, 
                   # nest=TRUE,
                   weight = fexp, 
                   strata=strata_ 
                   )
options(survey.lonely.psu="certainty")
# nest=TRUE IS REQUIERED TO ANALISE TRENDS USING ENS. 
# PSU LABELS ARE SHARED 

options(survey.lonely.psu=“certainty”)????

res_0b <- df0 %>%
  group_by(Region,Area,strata_) %>%
  summarize(Conglomerado_l = length(unique(Conglomerado_)))
## `summarise()` regrouping output by 'Region', 'Area' (override with `.groups` argument)
Single_PSU <- subset(res_0b,Conglomerado_l==1)
Single_PSU
## # A tibble: 1 x 4
## # Groups:   Region, Area [1]
##   Region Area  strata_ Conglomerado_l
##    <dbl> <fct>   <dbl>          <int>
## 1      3 Rural      22              1

options(survey.lonely.psu=“certainty”)????

http://r-survey.r-forge.r-project.org/survey/exmample-lonely.html

If only one PSU is sampled from a particular stratum the variance can’t be computed (there is no unbiased estimator and the standard estimator gives 0/0). Variance estimation in sample surveys involves variances computed within primary sampling units.

One exception to this is “certainty” PSUs in sampling without replacement, where the population has only one PSU in the stratum. With 100% sampling, there is no contribution to the variance from the first stage of sampling in this stratum. A single-PSU stratum makes no contribution to the variance (for multistage sampling it makes no contribution at that level of sampling).

WARNING Survey design

“As a general rule when working with complex survey data such as NHANES, you should never drop records from your analysis dataset before executing your analysis procedures. Instead, use the special statements provided in your software’s analysis procedure to perform subgroup analyses.” https://wwwn.cdc.gov/nchs/nhanes/tutorials/module4.aspx

Survey design: SUBSET

survey_design <- subset(survey_design,
                      !is.na(outcome) &!is.na(exposure) & Edad>=15)

RESUMEN

df0 <- rio::import('F1_F2_EX_V9_20AUG18AP5.dta')
df0$Gender <- factor(df0$Sexo,
                   levels=c("1","2"),
                   labels=c("Male","Female"))
df0$Educational_level <- factor(df0$NEDU1,
                              levels=c("1","2","3"),
                              labels=c("Low","Mid","High"))
df0$Area <- factor(df0$Zona,
                 levels=c("1","2"),
                 labels=c("Urban","Rural"))
df0$Age <- factor(df0$Edad_Codificada,
                levels=c("1","2","3","4"),
                labels=c("17-24","25-44","45-64","65+"))

df0$exposure <- df0$Educational_level
df0$outcome <- df0$v_25_OH_Vitamina_D2_D3_corr
df0$outcome1 <- as.numeric(df0$v_25_OH_Vitamina_D2_D3_corr<30)
df0$outcome2 <- as.numeric(df0$v_25_OH_Vitamina_D2_D3_corr<20)
df0$outcome3 <- as.numeric(df0$v_25_OH_Vitamina_D2_D3_corr<12)

RESUMEN

df0$outcome5_ <- NA
df0$outcome5_[df0$v_25_OH_Vitamina_D2_D3_corr>=30] <- 0
df0$outcome5_[df0$v_25_OH_Vitamina_D2_D3_corr<30] <- 1
df0$outcome5_[df0$v_25_OH_Vitamina_D2_D3_corr<20] <- 2
df0$outcome5_[df0$v_25_OH_Vitamina_D2_D3_corr<12] <- 3
df0$outcome5_ <- as.factor(df0$outcome5_)
df0$ENS <- 2017
df0$person <- 1
df0$Conglomerado_ <- NA
df0$Conglomerado_ <- df0$Conglomerado
df0$strata_ <- NA
df0$strata_ <- df0$Estrato
df0$fexp <- df0$Fexp_F1F2EX1p_Corr 
df0 <- subset(df0,!is.na(fexp)& !is.na(strata_)& !is.na(Conglomerado_))

RESUMEN

survey_design <- df0 %>%
  as_survey_design(id=Conglomerado_, 
                   weight = fexp, 
                   strata=strata_)
options(survey.lonely.psu="certainty")
## Survey design: SUBSET
survey_design <- subset(survey_design,
                      !is.na(outcome) &!is.na(exposure) & Edad>=15)

RESUMEN

svyby(~outcome, ~person, survey_design, svymean)
##   person outcome        se
## 1      1 19.8146 0.2964862
svyby(~outcome, ~exposure, survey_design, svymean)
##      exposure  outcome        se
## Low       Low 19.78772 0.6054778
## Mid       Mid 19.78517 0.3667705
## High     High 19.89291 0.6933440
svyby(~outcome, ~exposure, survey_design, svytotal)
##      exposure  outcome      se
## Low       Low 26233723 2039508
## Mid       Mid 63524073 3826458
## High     High 33046763 3157836
svyglm(outcome~ Area+Edad, survey_design)
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (1000) clusters.
## subset(survey_design, !is.na(outcome) & !is.na(exposure) & Edad >= 
##     15)
## Sampling variables:
##  - ids: Conglomerado_
##  - strata: strata_
##  - weights: fexp
## 
## Call:  svyglm(formula = outcome ~ Area + Edad, design = survey_design)
## 
## Coefficients:
## (Intercept)    AreaRural         Edad  
##    20.31281      4.76045     -0.02467  
## 
## Degrees of Freedom: 2858 Total (i.e. Null);  968 Residual
## Null Deviance:       191600 
## Residual Deviance: 184000    AIC: 22310
svyglm(outcome1 ~Area+Edad, survey_design, 
                    family = quasibinomial(link = "logit"))
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (1000) clusters.
## subset(survey_design, !is.na(outcome) & !is.na(exposure) & Edad >= 
##     15)
## Sampling variables:
##  - ids: Conglomerado_
##  - strata: strata_
##  - weights: fexp
## 
## Call:  svyglm(formula = outcome1 ~ Area + Edad, design = survey_design, 
##     family = quasibinomial(link = "logit"))
## 
## Coefficients:
## (Intercept)    AreaRural         Edad  
##   2.2632370   -0.9590043   -0.0007256  
## 
## Degrees of Freedom: 2858 Total (i.e. Null);  968 Residual
## Null Deviance:       2006 
## Residual Deviance: 1967  AIC: NA

Regresion lineal: VitD y area urbana/rural ajustada por edad

#Modelo
fit2 <- svyglm(outcome~ Area+Edad, survey_design)
summary(fit2)
## 
## Call:
## svyglm(formula = outcome ~ Area + Edad, design = survey_design)
## 
## Survey design:
## subset(survey_design, !is.na(outcome) & !is.na(exposure) & Edad >= 
##     15)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 20.31281    0.68915  29.475  < 2e-16 ***
## AreaRural    4.76045    0.64637   7.365 3.79e-13 ***
## Edad        -0.02467    0.01269  -1.943   0.0523 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 64.38195)
## 
## Number of Fisher Scoring iterations: 2

Regresion logística: VitD<30 y area urbana/rural ajustada por edad

fit_t <- svyglm(outcome1 ~Area+Edad, survey_design, 
                    family = quasibinomial(link = "logit"))
summary(fit_t)
## 
## Call:
## svyglm(formula = outcome1 ~ Area + Edad, design = survey_design, 
##     family = quasibinomial(link = "logit"))
## 
## Survey design:
## subset(survey_design, !is.na(outcome) & !is.na(exposure) & Edad >= 
##     15)
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.2632370  0.2477010   9.137  < 2e-16 ***
## AreaRural   -0.9590043  0.2015656  -4.758 2.26e-06 ***
## Edad        -0.0007256  0.0042031  -0.173    0.863    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for quasibinomial family taken to be 1.000294)
## 
## Number of Fisher Scoring iterations: 4

Media y error de niveles plasmáticos de vitamina D (ng/mL)

We created this variable before df0$person <- 1 “person” is a “variable” with constant value=1 I use “person” to calculate mean in total sample using svyby instead of svymean()

svyby(~outcome, ~person, survey_design, svymean)
##   person outcome        se
## 1      1 19.8146 0.2964862
svyby(~outcome, ~exposure, survey_design, svymean)
##      exposure  outcome        se
## Low       Low 19.78772 0.6054778
## Mid       Mid 19.78517 0.3667705
## High     High 19.89291 0.6933440

Media y error de niveles plasmáticos de vitamina D (ng/mL)

Generar tabla de medias, se, n e IC95%

res0 <- svyby(~outcome, ~exposure, survey_design, svymean)
res0$exposure_ <- "Age"
res0b <- survey_design %>%
  group_by(person,exposure) %>%
  summarize(n = unweighted(n()))
res0 <- full_join(res0,res0b)
## Joining, by = "exposure"
res0$outcome_ <- "Mean"
res_0 <- svyby(~outcome, ~person, survey_design, svymean)
res_0$exposure <- "All"
res_0b <- survey_design %>%
  group_by(person) %>%
  summarize(n = unweighted(n()))
res_0 <- full_join(res_0,res_0b)
## Joining, by = "person"
res_0$outcome_ <- "Mean"
res_0 <- full_join(res_0,res_0b)
## Joining, by = c("person", "n")
res0 <- full_join(res_0,res0)
## Joining, by = c("person", "outcome", "se", "exposure", "n", "outcome_")

Media y error de niveles plasmáticos de vitamina D (ng/mL)

res0
##   person  outcome        se exposure    n outcome_ exposure_
## 1      1 19.81460 0.2964862      All 2859     Mean      <NA>
## 2      1 19.78772 0.6054778      Low  857     Mean       Age
## 3      1 19.78517 0.3667705      Mid 1391     Mean       Age
## 4      1 19.89291 0.6933440     High  611     Mean       Age

Media y error de niveles plasmáticos de vitamina D (ng/mL) en subpoblación

survey_design <- subset(survey_design,Edad<50 & Sexo==2)
# Déficit Vit D (M1 y ADM)  2499 
# Criterio de impresión de etiqueta: ( (ser mujer) & (edad>=15 & edad<=49) ) Ó (edad>=65) 
# Criterio de aplicación de Examen: ( (ser mujer) & (edad>=15 & edad<=49) ) Ó (edad>=65) 
res0 <- svyby(~outcome, ~person+exposure, survey_design, svymean)
res0$exposure_ <- "Age"
res0b <- survey_design %>%
  group_by(person,exposure) %>%
  summarize(n = unweighted(n()))
res0 <- full_join(res0,res0b)
## Joining, by = c("person", "exposure")
res0$outcome_ <- "Mean"
res_0 <- svyby(~outcome, ~person, survey_design, svymean)
res_0$exposure <- "All"
res_0b <- survey_design %>%
  group_by(person) %>%
  summarize(n = unweighted(n()))
res_0 <- full_join(res_0,res_0b)
## Joining, by = "person"
res_0$outcome_ <- "Mean"
res_0 <- full_join(res_0,res_0b)
## Joining, by = c("person", "n")
res0 <- full_join(res_0,res0)
## Joining, by = c("person", "outcome", "se", "exposure", "n", "outcome_")
# res0$value <- res0$outcome
# res0$value <- res0$outcome*100
res0$CI_i <- (res0$outcome-1.96*res0$se)
res0$CI_s <- (res0$outcome+1.96*res0$se)
# svyciprop(formula, design, method = c("logit", "likelihood", "asin", "beta","mean"), level = 0.95, ...)

# idem que cofint---
confint(svyby(~outcome, ~person+exposure, survey_design, svymean))
##           2.5 %   97.5 %
## 1.Low  19.88154 25.47994
## 1.Mid  19.24538 20.87599
## 1.High 18.03851 21.11203
# confint(svyby(~outcome, ~person+exposure+Area, survey_design, svymean, 
#               method="likelihood"))
# confint(svyby(~outcome, ~person+exposure+Area, survey_design, svymean, 
#               method="logit"))
# confint(svyby(~outcome, ~person+exposure+Area, survey_design, svymean, 
#               method="asin"))
# confint(svyby(~outcome, ~person+exposure+Area, survey_design, svymean, 
#               method="beta"))
# confint(svyby(~outcome, ~person+exposure+Area, survey_design, svymean, 
#               method="mean"))

Media y error de niveles plasmáticos de vitamina D (ng/mL) en subpoblación

res0
##   person  outcome        se exposure    n outcome_ exposure_     CI_i     CI_s
## 1      1 20.06962 0.3680455      All 1584     Mean      <NA> 19.34825 20.79099
## 2      1 22.68074 1.4281898      Low  113     Mean       Age 19.88149 25.47999
## 3      1 20.06069 0.4159796      Mid  976     Mean       Age 19.24537 20.87601
## 4      1 19.57527 0.7840747     High  495     Mean       Age 18.03849 21.11206

Plot

# names(res0)
ggplot(res0)+
  geom_point(aes(x=exposure, y=outcome))

Plot

ggplot(res0)+
  geom_point(aes(x=exposure, y=outcome, col=exposure))+
  geom_errorbar(aes(x=exposure, y=outcome,
                    ymin = CI_i, ymax = CI_s),
                 width = 0.1,
                 size = 0.1,
                 position = position_dodge(0.9)
               )

plot_1<-ggplot(res0)+
  geom_point(aes(x=exposure, y=outcome, col=exposure))+
  geom_text(aes(x=exposure, y=outcome, label=round(outcome,1)))+
  geom_errorbar(aes(x=exposure, y=outcome,
                    ymin = CI_i, ymax = CI_s),
                width = 0.1,
                size = 0.1,
                position = position_dodge(0.9)
  )+
  ylab("Media VitD ng/dL")+
  xlab(paste("\n ","\n ","Educational level",sep=""))+
  labs(col = " ")+
  labs(shape = " ")+
  theme(plot.title = element_text(size=22),
        plot.caption = element_text(size=22),
        legend.position = "none",
        legend.text =  element_text(size = 12, 
                                    colour = "black", 
                                    angle = 0),
        strip.text.x = element_text(size = 12, 
                                    colour = "black", 
                                    angle = 0),
        axis.ticks = element_blank(),
        axis.text.x = element_text(size = 12, 
                                   colour = "black", 
                                   angle = 0, 
                                   hjust = 1),
        axis.text.y = element_text(size = 12, 
                                   colour = "black", 
                                   angle = 0, 
                                   hjust = 1),
        axis.title = element_text(size = 12, 
                                  colour = "black", 
                                  angle = 0),
        axis.line = element_line(colour = "grey40", 
                                 size = 1, 
                                 linetype = "solid"),
        panel.grid.minor.y = element_line(colour="grey90", size=0.1),
        panel.background = element_rect(fill="white"))

Plot

plot_1

Prevalencia de vitamina D <30, <20 y <12

res0a <- svyby(~outcome1, ~person+exposure, survey_design, svytotal)
res0b <- svyby(~outcome1, ~person+exposure, survey_design, svymean)
res1  <- svyby(~outcome1, ~person+exposure, survey_design, svymean)
res1$exposure_ <- "Age groups"
res1b <- survey_design %>%
  group_by(person,exposure) %>%
  summarize(n = unweighted(n()))
res1 <- full_join(res1,res1b)
## Joining, by = c("person", "exposure")
res1$outcome1_ <- "Mean"
res_1 <- svyby(~outcome1, ~person, survey_design, svymean)
res_1$exposure <- "All"
res_1b <- survey_design %>%
  group_by(person) %>%
  summarize(n = unweighted(n()))
res_1 <- full_join(res_1,res_1b)
## Joining, by = "person"
res_1$outcome1_ <- "Mean"
res_1 <- full_join(res_1,res_1b)
## Joining, by = c("person", "n")
res1 <- full_join(res_1,res1)
## Joining, by = c("person", "outcome1", "se", "exposure", "n", "outcome1_")
# res1$value <- res1$outcome1
# res1$value <- res1$outcome1*111
res1$CI_i <- (res1$outcome1-1.96*res1$se)
res1$CI_s <- (res1$outcome1+1.96*res1$se)

res2 <- svyby(~outcome2, ~person+exposure, survey_design, svymean)
res2$exposure_ <- "Age groups"
res2b <- survey_design %>%
  group_by(person,exposure) %>%
  summarize(n = unweighted(n()))
res2 <- full_join(res2,res2b)
## Joining, by = c("person", "exposure")
res2$outcome_ <- "Mean"
res_2 <- svyby(~outcome2, ~person, survey_design, svymean)
res_2$exposure <- "All"
res_2b <- survey_design %>%
  group_by(person) %>%
  summarize(n = unweighted(n()))
res_2 <- full_join(res_2,res_2b)
## Joining, by = "person"
res_2$outcome_ <- "Mean"
res_2 <- full_join(res_2,res_2b)
## Joining, by = c("person", "n")
res2 <- full_join(res_2,res2)
## Joining, by = c("person", "outcome2", "se", "exposure", "n", "outcome_")
# res2$value <- res2$outcome
# res2$value <- res2$outcome*100
res2$CI_i <- (res2$outcome2-1.96*res2$se)
res2$CI_s <- (res2$outcome2+1.96*res2$se)



res3 <- svyby(~outcome3, ~person+exposure, survey_design, svymean)
res3$exposure_ <- "Age groups"
res3b <- survey_design %>%
  group_by(person,exposure) %>%
  summarize(n = unweighted(n()))
res3 <- full_join(res3,res3b)
## Joining, by = c("person", "exposure")
res3$outcome_ <- "Mean"
res_3 <- svyby(~outcome3, ~person, survey_design, svymean)
res_3$exposure <- "All"
res_3b <- survey_design %>%
  group_by(person) %>%
  summarize(n = unweighted(n()))
res_3 <- full_join(res_3,res_3b)
## Joining, by = "person"
res_3$outcome_ <- "Mean"
res_3 <- full_join(res_3,res_3b)
## Joining, by = c("person", "n")
res3 <- full_join(res_3,res3)
## Joining, by = c("person", "outcome3", "se", "exposure", "n", "outcome_")
# res3$value <- res3$outcome
# res3$value <- res3$outcome*100
res3$CI_i <- (res3$outcome3-1.96*res3$se)
res3$CI_s <- (res3$outcome3+1.96*res3$se)

Prevalencia de vitamina D <30

res1
##   person  outcome1         se exposure    n outcome1_  exposure_      CI_i
## 1      1 0.8900505 0.01325489      All 1584      Mean       <NA> 0.8640709
## 2      1 0.8512115 0.07232704      Low  113      Mean Age groups 0.7094505
## 3      1 0.8890693 0.01539621      Mid  976      Mean Age groups 0.8588927
## 4      1 0.8995363 0.02479161     High  495      Mean Age groups 0.8509448
##        CI_s
## 1 0.9160300
## 2 0.9929725
## 3 0.9192458
## 4 0.9481279

Prevalencia de vitamina D <20

res2
##   person  outcome2         se exposure    n outcome_  exposure_      CI_i
## 1      1 0.5224473 0.02393065      All 1584     Mean       <NA> 0.4755432
## 2      1 0.3645948 0.07862445      Low  113     Mean Age groups 0.2104909
## 3      1 0.5030312 0.03049085      Mid  976     Mean Age groups 0.4432691
## 4      1 0.5905336 0.03962239     High  495     Mean Age groups 0.5128737
##        CI_s
## 1 0.5693514
## 2 0.5186988
## 3 0.5627933
## 4 0.6681935

Prevalencia de vitamina D <12

res3
##   person   outcome3         se exposure    n outcome_  exposure_       CI_i
## 1      1 0.16048978 0.01612776      All 1584     Mean       <NA> 0.12887936
## 2      1 0.06202279 0.02318446      Low  113     Mean Age groups 0.01658125
## 3      1 0.15350749 0.02081670      Mid  976     Mean Age groups 0.11270676
## 4      1 0.19314277 0.03000457     High  495     Mean Age groups 0.13433381
##        CI_s
## 1 0.1921002
## 2 0.1074643
## 3 0.1943082
## 4 0.2519517
names(res1)<-gsub("come1","come",names(res1))
names(res2)<-gsub("come2","come",names(res2))
names(res3)<-gsub("come3","come",names(res2))
res1$type<-"oucome1"
res2$type<-"oucome2"
res3$type<-"oucome3"

res0 <- rbind(res1,res2,res3)
res0
##    person    outcome         se exposure    n outcome_  exposure_       CI_i
## 1       1 0.89005046 0.01325489      All 1584     Mean       <NA> 0.86407087
## 2       1 0.85121154 0.07232704      Low  113     Mean Age groups 0.70945054
## 3       1 0.88906925 0.01539621      Mid  976     Mean Age groups 0.85889269
## 4       1 0.89953632 0.02479161     High  495     Mean Age groups 0.85094475
## 5       1 0.52244729 0.02393065      All 1584     Mean       <NA> 0.47554321
## 6       1 0.36459484 0.07862445      Low  113     Mean Age groups 0.21049092
## 7       1 0.50303119 0.03049085      Mid  976     Mean Age groups 0.44326913
## 8       1 0.59053356 0.03962239     High  495     Mean Age groups 0.51287367
## 9       1 0.16048978 0.01612776      All 1584     Mean       <NA> 0.12887936
## 10      1 0.06202279 0.02318446      Low  113     Mean Age groups 0.01658125
## 11      1 0.15350749 0.02081670      Mid  976     Mean Age groups 0.11270676
## 12      1 0.19314277 0.03000457     High  495     Mean Age groups 0.13433381
##         CI_s    type
## 1  0.9160300 oucome1
## 2  0.9929725 oucome1
## 3  0.9192458 oucome1
## 4  0.9481279 oucome1
## 5  0.5693514 oucome2
## 6  0.5186988 oucome2
## 7  0.5627933 oucome2
## 8  0.6681935 oucome2
## 9  0.1921002 oucome3
## 10 0.1074643 oucome3
## 11 0.1943082 oucome3
## 12 0.2519517 oucome3

Plot

plot2<-ggplot(res0)+
  geom_point(aes(x=exposure, y=outcome, col=type))+
  geom_errorbar(aes(x=exposure, y=outcome,
                    ymin = CI_i, ymax = CI_s),
                 width = 0.1,size = 0.1, position = position_dodge(0.9))
plot2

Plot

plot2<-plot2 +
  facet_wrap(type~ . , scales = "free_y", nrow = 3)
plot2

Rangos de vitamina D

  • 0: Vit D >=30
  • 1: Vit D 20-29.9
  • 2: Vit D 12-19.9
  • 3: Vit D <12

Rangos de vitamina D

res0a <- svyby(~outcome5_, ~person+exposure, survey_design, svytotal)
res0a
##        person exposure outcome5_0 outcome5_1 outcome5_2 outcome5_3
## 1.Low       1      Low   40896.22   133752.2   83165.41   17047.68
## 1.Mid       1      Mid  297973.16  1036944.1  938862.16  412339.35
## 1.High      1     High  140974.84   433605.6  557635.39  271026.02
##        se.outcome5_0 se.outcome5_1 se.outcome5_2 se.outcome5_3
## 1.Low       22076.61      30697.49      28029.96      5876.561
## 1.Mid       45819.89     107061.77      92261.07     59179.669
## 1.High      37482.16      65943.28      65035.51     48892.137
write.csv(res0a,file="check.csv")

Rangos de vitamina D

res0 <- svyby(~outcome5_, ~person+exposure, survey_design, svymean)
res0
##        person exposure outcome5_0 outcome5_1 outcome5_2 outcome5_3
## 1.Low       1      Low  0.1487885  0.4866167  0.3025721 0.06202279
## 1.Mid       1      Mid  0.1109307  0.3860381  0.3495237 0.15350749
## 1.High      1     High  0.1004637  0.3090028  0.3973908 0.19314277
##        se.outcome5_0 se.outcome5_1 se.outcome5_2 se.outcome5_3
## 1.Low     0.07232704    0.08151790    0.07835190    0.02318446
## 1.Mid     0.01539621    0.02790336    0.02756623    0.02081670
## 1.High    0.02479161    0.03449155    0.03588078    0.03000457

Rangos de vitamina D

res0 <- svyby(~outcome5_, ~person+exposure, survey_design, svymean)
res0$exposure_ <- "Age groups"
res0b <- survey_design %>%
  group_by(person,exposure) %>%
  summarize(n = unweighted(n()))
res0 <- full_join(res0,res0b)
## Joining, by = c("person", "exposure")
res0$outcome5__ <- "Mean"
res_0 <- svyby(~outcome5_, ~person, survey_design, svymean)
res_0$exposure <- "All"
res_0b <- survey_design %>%
  group_by(person) %>%
  summarize(n = unweighted(n()))
res_0 <- full_join(res_0,res_0b)
## Joining, by = "person"
res_0$outcome5__ <- "Mean"
res_0 <- full_join(res_0,res_0b)
## Joining, by = c("person", "n")
res0 <- full_join(res_0,res0)
## Joining, by = c("person", "outcome5_0", "outcome5_1", "outcome5_2", "outcome5_3", "se.outcome5_0", "se.outcome5_1", "se.outcome5_2", "se.outcome5_3", "exposure", "n", "outcome5__")
res0$person <- NULL
res0$outcome5__ <- NULL
#Guardo data con unweighted n
res0n <- res0
#Derrito mi base de datos, original hacial el lado, ahora es hacia abajo
res0 <- melt(res0)
## Using exposure, exposure_ as id variables
#Selecciono desviación estandar
res0a <- res0[grepl("se.",res0$variable),]
res0$variable <- gsub("se.o","se.O.",res0$variable)
#Selecciono medias
res0b <- res0[grepl("out",res0$variable),]
names(res0b) <- paste(names(res0b),"_",sep="")
# las pego lado a lado
res0c <- cbind(res0a,res0b)
res0 <- res0c
res0$se <- res0$value*100
res0$outcome5_ <- res0$value_*100
#calculo intervalo de confianza 95%
res0$CI_i <- (res0$outcome5_-1.96*res0$se)
res0$CI_s <- (res0$outcome5_+1.96*res0$se)
names(res0) <- make.unique(names(res0))
res0n <- res0n[c("exposure","n")]
res0 <- left_join(res0,res0n)
## Joining, by = "exposure"
res0 <- res0[order(res0$exposure_.1),]
res0 <- res0[c("exposure","variable_","outcome5_",
               "se","CI_i","CI_s")]
write.csv(res0,file="res0.csv")

Rangos de vitamina D

res0
##    exposure  variable_ outcome5_       se       CI_i     CI_s
## 1       All outcome5_0 10.994954 1.325489  8.3969956 13.59291
## 5       All outcome5_1 36.760317 2.207990 32.4326570 41.08798
## 9       All outcome5_2 36.195751 2.193420 31.8966473 40.49485
## 13      All outcome5_3 16.048978 1.612776 12.8879361 19.21002
## 4      High outcome5_0 10.046368 2.479161  5.1872121 14.90552
## 8      High outcome5_1 30.900275 3.449155 24.1399307 37.66062
## 12     High outcome5_2 39.739079 3.588078 32.7064468 46.77171
## 16     High outcome5_3 19.314277 3.000457 13.4333810 25.19517
## 2       Low outcome5_0 14.878846 7.232704  0.7027466 29.05495
## 6       Low outcome5_1 48.661669 8.151790 32.6841614 64.63918
## 10      Low outcome5_2 30.257206 7.835190 14.9002342 45.61418
## 14      Low outcome5_3  6.202279 2.318446  1.6581250 10.74643
## 3       Mid outcome5_0 11.093075 1.539621  8.0754177 14.11073
## 7       Mid outcome5_1 38.603806 2.790336 33.1347487 44.07286
## 11      Mid outcome5_2 34.952370 2.756623 29.5493881 40.35535
## 15      Mid outcome5_3 15.350749 2.081670 11.2706763 19.43082

Regresion lineal: VitD y area urbana/rural ajustada por edad

Primero describo y luego modelo

#Describo
svyby(~outcome, ~Area, survey_design, svymean)
##        Area  outcome        se
## Urban Urban 19.53875 0.4051727
## Rural Rural 24.17664 0.6420721

Regresion lineal: VitD y area urbana/rural ajustada por edad

#Modelo
fit2 <- svyglm(outcome~ Area+Edad, survey_design)
summary(fit2)
## 
## Call:
## svyglm(formula = outcome ~ Area + Edad, design = survey_design)
## 
## Survey design:
## subset(survey_design, Edad < 50 & Sexo == 2)
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 19.729818   1.176567  16.769  < 2e-16 ***
## AreaRural    4.649011   0.763475   6.089  1.8e-09 ***
## Edad        -0.006081   0.034642  -0.176    0.861    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 61.07582)
## 
## Number of Fisher Scoring iterations: 2

Regresion lineal: VitD y area urbana/rural ajustada por edad

fit2 <- svyglm(outcome~ Area+Edad, survey_design)
fit2 <- summary(fit2)
fit2 <- as.data.frame(coef(fit2))
fit2$name <- rownames(fit2)
fit2$outcome <- "Vit D numeric"

Regresion lineal: VitD y area urbana/rural ajustada por edad

fit2
##                 Estimate Std. Error    t value     Pr(>|t|)        name
## (Intercept) 19.729818178  1.1765675 16.7689647 6.174439e-54 (Intercept)
## AreaRural    4.649010986  0.7634752  6.0892754 1.799608e-09   AreaRural
## Edad        -0.006080526  0.0346421 -0.1755242 8.607145e-01        Edad
##                   outcome
## (Intercept) Vit D numeric
## AreaRural   Vit D numeric
## Edad        Vit D numeric
write.csv(fit2,file="fit2.csv")

Regresion logística: VitD<30 y area urbana/rural ajustada por edad

res1a <- svyby(~outcome1, ~Area, survey_design, svymean)
fit_t <- svyglm(outcome1 ~Area+Edad, survey_design, 
                    family = quasibinomial(link = "logit"))
fit_t <- summary(fit_t)
fit_t <- as.data.frame(coef(fit_t))
fit_t$name <- rownames(fit_t)
fit_t$outcome <- "VitD<30"
fit_t$OR <- round(exp(fit_t$Estimate),digits=2)
fit_t$OR_i <- round(exp((fit_t$Estimate)-(1.96*fit_t$`Std. Error`)),2)
fit_t$OR_s <- round(exp((fit_t$Estimate)+(1.96*fit_t$`Std. Error`)),2)
fit_t$Estimate <- NULL
fit_t$`Std. Error` <- NULL
fit_t$`t value` <- NULL
fit_t$pvalue <- round(fit_t$`Pr(>|t|)`,digits=4)
fit_t$`Pr(>|t|)` <- NULL
fit_t <- subset(fit_t,name!="(Intercept)")
fit_t$name <- NULL

Regresion logística: VitD<30 y area urbana/rural ajustada por edad

res1a
##        Area  outcome1         se
## Urban Urban 0.9046057 0.01422092
## Rural Rural 0.7774459 0.03355157
fit_t
##           outcome   OR OR_i OR_s pvalue
## AreaRural VitD<30 0.37 0.22 0.61 0.0001
## Edad      VitD<30 1.00 0.97 1.02 0.9136

Regresion logística: VitD<30 y area urbana/rural ajustada por edad

fit_t <- svyglm(outcome1 ~Area+Edad, survey_design, 
                    family = quasibinomial(link = "logit"))
summary(fit_t)
## 
## Call:
## svyglm(formula = outcome1 ~ Area + Edad, design = survey_design, 
##     family = quasibinomial(link = "logit"))
## 
## Survey design:
## subset(survey_design, Edad < 50 & Sexo == 2)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.29419    0.43864   5.230 2.19e-07 ***
## AreaRural   -0.99606    0.25706  -3.875 0.000116 ***
## Edad        -0.00142    0.01309  -0.108 0.913645    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for quasibinomial family taken to be 1.000614)
## 
## Number of Fisher Scoring iterations: 4

Varias regresiones logísticas

fit_t <- svyglm(outcome1 ~Area+Edad, survey_design, 
                    family = quasibinomial(link = "logit"))
fit_t <- summary(fit_t)
fit_t <- as.data.frame(coef(fit_t))
fit_t$name <- rownames(fit_t)
fit_t$outcome <- "VitD<30"
fit_t$OR <- round(exp(fit_t$Estimate),digits=2)
fit_t$OR_i <- round(exp((fit_t$Estimate)-(1.96*fit_t$`Std. Error`)),2)
fit_t$OR_s <- round(exp((fit_t$Estimate)+(1.96*fit_t$`Std. Error`)),2)
fit_t$Estimate <- NULL
fit_t$`Std. Error` <- NULL
fit_t$`t value` <- NULL
fit_t$pvalue <- round(fit_t$`Pr(>|t|)`,digits=4)
fit_t$`Pr(>|t|)` <- NULL
fit_t <- subset(fit_t,name!="(Intercept)")
fit_t$name <- NULL
fit_t1<-fit_t


fit_t <- svyglm(outcome2 ~Area+Edad, survey_design, 
                    family = quasibinomial(link = "logit"))
fit_t <- summary(fit_t)
fit_t <- as.data.frame(coef(fit_t))
fit_t$name <- rownames(fit_t)
fit_t$outcome <- "VitD<20"
fit_t$OR <- round(exp(fit_t$Estimate),digits=2)
fit_t$OR_i <- round(exp((fit_t$Estimate)-(1.96*fit_t$`Std. Error`)),2)
fit_t$OR_s <- round(exp((fit_t$Estimate)+(1.96*fit_t$`Std. Error`)),2)
fit_t$Estimate <- NULL
fit_t$`Std. Error` <- NULL
fit_t$`t value` <- NULL
fit_t$pvalue <- round(fit_t$`Pr(>|t|)`,digits=4)
fit_t$`Pr(>|t|)` <- NULL
fit_t <- subset(fit_t,name!="(Intercept)")
fit_t$name <- NULL
fit_t2<-fit_t



fit_t <- svyglm(outcome3 ~Area+Edad, survey_design, 
                    family = quasibinomial(link = "logit"))
fit_t <- summary(fit_t)
fit_t <- as.data.frame(coef(fit_t))
fit_t$name <- rownames(fit_t)
fit_t$outcome <- "VitD<12"
fit_t$OR <- round(exp(fit_t$Estimate),digits=2)
fit_t$OR_i <- round(exp((fit_t$Estimate)-(1.96*fit_t$`Std. Error`)),2)
fit_t$OR_s <- round(exp((fit_t$Estimate)+(1.96*fit_t$`Std. Error`)),2)
fit_t$Estimate <- NULL
fit_t$`Std. Error` <- NULL
fit_t$`t value` <- NULL
fit_t$pvalue <- round(fit_t$`Pr(>|t|)`,digits=4)
fit_t$`Pr(>|t|)` <- NULL
fit_t <- subset(fit_t,name!="(Intercept)")
fit_t$name <- NULL
fit_t3<-fit_t




fit_t <- svyglm(outcome1 ~Area+Educational_level, survey_design, 
                    family = quasibinomial(link = "logit"))
fit_t <- summary(fit_t)
fit_t <- as.data.frame(coef(fit_t))
fit_t$name <- rownames(fit_t)
fit_t$outcome <- "VitD<30"
fit_t$OR <- round(exp(fit_t$Estimate),digits=2)
fit_t$OR_i <- round(exp((fit_t$Estimate)-(1.96*fit_t$`Std. Error`)),2)
fit_t$OR_s <- round(exp((fit_t$Estimate)+(1.96*fit_t$`Std. Error`)),2)
fit_t$Estimate <- NULL
fit_t$`Std. Error` <- NULL
fit_t$`t value` <- NULL
fit_t$pvalue <- round(fit_t$`Pr(>|t|)`,digits=4)
fit_t$`Pr(>|t|)` <- NULL
fit_t <- subset(fit_t,name!="(Intercept)")
fit_t$name <- NULL
fit_t1b<-fit_t


fit_t <- svyglm(outcome2 ~Area+Educational_level, survey_design, 
                    family = quasibinomial(link = "logit"))
fit_t <- summary(fit_t)
fit_t <- as.data.frame(coef(fit_t))
fit_t$name <- rownames(fit_t)
fit_t$outcome <- "VitD<20"
fit_t$OR <- round(exp(fit_t$Estimate),digits=2)
fit_t$OR_i <- round(exp((fit_t$Estimate)-(1.96*fit_t$`Std. Error`)),2)
fit_t$OR_s <- round(exp((fit_t$Estimate)+(1.96*fit_t$`Std. Error`)),2)
fit_t$Estimate <- NULL
fit_t$`Std. Error` <- NULL
fit_t$`t value` <- NULL
fit_t$pvalue <- round(fit_t$`Pr(>|t|)`,digits=4)
fit_t$`Pr(>|t|)` <- NULL
fit_t <- subset(fit_t,name!="(Intercept)")
fit_t$name <- NULL
fit_t2b<-fit_t



fit_t <- svyglm(outcome3 ~Area+Educational_level, survey_design, 
                    family = quasibinomial(link = "logit"))
fit_t <- summary(fit_t)
fit_t <- as.data.frame(coef(fit_t))
fit_t$name <- rownames(fit_t)
fit_t$outcome <- "VitD<12"
fit_t$OR <- round(exp(fit_t$Estimate),digits=2)
fit_t$OR_i <- round(exp((fit_t$Estimate)-(1.96*fit_t$`Std. Error`)),2)
fit_t$OR_s <- round(exp((fit_t$Estimate)+(1.96*fit_t$`Std. Error`)),2)
fit_t$Estimate <- NULL
fit_t$`Std. Error` <- NULL
fit_t$`t value` <- NULL
fit_t$pvalue <- round(fit_t$`Pr(>|t|)`,digits=4)
fit_t$`Pr(>|t|)` <- NULL
fit_t <- subset(fit_t,name!="(Intercept)")
fit_t$name <- NULL
fit_t3b<-fit_t


fit_123a<-rbind(fit_t1,fit_t2,fit_t3,fit_t1b,fit_t2b,fit_t3b)

fit_123a$type <- fit_123a$outcome
fit_123a$outcome <- fit_123a$OR
fit_123a$CI_i <- fit_123a$OR_i
fit_123a$CI_s <- fit_123a$OR_s
fit_123a$exposure <- fit_123a$name


res0 <- fit_123a

res0$exposure<-rownames(res0)
res0$exposure<-gsub("\\d+","",res0$exposure)
res0$exposure_lbl<-res0$exposure
res0$exposure<-as.factor(res0$exposure)
# res0$exposure<-as.numeric(res0$exposure)
rownames(res0)<-NULL
res0
##    outcome   OR OR_i OR_s pvalue    type CI_i CI_s              exposure
## 1     0.37 0.37 0.22 0.61 0.0001 VitD<30 0.22 0.61             AreaRural
## 2     1.00 1.00 0.97 1.02 0.9136 VitD<30 0.97 1.02                  Edad
## 3     0.28 0.28 0.17 0.46 0.0000 VitD<20 0.17 0.46             AreaRural
## 4     1.00 1.00 0.98 1.02 0.8521 VitD<20 0.98 1.02                  Edad
## 5     0.28 0.28 0.11 0.73 0.0090 VitD<12 0.11 0.73             AreaRural
## 6     0.99 0.99 0.96 1.01 0.3617 VitD<12 0.96 1.01                  Edad
## 7     0.37 0.37 0.22 0.63 0.0003 VitD<30 0.22 0.63             AreaRural
## 8     1.30 1.30 0.38 4.42 0.6727 VitD<30 0.38 4.42  Educational_levelMid
## 9     1.23 1.23 0.32 4.76 0.7610 VitD<30 0.32 4.76 Educational_levelHigh
## 10    0.30 0.30 0.18 0.51 0.0000 VitD<20 0.18 0.51             AreaRural
## 11    1.68 1.68 0.81 3.48 0.1631 VitD<20 0.81 3.48  Educational_levelMid
## 12    2.09 2.09 0.97 4.49 0.0595 VitD<20 0.97 4.49 Educational_levelHigh
## 13    0.31 0.31 0.12 0.79 0.0148 VitD<12 0.12 0.79             AreaRural
## 14    2.62 2.62 1.10 6.22 0.0297 VitD<12 1.10 6.22  Educational_levelMid
## 15    3.12 3.12 1.29 7.58 0.0121 VitD<12 1.29 7.58 Educational_levelHigh
##             exposure_lbl
## 1              AreaRural
## 2                   Edad
## 3              AreaRural
## 4                   Edad
## 5              AreaRural
## 6                   Edad
## 7              AreaRural
## 8   Educational_levelMid
## 9  Educational_levelHigh
## 10             AreaRural
## 11  Educational_levelMid
## 12 Educational_levelHigh
## 13             AreaRural
## 14  Educational_levelMid
## 15 Educational_levelHigh

Varias regresiones logísticas

res0
##    outcome   OR OR_i OR_s pvalue    type CI_i CI_s              exposure
## 1     0.37 0.37 0.22 0.61 0.0001 VitD<30 0.22 0.61             AreaRural
## 2     1.00 1.00 0.97 1.02 0.9136 VitD<30 0.97 1.02                  Edad
## 3     0.28 0.28 0.17 0.46 0.0000 VitD<20 0.17 0.46             AreaRural
## 4     1.00 1.00 0.98 1.02 0.8521 VitD<20 0.98 1.02                  Edad
## 5     0.28 0.28 0.11 0.73 0.0090 VitD<12 0.11 0.73             AreaRural
## 6     0.99 0.99 0.96 1.01 0.3617 VitD<12 0.96 1.01                  Edad
## 7     0.37 0.37 0.22 0.63 0.0003 VitD<30 0.22 0.63             AreaRural
## 8     1.30 1.30 0.38 4.42 0.6727 VitD<30 0.38 4.42  Educational_levelMid
## 9     1.23 1.23 0.32 4.76 0.7610 VitD<30 0.32 4.76 Educational_levelHigh
## 10    0.30 0.30 0.18 0.51 0.0000 VitD<20 0.18 0.51             AreaRural
## 11    1.68 1.68 0.81 3.48 0.1631 VitD<20 0.81 3.48  Educational_levelMid
## 12    2.09 2.09 0.97 4.49 0.0595 VitD<20 0.97 4.49 Educational_levelHigh
## 13    0.31 0.31 0.12 0.79 0.0148 VitD<12 0.12 0.79             AreaRural
## 14    2.62 2.62 1.10 6.22 0.0297 VitD<12 1.10 6.22  Educational_levelMid
## 15    3.12 3.12 1.29 7.58 0.0121 VitD<12 1.29 7.58 Educational_levelHigh
##             exposure_lbl
## 1              AreaRural
## 2                   Edad
## 3              AreaRural
## 4                   Edad
## 5              AreaRural
## 6                   Edad
## 7              AreaRural
## 8   Educational_levelMid
## 9  Educational_levelHigh
## 10             AreaRural
## 11  Educational_levelMid
## 12 Educational_levelHigh
## 13             AreaRural
## 14  Educational_levelMid
## 15 Educational_levelHigh

Plot

# res0$exposure<-as.factor(res0$exposure)

plot_1<-
  ggplot(res0)+
  geom_point(aes(x=exposure, y=outcome, col=exposure))+
  geom_text(aes(x=exposure, y=outcome, label=round(outcome,1)))+
  geom_errorbar(aes(x=exposure, y=outcome,
                    ymin = CI_i, ymax = CI_s),
                width = 0.1,
                size = 0.1,
                position = position_dodge(0.9)
  )+
  geom_hline(yintercept =c(1),col=c("black"))+
  labs(title = "", 
       subtitle = "", 
       caption = "")+
  ylab("OR")+
  xlab("")+
  labs(col = " ")+
  labs(shape = " ")+
  theme(plot.title = element_text(size=22),
        plot.caption = element_text(size=22),
        legend.position = "right",
        legend.text =  element_text(size = 12, 
                                    colour = "black", 
                                    angle = 0),
        strip.text.x = element_text(size = 12, 
                                    colour = "black", 
                                    angle = 0),
        axis.ticks = element_blank(),
        axis.text.x = element_text(size = 6, 
                                   colour = "black", 
                                   angle = 10, 
                                   hjust = 1),
        axis.text.y = element_text(size = 12, 
                                   colour = "black", 
                                   angle = 0, 
                                   hjust = 1),
        axis.title = element_text(size = 12, 
                                  colour = "black", 
                                  angle = 0),
        axis.line = element_line(colour = "grey40", 
                                 size = 1, 
                                 linetype = "solid"),
        panel.grid.minor.y = element_line(colour="grey90", size=0.1),
        panel.background = element_rect(fill="white"))+
  # coord_flip()+
  # facet_wrap(type~ exposure, ncol=4, scales = "free")
  facet_wrap(.~ type,  scales = "free_y")
plot_1

Plot

plot_1

unique(cbind(res0$exposure,res0$exposure_lbl))
##      [,1] [,2]                   
## [1,] "1"  "AreaRural"            
## [2,] "2"  "Edad"                 
## [3,] "4"  "Educational_levelMid" 
## [4,] "3"  "Educational_levelHigh"

Publish web - Rpubs

Do you see a the blue “Publish” button? Press it, select RPubs and follow instructions

Explore