\[ A= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix}, ~~ B= \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \\ \end{bmatrix} \]
u <- c(2,1,4,1,0,3,-8,2,5)
(A <- matrix(u,3))
[,1] [,2] [,3]
[1,] 2 1 -8
[2,] 1 0 2
[3,] 4 3 5
dim(A)
[1] 3 3
u <- c(2,1,4,1,0,3,-8,2)
(B <- matrix(u,2,3))
[,1] [,2] [,3]
[1,] 2 4 0
[2,] 1 1 3
dim(B)
[1] 2 3
[,1] [,2] [,3]
[1,] 2 1 -8
[2,] 1 0 2
[3,] 4 3 5
dim(A)
[1] 3 3
[,1] [,2] [,3]
[1,] 2 4 0
[2,] 1 1 3
dim(B)
[1] 2 3
dim(A) == dim(B)
[1] FALSE TRUE
[,1] [,2]
[1,] 2 0
[2,] 1 3
[3,] 4 -8
[4,] 1 2
dim(A) = ?
[,1] [,2]
[1,] 2 1
[2,] 1 0
[3,] 4 3
dim(B) = ?
dim(A) == dim(B)
? ?
[,1] [,2]
[1,] 2 0
[2,] 1 3
[3,] 4 -8
[4,] 1 2
dim(A)
[1] 4 2
[,1] [,2]
[1,] 2 1
[2,] 1 0
[3,] 4 3
dim(B)
[1] 3 2
dim(A) == dim(B)
[1] FALSE TRUE
u <- c(2,1,1,1,0,3,-4,2,5)
(A <- matrix(u,3))
[,1] [,2] [,3]
[1,] 2 1 -4
[2,] 1 0 2
[3,] 1 3 5
(A <- matrix(u,3,byrow = TRUE))
[,1] [,2] [,3]
[1,] 2 1 1
[2,] 1 0 3
[3,] -4 2 5
u <- c(2,1,1,1,0,3,-4,2,5)
(A <- matrix(u,3))
[,1] [,2] [,3]
[1,] 2 1 -4
[2,] 1 0 2
[3,] 1 3 5
(A <- matrix(u,3,byrow = FALSE))
[,1] [,2] [,3]
[1,] 2 1 -4
[2,] 1 0 2
[3,] 1 3 5
\[ \begin{aligned} A + B &= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \\ \end{bmatrix} \\ \\ & = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2n}+b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & \cdots & a_{mn}+b_{mn} \\ \end{bmatrix} \end{aligned} \]
\[ \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix} \]
u <- c(1,2,3,4,5,6)
v <- c(1,1,1,-1,-1,-1)
A <- matrix(u,2,byrow=TRUE)
B <- matrix(v,2,byrow=TRUE)
A+B
[,1] [,2] [,3]
[1,] 2 3 4
[2,] 3 4 5
\[ \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \end{bmatrix} = ~~ ? \]
u <- c(1,2,3,4,5,6)
v <- c(1,1,1,-1,-1,-1)
A <- matrix(u,3,byrow=TRUE)
B <- matrix(v,3,byrow=TRUE)
A + B
\[ \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 4 & 3 \\ 4 & 5 \end{bmatrix} \]
u <- c(1,2,3,4,5,6)
v <- c(1,1,1,-1,-1,-1)
A <- matrix(u,3,byrow=TRUE)
B <- matrix(v,3,byrow=TRUE)
A + B
[,1] [,2]
[1,] 2 3
[2,] 4 3
[3,] 4 5
\[ \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} + 7 = \mathrm{Error} \]
R result
u <- c(1,2,3,4,5,6)
A <- matrix(u,3)
A + 7
[,1] [,2]
[1,] 8 11
[2,] 9 12
[3,] 10 13
\[ \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \mathrm{Error} \]
R result
u <- c(1,2,3,4,5,6)
A <- matrix(u,3)
v <- c(1,1,1)
A + v = ?
Your Answer Here!
\[ \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \mathrm{Error} \]
R result
u <- c(1,2,3,4,5,6)
A <- matrix(u,3)
v <- c(1,1,1)
A + v
[,1] [,2]
[1,] 2 5
[2,] 3 6
[3,] 4 7
\[ \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \mathrm{Error} \]
R result
u <- c(1,1,1,1,1,1)
A <- matrix(u,3)
v <- c(1,2)
A + v
[,1] [,2]
[1,] 2 3
[2,] 3 2
[3,] 2 3
\[ \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \mathrm{Error} \]
R result
u <- c(1,1,1,1,1,1)
A <- matrix(u,3)
v <- c(0,1)
A + v = ?
Your Answer Here!
\[ \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \mathrm{Error} \]
R result
u <- c(1,1,1,1,1,1)
A <- matrix(u,3)
v <- c(0,1)
A + v
[,1] [,2]
[1,] 1 2
[2,] 2 1
[3,] 1 2
\[ \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \mathrm{Error} \]
R result
u <- c(1,1,1,1,1,1)
A <- matrix(u,3)
v <- c(1,2,3,4)
A + v
[,1] [,2]
[1,] 2 5
[2,] 3 2
[3,] 4 3
\[ \begin{bmatrix} 2 & -1 \\ 3 & 0 \\ 1 & 4 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix} = \mathrm{Error} \]
R result
u <- c(2,-1,3,0,1,4)
A <- matrix(u,3)
v <- c(1,1,2, 2)
A + v = ?
Your Answer Here!
\[ \begin{bmatrix} 2 & -1 \\ 3 & 0 \\ 1 & 4 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix} = \mathrm{Error} \]
R result
u <- c(2,-1,3,0,1,4)
A <- matrix(u,3)
v <- c(1,1,2, 2)
A + v
[,1] [,2]
[1,] 3 2
[2,] 0 2
[3,] 5 5
\[ A \mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \mathbf{b} \]