Libraries

library(kableExtra)
library(tidyverse)
library(ggplot2)
library(dplyr)
library(TSstudio)
library(RColorBrewer)
library(GGally)
library(grid)
library(gridExtra)
library(mlbench)
library(psych)
library(cowplot)
library(corrplot)
library(caret)
library(geoR)
library(reshape)
library(naniar)
library(mice)
library(DMwR)
#library(missForest)

Applied Predictive Modeling

Exercise 3.1

The UC Irvine Machine Learning Repository6 contains a data set related to glass identification. The data consist of 214 glass samples labeled as one of seven class categories. There are nine predictors, including the refractive index and percentages of eight elements: Na, Mg, Al, Si, K, Ca, Ba, and Fe.

Data Description:

A data frame with 214 observation containing examples of the chemical analysis of 7 different types of glass. This data set can be leveraged to forecast the type of class on basis of the chemical analysis. The study of classification of types of glass was motivated by criminological investigation. At the scene of the crime, the glass left can be used as evidence (if it is correctly identified!).

Data Format: A data frame with 214 observations on 10 variables:

data(Glass)
str(Glass)
## 'data.frame':    214 obs. of  10 variables:
##  $ RI  : num  1.52 1.52 1.52 1.52 1.52 ...
##  $ Na  : num  13.6 13.9 13.5 13.2 13.3 ...
##  $ Mg  : num  4.49 3.6 3.55 3.69 3.62 3.61 3.6 3.61 3.58 3.6 ...
##  $ Al  : num  1.1 1.36 1.54 1.29 1.24 1.62 1.14 1.05 1.37 1.36 ...
##  $ Si  : num  71.8 72.7 73 72.6 73.1 ...
##  $ K   : num  0.06 0.48 0.39 0.57 0.55 0.64 0.58 0.57 0.56 0.57 ...
##  $ Ca  : num  8.75 7.83 7.78 8.22 8.07 8.07 8.17 8.24 8.3 8.4 ...
##  $ Ba  : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Fe  : num  0 0 0 0 0 0.26 0 0 0 0.11 ...
##  $ Type: Factor w/ 6 levels "1","2","3","5",..: 1 1 1 1 1 1 1 1 1 1 ...

**Preview of the Data:**

Glass %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
## Warning: namespace 'highr' is not available and has been replaced
## by .GlobalEnv when processing object '<unknown>'
RI Na Mg Al Si K Ca Ba Fe Type
1.52101 13.64 4.49 1.10 71.78 0.06 8.75 0.00 0.00 1
1.51761 13.89 3.60 1.36 72.73 0.48 7.83 0.00 0.00 1
1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0.00 0.00 1
1.51766 13.21 3.69 1.29 72.61 0.57 8.22 0.00 0.00 1
1.51742 13.27 3.62 1.24 73.08 0.55 8.07 0.00 0.00 1
1.51596 12.79 3.61 1.62 72.97 0.64 8.07 0.00 0.26 1
1.51743 13.30 3.60 1.14 73.09 0.58 8.17 0.00 0.00 1
1.51756 13.15 3.61 1.05 73.24 0.57 8.24 0.00 0.00 1
1.51918 14.04 3.58 1.37 72.08 0.56 8.30 0.00 0.00 1
1.51755 13.00 3.60 1.36 72.99 0.57 8.40 0.00 0.11 1
1.51571 12.72 3.46 1.56 73.20 0.67 8.09 0.00 0.24 1
1.51763 12.80 3.66 1.27 73.01 0.60 8.56 0.00 0.00 1
1.51589 12.88 3.43 1.40 73.28 0.69 8.05 0.00 0.24 1
1.51748 12.86 3.56 1.27 73.21 0.54 8.38 0.00 0.17 1
1.51763 12.61 3.59 1.31 73.29 0.58 8.50 0.00 0.00 1
1.51761 12.81 3.54 1.23 73.24 0.58 8.39 0.00 0.00 1
1.51784 12.68 3.67 1.16 73.11 0.61 8.70 0.00 0.00 1
1.52196 14.36 3.85 0.89 71.36 0.15 9.15 0.00 0.00 1
1.51911 13.90 3.73 1.18 72.12 0.06 8.89 0.00 0.00 1
1.51735 13.02 3.54 1.69 72.73 0.54 8.44 0.00 0.07 1
1.51750 12.82 3.55 1.49 72.75 0.54 8.52 0.00 0.19 1
1.51966 14.77 3.75 0.29 72.02 0.03 9.00 0.00 0.00 1
1.51736 12.78 3.62 1.29 72.79 0.59 8.70 0.00 0.00 1
1.51751 12.81 3.57 1.35 73.02 0.62 8.59 0.00 0.00 1
1.51720 13.38 3.50 1.15 72.85 0.50 8.43 0.00 0.00 1
1.51764 12.98 3.54 1.21 73.00 0.65 8.53 0.00 0.00 1
1.51793 13.21 3.48 1.41 72.64 0.59 8.43 0.00 0.00 1
1.51721 12.87 3.48 1.33 73.04 0.56 8.43 0.00 0.00 1
1.51768 12.56 3.52 1.43 73.15 0.57 8.54 0.00 0.00 1
1.51784 13.08 3.49 1.28 72.86 0.60 8.49 0.00 0.00 1
1.51768 12.65 3.56 1.30 73.08 0.61 8.69 0.00 0.14 1
1.51747 12.84 3.50 1.14 73.27 0.56 8.55 0.00 0.00 1
1.51775 12.85 3.48 1.23 72.97 0.61 8.56 0.09 0.22 1
1.51753 12.57 3.47 1.38 73.39 0.60 8.55 0.00 0.06 1
1.51783 12.69 3.54 1.34 72.95 0.57 8.75 0.00 0.00 1
1.51567 13.29 3.45 1.21 72.74 0.56 8.57 0.00 0.00 1
1.51909 13.89 3.53 1.32 71.81 0.51 8.78 0.11 0.00 1
1.51797 12.74 3.48 1.35 72.96 0.64 8.68 0.00 0.00 1
1.52213 14.21 3.82 0.47 71.77 0.11 9.57 0.00 0.00 1
1.52213 14.21 3.82 0.47 71.77 0.11 9.57 0.00 0.00 1
1.51793 12.79 3.50 1.12 73.03 0.64 8.77 0.00 0.00 1
1.51755 12.71 3.42 1.20 73.20 0.59 8.64 0.00 0.00 1
1.51779 13.21 3.39 1.33 72.76 0.59 8.59 0.00 0.00 1
1.52210 13.73 3.84 0.72 71.76 0.17 9.74 0.00 0.00 1
1.51786 12.73 3.43 1.19 72.95 0.62 8.76 0.00 0.30 1
1.51900 13.49 3.48 1.35 71.95 0.55 9.00 0.00 0.00 1
1.51869 13.19 3.37 1.18 72.72 0.57 8.83 0.00 0.16 1
1.52667 13.99 3.70 0.71 71.57 0.02 9.82 0.00 0.10 1
1.52223 13.21 3.77 0.79 71.99 0.13 10.02 0.00 0.00 1
1.51898 13.58 3.35 1.23 72.08 0.59 8.91 0.00 0.00 1
1.52320 13.72 3.72 0.51 71.75 0.09 10.06 0.00 0.16 1
1.51926 13.20 3.33 1.28 72.36 0.60 9.14 0.00 0.11 1
1.51808 13.43 2.87 1.19 72.84 0.55 9.03 0.00 0.00 1
1.51837 13.14 2.84 1.28 72.85 0.55 9.07 0.00 0.00 1
1.51778 13.21 2.81 1.29 72.98 0.51 9.02 0.00 0.09 1
1.51769 12.45 2.71 1.29 73.70 0.56 9.06 0.00 0.24 1
1.51215 12.99 3.47 1.12 72.98 0.62 8.35 0.00 0.31 1
1.51824 12.87 3.48 1.29 72.95 0.60 8.43 0.00 0.00 1
1.51754 13.48 3.74 1.17 72.99 0.59 8.03 0.00 0.00 1
1.51754 13.39 3.66 1.19 72.79 0.57 8.27 0.00 0.11 1
1.51905 13.60 3.62 1.11 72.64 0.14 8.76 0.00 0.00 1
1.51977 13.81 3.58 1.32 71.72 0.12 8.67 0.69 0.00 1
1.52172 13.51 3.86 0.88 71.79 0.23 9.54 0.00 0.11 1
1.52227 14.17 3.81 0.78 71.35 0.00 9.69 0.00 0.00 1
1.52172 13.48 3.74 0.90 72.01 0.18 9.61 0.00 0.07 1
1.52099 13.69 3.59 1.12 71.96 0.09 9.40 0.00 0.00 1
1.52152 13.05 3.65 0.87 72.22 0.19 9.85 0.00 0.17 1
1.52152 13.05 3.65 0.87 72.32 0.19 9.85 0.00 0.17 1
1.52152 13.12 3.58 0.90 72.20 0.23 9.82 0.00 0.16 1
1.52300 13.31 3.58 0.82 71.99 0.12 10.17 0.00 0.03 1
1.51574 14.86 3.67 1.74 71.87 0.16 7.36 0.00 0.12 2
1.51848 13.64 3.87 1.27 71.96 0.54 8.32 0.00 0.32 2
1.51593 13.09 3.59 1.52 73.10 0.67 7.83 0.00 0.00 2
1.51631 13.34 3.57 1.57 72.87 0.61 7.89 0.00 0.00 2
1.51596 13.02 3.56 1.54 73.11 0.72 7.90 0.00 0.00 2
1.51590 13.02 3.58 1.51 73.12 0.69 7.96 0.00 0.00 2
1.51645 13.44 3.61 1.54 72.39 0.66 8.03 0.00 0.00 2
1.51627 13.00 3.58 1.54 72.83 0.61 8.04 0.00 0.00 2
1.51613 13.92 3.52 1.25 72.88 0.37 7.94 0.00 0.14 2
1.51590 12.82 3.52 1.90 72.86 0.69 7.97 0.00 0.00 2
1.51592 12.86 3.52 2.12 72.66 0.69 7.97 0.00 0.00 2
1.51593 13.25 3.45 1.43 73.17 0.61 7.86 0.00 0.00 2
1.51646 13.41 3.55 1.25 72.81 0.68 8.10 0.00 0.00 2
1.51594 13.09 3.52 1.55 72.87 0.68 8.05 0.00 0.09 2
1.51409 14.25 3.09 2.08 72.28 1.10 7.08 0.00 0.00 2
1.51625 13.36 3.58 1.49 72.72 0.45 8.21 0.00 0.00 2
1.51569 13.24 3.49 1.47 73.25 0.38 8.03 0.00 0.00 2
1.51645 13.40 3.49 1.52 72.65 0.67 8.08 0.00 0.10 2
1.51618 13.01 3.50 1.48 72.89 0.60 8.12 0.00 0.00 2
1.51640 12.55 3.48 1.87 73.23 0.63 8.08 0.00 0.09 2
1.51841 12.93 3.74 1.11 72.28 0.64 8.96 0.00 0.22 2
1.51605 12.90 3.44 1.45 73.06 0.44 8.27 0.00 0.00 2
1.51588 13.12 3.41 1.58 73.26 0.07 8.39 0.00 0.19 2
1.51590 13.24 3.34 1.47 73.10 0.39 8.22 0.00 0.00 2
1.51629 12.71 3.33 1.49 73.28 0.67 8.24 0.00 0.00 2
1.51860 13.36 3.43 1.43 72.26 0.51 8.60 0.00 0.00 2
1.51841 13.02 3.62 1.06 72.34 0.64 9.13 0.00 0.15 2
1.51743 12.20 3.25 1.16 73.55 0.62 8.90 0.00 0.24 2
1.51689 12.67 2.88 1.71 73.21 0.73 8.54 0.00 0.00 2
1.51811 12.96 2.96 1.43 72.92 0.60 8.79 0.14 0.00 2
1.51655 12.75 2.85 1.44 73.27 0.57 8.79 0.11 0.22 2
1.51730 12.35 2.72 1.63 72.87 0.70 9.23 0.00 0.00 2
1.51820 12.62 2.76 0.83 73.81 0.35 9.42 0.00 0.20 2
1.52725 13.80 3.15 0.66 70.57 0.08 11.64 0.00 0.00 2
1.52410 13.83 2.90 1.17 71.15 0.08 10.79 0.00 0.00 2
1.52475 11.45 0.00 1.88 72.19 0.81 13.24 0.00 0.34 2
1.53125 10.73 0.00 2.10 69.81 0.58 13.30 3.15 0.28 2
1.53393 12.30 0.00 1.00 70.16 0.12 16.19 0.00 0.24 2
1.52222 14.43 0.00 1.00 72.67 0.10 11.52 0.00 0.08 2
1.51818 13.72 0.00 0.56 74.45 0.00 10.99 0.00 0.00 2
1.52664 11.23 0.00 0.77 73.21 0.00 14.68 0.00 0.00 2
1.52739 11.02 0.00 0.75 73.08 0.00 14.96 0.00 0.00 2
1.52777 12.64 0.00 0.67 72.02 0.06 14.40 0.00 0.00 2
1.51892 13.46 3.83 1.26 72.55 0.57 8.21 0.00 0.14 2
1.51847 13.10 3.97 1.19 72.44 0.60 8.43 0.00 0.00 2
1.51846 13.41 3.89 1.33 72.38 0.51 8.28 0.00 0.00 2
1.51829 13.24 3.90 1.41 72.33 0.55 8.31 0.00 0.10 2
1.51708 13.72 3.68 1.81 72.06 0.64 7.88 0.00 0.00 2
1.51673 13.30 3.64 1.53 72.53 0.65 8.03 0.00 0.29 2
1.51652 13.56 3.57 1.47 72.45 0.64 7.96 0.00 0.00 2
1.51844 13.25 3.76 1.32 72.40 0.58 8.42 0.00 0.00 2
1.51663 12.93 3.54 1.62 72.96 0.64 8.03 0.00 0.21 2
1.51687 13.23 3.54 1.48 72.84 0.56 8.10 0.00 0.00 2
1.51707 13.48 3.48 1.71 72.52 0.62 7.99 0.00 0.00 2
1.52177 13.20 3.68 1.15 72.75 0.54 8.52 0.00 0.00 2
1.51872 12.93 3.66 1.56 72.51 0.58 8.55 0.00 0.12 2
1.51667 12.94 3.61 1.26 72.75 0.56 8.60 0.00 0.00 2
1.52081 13.78 2.28 1.43 71.99 0.49 9.85 0.00 0.17 2
1.52068 13.55 2.09 1.67 72.18 0.53 9.57 0.27 0.17 2
1.52020 13.98 1.35 1.63 71.76 0.39 10.56 0.00 0.18 2
1.52177 13.75 1.01 1.36 72.19 0.33 11.14 0.00 0.00 2
1.52614 13.70 0.00 1.36 71.24 0.19 13.44 0.00 0.10 2
1.51813 13.43 3.98 1.18 72.49 0.58 8.15 0.00 0.00 2
1.51800 13.71 3.93 1.54 71.81 0.54 8.21 0.00 0.15 2
1.51811 13.33 3.85 1.25 72.78 0.52 8.12 0.00 0.00 2
1.51789 13.19 3.90 1.30 72.33 0.55 8.44 0.00 0.28 2
1.51806 13.00 3.80 1.08 73.07 0.56 8.38 0.00 0.12 2
1.51711 12.89 3.62 1.57 72.96 0.61 8.11 0.00 0.00 2
1.51674 12.79 3.52 1.54 73.36 0.66 7.90 0.00 0.00 2
1.51674 12.87 3.56 1.64 73.14 0.65 7.99 0.00 0.00 2
1.51690 13.33 3.54 1.61 72.54 0.68 8.11 0.00 0.00 2
1.51851 13.20 3.63 1.07 72.83 0.57 8.41 0.09 0.17 2
1.51662 12.85 3.51 1.44 73.01 0.68 8.23 0.06 0.25 2
1.51709 13.00 3.47 1.79 72.72 0.66 8.18 0.00 0.00 2
1.51660 12.99 3.18 1.23 72.97 0.58 8.81 0.00 0.24 2
1.51839 12.85 3.67 1.24 72.57 0.62 8.68 0.00 0.35 2
1.51769 13.65 3.66 1.11 72.77 0.11 8.60 0.00 0.00 3
1.51610 13.33 3.53 1.34 72.67 0.56 8.33 0.00 0.00 3
1.51670 13.24 3.57 1.38 72.70 0.56 8.44 0.00 0.10 3
1.51643 12.16 3.52 1.35 72.89 0.57 8.53 0.00 0.00 3
1.51665 13.14 3.45 1.76 72.48 0.60 8.38 0.00 0.17 3
1.52127 14.32 3.90 0.83 71.50 0.00 9.49 0.00 0.00 3
1.51779 13.64 3.65 0.65 73.00 0.06 8.93 0.00 0.00 3
1.51610 13.42 3.40 1.22 72.69 0.59 8.32 0.00 0.00 3
1.51694 12.86 3.58 1.31 72.61 0.61 8.79 0.00 0.00 3
1.51646 13.04 3.40 1.26 73.01 0.52 8.58 0.00 0.00 3
1.51655 13.41 3.39 1.28 72.64 0.52 8.65 0.00 0.00 3
1.52121 14.03 3.76 0.58 71.79 0.11 9.65 0.00 0.00 3
1.51776 13.53 3.41 1.52 72.04 0.58 8.79 0.00 0.00 3
1.51796 13.50 3.36 1.63 71.94 0.57 8.81 0.00 0.09 3
1.51832 13.33 3.34 1.54 72.14 0.56 8.99 0.00 0.00 3
1.51934 13.64 3.54 0.75 72.65 0.16 8.89 0.15 0.24 3
1.52211 14.19 3.78 0.91 71.36 0.23 9.14 0.00 0.37 3
1.51514 14.01 2.68 3.50 69.89 1.68 5.87 2.20 0.00 5
1.51915 12.73 1.85 1.86 72.69 0.60 10.09 0.00 0.00 5
1.52171 11.56 1.88 1.56 72.86 0.47 11.41 0.00 0.00 5
1.52151 11.03 1.71 1.56 73.44 0.58 11.62 0.00 0.00 5
1.51969 12.64 0.00 1.65 73.75 0.38 11.53 0.00 0.00 5
1.51666 12.86 0.00 1.83 73.88 0.97 10.17 0.00 0.00 5
1.51994 13.27 0.00 1.76 73.03 0.47 11.32 0.00 0.00 5
1.52369 13.44 0.00 1.58 72.22 0.32 12.24 0.00 0.00 5
1.51316 13.02 0.00 3.04 70.48 6.21 6.96 0.00 0.00 5
1.51321 13.00 0.00 3.02 70.70 6.21 6.93 0.00 0.00 5
1.52043 13.38 0.00 1.40 72.25 0.33 12.50 0.00 0.00 5
1.52058 12.85 1.61 2.17 72.18 0.76 9.70 0.24 0.51 5
1.52119 12.97 0.33 1.51 73.39 0.13 11.27 0.00 0.28 5
1.51905 14.00 2.39 1.56 72.37 0.00 9.57 0.00 0.00 6
1.51937 13.79 2.41 1.19 72.76 0.00 9.77 0.00 0.00 6
1.51829 14.46 2.24 1.62 72.38 0.00 9.26 0.00 0.00 6
1.51852 14.09 2.19 1.66 72.67 0.00 9.32 0.00 0.00 6
1.51299 14.40 1.74 1.54 74.55 0.00 7.59 0.00 0.00 6
1.51888 14.99 0.78 1.74 72.50 0.00 9.95 0.00 0.00 6
1.51916 14.15 0.00 2.09 72.74 0.00 10.88 0.00 0.00 6
1.51969 14.56 0.00 0.56 73.48 0.00 11.22 0.00 0.00 6
1.51115 17.38 0.00 0.34 75.41 0.00 6.65 0.00 0.00 6
1.51131 13.69 3.20 1.81 72.81 1.76 5.43 1.19 0.00 7
1.51838 14.32 3.26 2.22 71.25 1.46 5.79 1.63 0.00 7
1.52315 13.44 3.34 1.23 72.38 0.60 8.83 0.00 0.00 7
1.52247 14.86 2.20 2.06 70.26 0.76 9.76 0.00 0.00 7
1.52365 15.79 1.83 1.31 70.43 0.31 8.61 1.68 0.00 7
1.51613 13.88 1.78 1.79 73.10 0.00 8.67 0.76 0.00 7
1.51602 14.85 0.00 2.38 73.28 0.00 8.76 0.64 0.09 7
1.51623 14.20 0.00 2.79 73.46 0.04 9.04 0.40 0.09 7
1.51719 14.75 0.00 2.00 73.02 0.00 8.53 1.59 0.08 7
1.51683 14.56 0.00 1.98 73.29 0.00 8.52 1.57 0.07 7
1.51545 14.14 0.00 2.68 73.39 0.08 9.07 0.61 0.05 7
1.51556 13.87 0.00 2.54 73.23 0.14 9.41 0.81 0.01 7
1.51727 14.70 0.00 2.34 73.28 0.00 8.95 0.66 0.00 7
1.51531 14.38 0.00 2.66 73.10 0.04 9.08 0.64 0.00 7
1.51609 15.01 0.00 2.51 73.05 0.05 8.83 0.53 0.00 7
1.51508 15.15 0.00 2.25 73.50 0.00 8.34 0.63 0.00 7
1.51653 11.95 0.00 1.19 75.18 2.70 8.93 0.00 0.00 7
1.51514 14.85 0.00 2.42 73.72 0.00 8.39 0.56 0.00 7
1.51658 14.80 0.00 1.99 73.11 0.00 8.28 1.71 0.00 7
1.51617 14.95 0.00 2.27 73.30 0.00 8.71 0.67 0.00 7
1.51732 14.95 0.00 1.80 72.99 0.00 8.61 1.55 0.00 7
1.51645 14.94 0.00 1.87 73.11 0.00 8.67 1.38 0.00 7
1.51831 14.39 0.00 1.82 72.86 1.41 6.47 2.88 0.00 7
1.51640 14.37 0.00 2.74 72.85 0.00 9.45 0.54 0.00 7
1.51623 14.14 0.00 2.88 72.61 0.08 9.18 1.06 0.00 7
1.51685 14.92 0.00 1.99 73.06 0.00 8.40 1.59 0.00 7
1.52065 14.36 0.00 2.02 73.42 0.00 8.44 1.64 0.00 7
1.51651 14.38 0.00 1.94 73.61 0.00 8.48 1.57 0.00 7
1.51711 14.23 0.00 2.08 73.36 0.00 8.62 1.67 0.00 7
  1. Using visualizations, explore the predictor variables to understand their distributions as well as the relationships between predictors.

Descriptive Summary Statistics of the Predictors:

# Excluding the classifier target variable from the Glass data frame to focus on predictors only

GlassPredsDF <- Glass[,-10]

stat_desc <- function(df){
df %>% 
    describe() %>%
    kbl() %>%
    kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
    scroll_box(width="100%",height="350px")
}

stat_desc(GlassPredsDF)
vars n mean sd median trimmed mad min max range skew kurtosis se
RI 1 214 1.5183654 0.0030369 1.51768 1.5180119 0.0018755 1.51115 1.53393 0.02278 1.6027151 4.7167266 0.0002076
Na 2 214 13.4078505 0.8166036 13.30000 13.3768023 0.6449310 10.73000 17.38000 6.65000 0.4478343 2.8979666 0.0558219
Mg 3 214 2.6845327 1.4424078 3.48000 2.8655233 0.3039330 0.00000 4.49000 4.49000 -1.1364523 -0.4526762 0.0986010
Al 4 214 1.4449065 0.4992696 1.36000 1.4122093 0.3113460 0.29000 3.50000 3.21000 0.8946104 1.9383534 0.0341294
Si 5 214 72.6509346 0.7745458 72.79000 72.7073256 0.5708010 69.81000 75.41000 5.60000 -0.7202392 2.8163627 0.0529469
K 6 214 0.4970561 0.6521918 0.55500 0.4318023 0.1704990 0.00000 6.21000 6.21000 6.4600889 52.8665268 0.0445829
Ca 7 214 8.9569626 1.4231535 8.60000 8.7421512 0.6597570 5.43000 16.19000 10.76000 2.0184463 6.4104000 0.0972848
Ba 8 214 0.1750467 0.4972193 0.00000 0.0337791 0.0000000 0.00000 3.15000 3.15000 3.3686800 12.0801412 0.0339892
Fe 9 214 0.0570093 0.0974387 0.00000 0.0358140 0.0000000 0.00000 0.51000 0.51000 1.7298107 2.5203615 0.0066608

I have use the describe() method of the psych package to review all the baseline statistical metrics for the predictors. From the table above, it can be noted that chemicals like Fe, Ba and K has near zero mean values and there is notable skewness in data for many of the predictors.

Descriptive Statistical Plots

Box Plot:

gb1 <- ggplot(data = GlassPredsDF, aes(y = RI)) + geom_boxplot()
gb2 <- ggplot(data = GlassPredsDF, aes(y = Na)) + geom_boxplot()
gb3 <- ggplot(data = GlassPredsDF, aes(y = Mg)) + geom_boxplot()
gb4 <- ggplot(data = GlassPredsDF, aes(y = Al)) + geom_boxplot()
gb5 <- ggplot(data = GlassPredsDF, aes(y = Si)) + geom_boxplot()
gb6 <- ggplot(data = GlassPredsDF, aes(y = K)) + geom_boxplot()
gb7 <- ggplot(data = GlassPredsDF, aes(y = Ca)) + geom_boxplot()
gb8 <- ggplot(data = GlassPredsDF, aes(y = Ba)) + geom_boxplot()
gb9 <- ggplot(data = GlassPredsDF, aes(y = Fe)) + geom_boxplot()

title <- ggdraw() +
  draw_label(
    "Box Plots of Glass Predictors",
    fontface = 'bold',
    x = 0,
    hjust = 0
  ) +  theme(
    # add margin on the left of the drawing canvas,
    # so title is aligned with left edge of first plot
    plot.margin = margin(0, 0, 0, 7)
  )

plot_row <- plot_grid(gb1, gb2, gb3, gb4, gb5, gb6, gb7, gb8, gb9, labels = colnames(GlassPredsDF), label_size = 12)

plot_grid(
  title, plot_row,
  ncol = 1,
  # rel_heights values control vertical title margins
  rel_heights = c(0.1, 1)
)

Density Plots

GlassPredsDF %>% 
  gather(variable, value) %>%
  ggplot(., aes(value)) + 
  geom_density(fill = "dodgerblue4", color="dodgerblue4") + 
  facet_wrap(~variable, scales ="free", ncol = 4) +
  labs(x = element_blank(), y = element_blank())

Correlation Plot

corrMatrix <- round(cor(GlassPredsDF),4)

corrMatrix %>% corrplot(., method = "color", outline = T, addgrid.col = "darkgray", order="hclust", addrect = 4, rect.col = "black", rect.lwd = 5,cl.pos = "b", tl.col = "indianred4", tl.cex = 1.0, cl.cex = 1.0, addCoef.col = "white", number.digits = 2, number.cex = 0.8, col = colorRampPalette(c("darkred","white","dodgerblue4"))(100))

Pairwise Plot

pairs.panels(GlassPredsDF, 
             method = "pearson", # correlation method
             hist.col = "dodgerblue4",
             density = TRUE,  # show density plots
             ellipses = TRUE # show correlation ellipses
             )

From the above plot, it can be observed that Refractive Index (RI) and % of Calcium content (Ca) has a high correlation score of 0.81.

  1. Do there appear to be any outliers in the data? Are any predictors skewed?

Observations:

  • From the Box plot of predictors, it can be observed that apart from % of Mg content, all other predictors have quite a few outliers in the data.
  • For majority of the records,% content of Barium (Ba) are recorded as zeros. It's hard to say whether these are misssing values or truly recorded to be absent in most of the observations. So due to ~0 mean, records with Ba content > 0 are appearing as outliers.
  • Similar to Barium (Ba), Iron (Fe) and Potassium (K) % have similar pattern.
  • From the density plot of the predictors, it can be observed that majority of the predictors have some degree of skewness -
  • Ba, Ca, Fe, K and RI have right skewness
  • Mg and Si have little bit of left skewness
  1. Are there any relevant transformations of one or more predictors that might improve the classification model?
trans <- preProcess(GlassPredsDF, method = c("BoxCox", "center", "scale"))

trans
## Created from 214 samples and 9 variables
## 
## Pre-processing:
##   - Box-Cox transformation (5)
##   - centered (9)
##   - ignored (0)
##   - scaled (9)
## 
## Lambda estimates for Box-Cox transformation:
## -2, -0.1, 0.5, 2, -1.1

Transformation Deterination for Predictors:

Below is an analysis of each predictor and applicable transformations. Wher applicable (values >0), I have used the boxcoxfit() function from geoR package teh determine the value of lambda.

RI:

boxcoxfit(GlassPredsDF$RI)
## Fitted parameters:
##        lambda          beta       sigmasq 
## -4.999944e+00  1.752172e-01  5.999846e-08 
## 
## Convergence code returned by optim: 0

The suggested value of lambda for RI is -5.

GlassPredsDF$RI_Trans <- (GlassPredsDF$RI^(-5) - 1)/(-5)

plot1 <-ggplot(GlassPredsDF, aes(x=RI)) + geom_histogram(alpha=0.5) + ggtitle("RI Original")
plot2 <-ggplot(GlassPredsDF, aes(x=RI_Trans)) + geom_histogram(alpha=0.5) + ggtitle("RI Transformed")

grid.arrange(plot1,plot2, ncol=2) 

Al:

boxcoxfit(GlassPredsDF$Al)
## Fitted parameters:
##    lambda      beta   sigmasq 
## 0.4872856 0.3667122 0.1687402 
## 
## Convergence code returned by optim: 0

The suggested value of lambda for Al is 0.4872856. I am going to make a square root transformation for Al

GlassPredsDF$Al_Trans <- (GlassPredsDF$Al^(0.5) - 1)/(0.5)

plot1 <-ggplot(GlassPredsDF, aes(x=Al)) + geom_histogram(alpha=0.5) + ggtitle("Al Original")
plot2 <-ggplot(GlassPredsDF, aes(x=Al_Trans)) + geom_histogram(alpha=0.5) + ggtitle("Al Transformed")

grid.arrange(plot1,plot2, ncol=2) 

Fe:

Considering the highly left skewed data, I am going to do a natural log transformation.

GlassPredsDF$Fe_Trans <- log(GlassPredsDF$Fe) 

plot1 <-ggplot(GlassPredsDF, aes(x=Fe)) + geom_histogram(alpha=0.5) + ggtitle("Fe Original")
plot2 <-ggplot(GlassPredsDF, aes(x=Fe_Trans)) + geom_histogram(alpha=0.5) + ggtitle("Fe Transformed")

grid.arrange(plot1,plot2, ncol=2) 
## Warning: Removed 144 rows containing non-finite values (stat_bin).

Ba:

Considering the highly left skewed data, I am going to do a natural log transformation.

GlassPredsDF$Ba_Trans <- log(GlassPredsDF$Ba) 

plot1 <-ggplot(GlassPredsDF, aes(x=Ba)) + geom_histogram(alpha=0.5) + ggtitle("Ba Original")
plot2 <-ggplot(GlassPredsDF, aes(x=Ba_Trans)) + geom_histogram(alpha=0.5) + ggtitle("Ba Transformed")

grid.arrange(plot1,plot2, ncol=2) 
## Warning: Removed 176 rows containing non-finite values (stat_bin).

K:

Considering the highly left skewed data, I am going to do a natural log transformation.

GlassPredsDF$K_Trans <- log(GlassPredsDF$K) 

plot1 <-ggplot(GlassPredsDF, aes(x=K)) + geom_histogram(alpha=0.5) + ggtitle("K Original")
plot2 <-ggplot(GlassPredsDF, aes(x=K_Trans)) + geom_histogram(alpha=0.5) + ggtitle("K Transformed")

grid.arrange(plot1,plot2, ncol=2) 
## Warning: Removed 30 rows containing non-finite values (stat_bin).

Exercise 3.2

The soybean data can also be found at the UC Irvine Machine Learning Repository. Data were collected to predict disease in 683 soybeans. The 35 predictors are mostly categorical and include information on the environmental conditions (e.g., temperature, precipitation) and plant conditions (e.g., left spots, mold growth). The outcome labels consist of 19 distinct classes.

Data Description:

There are 19 classes, only the first 15 of which have been used in prior work. The folklore seems to be that the last four classes are unjustified by the data since they have so few examples. There are 35 categorical attributes, some nominal and some ordered. The value "dna" means does not apply. The values for attributes are encoded numerically, with the first value encoded as "0," the second as "1," and so forth.

Data Format:

A data frame with 683 observations on 36 variables. There are 35 categorical attributes, all numerical and a nominal denoting the class:

data(Soybean)
str(Soybean)
## 'data.frame':    683 obs. of  36 variables:
##  $ Class          : Factor w/ 19 levels "2-4-d-injury",..: 11 11 11 11 11 11 11 11 11 11 ...
##  $ date           : Factor w/ 7 levels "0","1","2","3",..: 7 5 4 4 7 6 6 5 7 5 ...
##  $ plant.stand    : Ord.factor w/ 2 levels "0"<"1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ precip         : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
##  $ temp           : Ord.factor w/ 3 levels "0"<"1"<"2": 2 2 2 2 2 2 2 2 2 2 ...
##  $ hail           : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
##  $ crop.hist      : Factor w/ 4 levels "0","1","2","3": 2 3 2 2 3 4 3 2 4 3 ...
##  $ area.dam       : Factor w/ 4 levels "0","1","2","3": 2 1 1 1 1 1 1 1 1 1 ...
##  $ sever          : Factor w/ 3 levels "0","1","2": 2 3 3 3 2 2 2 2 2 3 ...
##  $ seed.tmt       : Factor w/ 3 levels "0","1","2": 1 2 2 1 1 1 2 1 2 1 ...
##  $ germ           : Ord.factor w/ 3 levels "0"<"1"<"2": 1 2 3 2 3 2 1 3 2 3 ...
##  $ plant.growth   : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ leaves         : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ leaf.halo      : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ leaf.marg      : Factor w/ 3 levels "0","1","2": 3 3 3 3 3 3 3 3 3 3 ...
##  $ leaf.size      : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
##  $ leaf.shread    : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ leaf.malf      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ leaf.mild      : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ stem           : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ lodging        : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 2 1 1 1 ...
##  $ stem.cankers   : Factor w/ 4 levels "0","1","2","3": 4 4 4 4 4 4 4 4 4 4 ...
##  $ canker.lesion  : Factor w/ 4 levels "0","1","2","3": 2 2 1 1 2 1 2 2 2 2 ...
##  $ fruiting.bodies: Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ ext.decay      : Factor w/ 3 levels "0","1","2": 2 2 2 2 2 2 2 2 2 2 ...
##  $ mycelium       : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ int.discolor   : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ sclerotia      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ fruit.pods     : Factor w/ 4 levels "0","1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ fruit.spots    : Factor w/ 4 levels "0","1","2","4": 4 4 4 4 4 4 4 4 4 4 ...
##  $ seed           : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ mold.growth    : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ seed.discolor  : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ seed.size      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ shriveling     : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ roots          : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...

**Preview of the Data:**

Soybean %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
Class date plant.stand precip temp hail crop.hist area.dam sever seed.tmt germ plant.growth leaves leaf.halo leaf.marg leaf.size leaf.shread leaf.malf leaf.mild stem lodging stem.cankers canker.lesion fruiting.bodies ext.decay mycelium int.discolor sclerotia fruit.pods fruit.spots seed mold.growth seed.discolor seed.size shriveling roots
diaporthe-stem-canker 6 0 2 1 0 1 1 1 0 0 1 1 0 2 2 0 0 0 1 1 3 1 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 4 0 2 1 0 2 0 2 1 1 1 1 0 2 2 0 0 0 1 0 3 1 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 3 0 2 1 0 1 0 2 1 2 1 1 0 2 2 0 0 0 1 0 3 0 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 3 0 2 1 0 1 0 2 0 1 1 1 0 2 2 0 0 0 1 0 3 0 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 6 0 2 1 0 2 0 1 0 2 1 1 0 2 2 0 0 0 1 0 3 1 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 5 0 2 1 0 3 0 1 0 1 1 1 0 2 2 0 0 0 1 0 3 0 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 5 0 2 1 0 2 0 1 1 0 1 1 0 2 2 0 0 0 1 1 3 1 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 4 0 2 1 1 1 0 1 0 2 1 1 0 2 2 0 0 0 1 0 3 1 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 6 0 2 1 0 3 0 1 1 1 1 1 0 2 2 0 0 0 1 0 3 1 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 4 0 2 1 0 2 0 2 0 2 1 1 0 2 2 0 0 0 1 0 3 1 1 1 0 0 0 0 4 0 0 0 0 0 0
charcoal-rot 6 0 0 2 0 1 3 1 1 0 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 4 0 0 1 1 1 3 1 1 1 1 1 0 2 2 0 0 0 1 1 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 3 0 0 1 0 1 2 1 0 0 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 6 0 0 1 1 3 3 1 1 0 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 6 0 0 2 0 1 3 1 1 1 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 5 0 0 2 1 3 3 1 1 2 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 6 0 0 2 1 0 2 1 0 0 1 1 0 2 2 0 0 0 1 1 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 4 0 0 1 0 2 2 1 0 1 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 3 0 0 2 0 2 2 1 0 2 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 5 0 0 2 1 2 2 1 0 2 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
rhizoctonia-root-rot 1 1 2 0 0 2 1 2 0 2 1 0 0 2 2 0 0 0 1 0 1 1 0 1 1 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 1 1 2 0 0 1 1 2 0 1 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 3 0 2 0 1 3 1 2 0 1 1 0 0 2 2 0 0 0 1 1 1 1 0 1 1 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 0 1 2 0 0 0 1 1 1 2 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 0 1 2 0 0 1 1 2 1 2 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 1 1 2 0 0 3 1 2 0 2 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 1 1 2 0 0 0 1 1 0 1 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 2 1 2 0 0 2 1 1 0 1 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 1 1 2 0 0 1 1 2 0 2 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 2 1 2 0 0 1 1 2 0 2 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 0 1 2 1 1 1 1 1 0 0 1 1 0 2 2 0 0 0 1 0 1 2 0 1 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 1 1 2 1 NA 3 1 NA NA NA 1 1 0 2 2 0 0 0 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 2 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 0 0 2 1 2 1 1 1 1 0 2 2 0 0 0 1 0 2 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 2 1 2 2 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 2 1 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 0 1 1 1 0 1 1 1 0 0 1 1 0 2 2 0 0 0 1 0 1 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 3 1 2 0 0 2 1 2 1 1 1 1 0 2 2 0 0 0 1 0 2 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 2 1 1 1 NA 0 1 NA NA NA 1 1 0 2 2 0 0 0 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 0 0 1 1 2 0 1 1 1 0 2 2 0 0 0 1 0 1 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 2 1 2 1 NA 1 1 NA NA NA 1 1 0 2 2 0 0 0 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 1 NA 1 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 1 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 0 1 2 1 0 3 1 1 0 0 1 1 0 2 2 0 0 0 1 0 1 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 0 1 1 1 1 2 1 2 1 0 1 1 0 2 2 0 0 0 1 1 2 2 0 1 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 3 1 2 0 0 1 1 2 1 0 1 1 0 2 2 0 0 0 1 0 2 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 2 1 2 2 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 0 1 2 1 0 2 1 1 0 1 1 1 0 2 2 0 0 0 1 0 1 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 2 1 1 2 NA 2 1 NA NA NA 1 1 0 2 2 0 0 0 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 1 1 1 1 2 0 2 1 1 0 2 2 0 0 0 1 0 1 2 0 1 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 0 1 2 1 0 3 1 1 0 2 1 1 0 2 2 0 0 0 1 0 1 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 1 1 2 1 0 0 1 2 1 1 1 1 0 2 2 0 0 0 1 0 2 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 1 1 2 1 NA 0 1 NA NA NA 1 1 0 2 2 0 0 0 1 NA 1 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 2 1 NA 1 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 1 NA 1 1 NA NA NA 1 1 0 2 2 0 0 0 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 2 2 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 1 1 3 1 2 0 1 1 1 0 2 2 0 0 0 1 1 1 2 0 1 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 3 1 1 1 NA 3 1 NA NA NA 1 1 0 2 2 0 0 0 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 2 NA 1 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 2 NA 2 1 NA NA NA 1 1 0 2 2 0 0 0 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 2 NA 1 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 1 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 2 NA 3 1 NA NA NA 1 1 0 2 2 0 0 0 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 1 NA 0 1 NA NA NA 1 1 0 2 2 0 0 0 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 0 0 1 1 2 0 0 1 1 0 2 2 0 0 0 1 0 1 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 3 1 1 1 NA 1 1 NA NA NA 1 1 0 2 2 0 0 0 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 2 NA 1 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 1 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 0 0 0 1 2 1 0 1 1 0 2 2 0 0 0 1 0 2 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 3 1 2 1 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 2 1 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 0 0 2 1 2 1 2 1 1 0 2 2 0 0 0 1 0 2 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 3 1 2 2 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
brown-stem-rot 4 0 0 1 0 1 3 1 1 2 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 4 0 0 1 0 1 3 1 1 2 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 3 1 0 0 0 3 0 1 1 2 1 0 0 2 2 0 0 0 1 0 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 5 0 0 2 0 1 3 1 1 2 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 5 0 0 2 0 2 3 1 1 1 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 4 0 0 1 0 3 2 1 0 1 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 5 0 0 1 1 3 3 1 0 2 1 1 2 0 1 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 6 0 1 1 1 2 0 1 1 0 1 0 0 2 1 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 5 1 0 0 0 3 2 1 0 0 1 1 0 2 2 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 5 1 0 1 0 1 3 1 1 0 1 1 2 0 1 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 4 0 1 0 1 2 3 1 1 2 1 0 0 2 2 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 4 1 0 0 0 3 2 1 1 1 1 1 2 0 1 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 4 0 0 1 0 2 0 1 1 0 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 3 1 0 0 0 2 0 2 0 1 1 1 2 0 1 0 0 0 1 0 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 5 0 0 1 0 3 2 1 0 1 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 4 0 0 1 0 3 3 1 1 0 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 4 0 0 1 0 3 2 1 0 2 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 4 0 0 1 0 1 2 1 1 2 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 4 0 0 1 0 1 2 1 0 0 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 3 0 0 1 0 3 2 1 0 0 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
powdery-mildew 5 0 0 1 1 3 3 1 0 1 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 6 0 1 0 1 0 0 0 1 2 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 1 1 0 1 0 3 3 1 2 0 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 6 1 1 0 0 2 2 0 1 2 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 4 1 1 0 0 2 2 0 2 0 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 6 0 0 1 1 1 1 1 0 2 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 2 1 1 0 0 2 2 0 0 1 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 6 1 0 1 0 1 1 1 1 2 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 5 1 0 1 0 1 1 1 0 1 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 1 1 0 1 0 1 1 1 2 0 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
downy-mildew 6 0 2 0 1 2 1 0 1 2 0 1 2 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 2 0 2 1 1 1 1 1 1 2 0 1 2 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 1 0 2 1 1 3 2 1 0 1 0 1 1 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 4 1 2 2 0 2 2 1 0 1 0 1 1 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 1 0 2 0 1 0 0 1 0 1 0 1 1 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 2 1 2 0 0 3 0 1 0 1 0 1 1 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 2 1 2 1 0 2 0 1 0 1 0 1 2 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 4 1 2 2 0 2 1 0 1 2 0 1 1 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 4 1 2 0 0 1 2 1 0 1 0 1 2 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 5 1 2 1 0 3 2 1 0 1 0 1 1 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
brown-spot 1 1 2 2 1 3 3 1 0 2 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 2 3 1 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 2 3 1 1 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 1 0 1 2 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 1 2 2 1 3 3 1 1 1 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 1 2 1 0 2 3 1 0 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 0 1 2 2 1 3 3 1 2 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 2 3 1 0 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 2 1 0 2 3 1 1 1 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 1 2 1 0 3 3 1 0 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 5 0 2 1 0 2 2 1 0 1 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 1 2 1 0 3 3 1 1 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 2 1 0 3 3 1 2 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 4 0 2 1 0 1 3 1 0 0 0 1 2 0 1 1 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 2 1 0 2 3 1 0 1 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 4 1 2 1 0 3 3 1 0 2 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 3 3 1 0 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 0 1 1 1 1 2 2 0 2 1 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 1 1 1 1 2 0 0 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 1 2 1 0 1 0 1 2 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 2 1 0 1 3 1 0 0 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 3 3 1 1 1 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 0 2 1 0 2 3 2 2 1 0 1 2 0 1 0 0 0 1 0 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 1 2 2 1 3 1 1 1 0 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 2 1 0 2 3 1 2 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 1 2 1 0 2 3 1 0 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 5 0 2 1 0 1 3 1 0 0 0 1 2 0 1 1 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 4 1 1 1 1 2 2 0 0 2 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 1 0 0 0 0 0 0
brown-spot 3 1 2 1 0 1 3 1 0 2 0 1 2 0 1 1 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 2 1 0 3 3 1 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 4 0 2 1 0 2 3 2 1 1 0 1 2 0 1 0 0 0 1 0 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 1 2 1 0 2 3 1 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 1 1 1 1 0 0 1 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 1 2 1 0 3 1 1 0 2 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 0 2 1 0 3 3 2 2 0 0 1 2 0 1 0 0 0 1 0 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 2 2 1 0 1 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 0 2 1 0 3 1 1 0 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 1 2 1 0 3 1 1 0 2 0 1 2 0 1 1 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 1 2 1 0 3 3 2 2 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 5 1 2 1 0 3 3 2 0 2 0 1 2 0 1 0 0 0 1 0 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 5 0 2 1 1 3 3 1 1 0 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 4 0 2 2 1 2 3 1 1 1 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 2 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 3 0 1 1 0 1 2 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 3 0 1 1 0 3 2 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 3 0 2 1 1 2 1 1 1 0 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 3 0 1 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 4 0 2 1 1 0 3 1 1 1 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 2 0 1 1 0 3 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 4 1 2 2 1 2 1 1 1 2 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-pustule 2 1 1 2 0 2 2 0 0 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
bacterial-pustule 3 0 2 0 1 2 3 1 1 1 1 1 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
bacterial-pustule 2 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-pustule 4 1 2 1 0 3 0 1 0 2 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
bacterial-pustule 3 0 2 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1
bacterial-pustule 3 1 1 0 0 2 0 0 0 2 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
bacterial-pustule 3 0 1 1 1 2 3 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
bacterial-pustule 3 1 2 1 0 0 2 1 0 2 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
bacterial-pustule 4 0 1 1 1 1 3 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
bacterial-pustule 5 1 1 1 0 2 0 0 1 2 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
purple-seed-stain 6 0 2 0 1 2 2 0 0 0 0 0 0 2 2 0 0 0 1 1 0 3 0 0 0 0 0 1 1 1 0 1 0 0 0
purple-seed-stain 6 0 2 0 0 2 2 0 1 1 0 1 2 0 0 0 0 0 1 0 0 3 0 0 0 0 0 1 1 1 0 1 0 0 0
purple-seed-stain 4 0 2 1 1 1 1 0 1 2 0 0 0 2 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 1 0 0 0
purple-seed-stain 4 0 2 1 1 0 0 0 0 1 0 1 2 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 1 0 1 0 0 0
purple-seed-stain 4 0 2 0 0 0 0 0 0 2 0 1 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 1 0 0 0
purple-seed-stain 6 0 2 2 0 2 2 0 0 1 0 1 2 0 0 0 0 0 1 0 0 3 0 0 0 0 0 1 1 1 0 1 0 0 0
purple-seed-stain 3 0 2 0 1 0 0 0 0 1 0 0 0 2 2 0 0 0 0 1 0 3 0 0 0 0 0 0 0 1 0 1 0 0 0
purple-seed-stain 3 0 2 1 1 3 3 0 1 1 0 0 0 2 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 1 0 0 0
purple-seed-stain 5 0 2 1 0 1 1 0 0 0 0 1 2 0 0 0 0 0 1 0 0 3 0 0 0 0 0 1 1 1 0 1 0 0 0
purple-seed-stain 4 0 2 1 0 0 0 0 1 1 0 0 0 2 2 0 0 0 1 0 0 3 0 0 0 0 0 0 0 1 0 1 0 0 0
anthracnose 5 1 2 1 0 3 3 1 1 0 0 0 0 2 2 0 0 0 1 0 3 2 0 0 0 0 0 1 2 0 0 0 0 0 0
anthracnose 5 1 2 2 1 2 2 0 1 2 0 1 0 2 2 0 0 0 1 0 3 1 1 1 0 0 0 1 2 1 1 1 0 1 0
anthracnose 6 0 2 1 0 1 1 1 1 1 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 2 1 2 2 1 0 0 1 0 0 1 1 0 2 2 0 0 0 1 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0
anthracnose 3 0 2 1 0 3 3 1 0 0 1 1 0 2 2 0 0 0 1 0 3 2 1 1 0 0 0 1 2 1 1 1 0 0 0
anthracnose 4 1 2 2 1 2 2 1 0 1 1 1 0 2 2 0 0 0 1 0 3 1 1 1 0 0 0 1 2 0 0 0 0 0 0
anthracnose 6 0 2 1 0 2 2 1 0 1 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 1 0 2 1 0 1 1 1 1 1 1 1 0 2 2 0 0 0 1 0 2 2 0 1 0 0 0 0 0 1 0 1 0 0 0
anthracnose 6 1 2 1 0 2 2 1 1 1 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 5 0 2 1 0 1 1 1 2 2 1 1 0 2 2 0 0 0 1 0 3 2 1 1 0 0 0 1 2 1 1 1 0 0 0
anthracnose 5 1 2 2 1 3 3 0 1 2 1 1 0 2 2 0 0 0 1 1 3 2 1 1 0 0 0 1 2 0 0 0 0 0 0
anthracnose 0 0 2 1 0 3 3 1 1 2 1 1 0 2 2 0 0 0 1 0 2 2 0 1 0 0 0 0 0 1 1 0 1 0 0
anthracnose 6 0 2 1 0 2 2 0 0 0 1 1 0 2 2 0 0 0 1 0 3 1 1 1 0 0 0 1 2 1 0 1 1 1 0
anthracnose 5 1 2 1 0 1 1 1 0 1 0 0 0 2 2 0 0 0 1 0 3 2 0 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 5 0 2 1 0 2 2 1 0 2 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 0 0 0 0 0 0
anthracnose 6 1 2 2 1 0 0 1 0 1 0 1 0 2 2 0 0 0 1 0 3 1 1 1 0 0 0 1 2 0 0 0 0 0 0
anthracnose 5 0 2 1 0 1 1 1 0 0 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 6 1 2 2 1 3 3 0 2 1 0 1 0 2 2 0 0 0 1 1 3 2 1 1 0 0 0 1 2 0 0 0 0 0 0
anthracnose 5 1 2 1 0 3 3 1 0 1 0 0 0 2 2 0 0 0 1 0 3 2 0 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 5 1 2 1 0 2 2 1 1 1 0 0 0 2 2 0 0 0 1 0 3 2 0 0 0 0 0 1 2 1 1 0 1 1 0
phyllosticta-leaf-spot 3 1 1 1 0 0 2 0 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 3 0 0 1 1 0 2 0 0 1 0 1 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 3 1 1 1 0 0 0 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 3 0 0 1 1 2 0 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 3 1 1 2 0 3 2 0 1 1 0 1 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 2 0 0 1 1 0 3 0 2 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 1 0 0 2 1 3 2 1 1 1 0 1 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 2 1 1 1 0 2 2 1 1 1 0 1 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 2 0 0 2 1 3 0 1 1 0 1 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 2 1 1 2 0 3 3 0 2 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 1 2 1 0 1 1 1 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 0 1 1 0 3 3 1 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 3 0 2 1 0 0 0 1 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 2 0 3 3 0 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 1 1 1 2 2 0 2 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
alternarialeaf-spot 5 0 2 2 0 3 3 1 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 1 1 0 3 3 0 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 2 2 0 3 1 0 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 2 0 3 3 0 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 2 0 3 2 1 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 2 3 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 1 2 1 0 3 0 1 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 1 0 1 1 0 1 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 2 2 1 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 2 1 0 0 0 0 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 0 2 1 0 2 2 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 0 2 1 0 1 1 1 1 1 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 1 0 2 1 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 2 0 3 2 0 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 1 2 2 0 1 1 0 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 2 2 0 3 1 1 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 2 2 0 3 3 1 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 1 2 1 0 2 1 0 0 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 1 1 2 0 2 2 0 2 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
alternarialeaf-spot 4 1 2 1 0 1 2 1 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 1 2 2 0 2 1 0 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 1 2 1 0 0 3 0 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 0 2 2 0 3 3 1 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 2 3 1 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 3 0 2 1 0 0 0 1 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 1 0 1 2 0 1 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 1 1 0 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 0 2 2 0 1 1 1 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 2 1 0 3 3 0 1 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 1 0 2 1 0 0 1 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 1 0 0 3 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 1 0 0 3 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 2 2 0 2 1 1 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 1 0 3 0 0 1 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 1 0 1 2 0 1 1 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 6 0 1 2 0 3 3 0 0 0 0 1 2 0 1 0 0 0 1 0 3 2 1 1 0 0 0 1 2 1 0 0 0 0 0
frog-eye-leaf-spot 4 0 1 2 0 1 1 0 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 1 1 0 2 1 0 0 0 0 1 2 0 1 0 0 0 1 0 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 5 1 2 1 0 3 2 0 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 6 1 2 2 0 3 3 0 1 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 1 1 0 3 3 1 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 3 0 2 1 0 2 3 0 1 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 2 0 2 2 0 0 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 1 0 1 1 1 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 2 0 2 3 0 1 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 1 0 0 1 0 1 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 2 3 0 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 2 0 1 1 1 1 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 2 1 1 1 1 0 1 2 0 1 0 0 0 1 0 3 1 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 3 1 2 1 0 3 2 1 0 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 1 0 3 0 1 0 1 0 1 2 0 1 0 0 0 1 0 3 1 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 2 0 1 1 0 1 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 2 0 1 2 1 0 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 2 0 2 1 0 1 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 1 0 3 0 1 0 0 0 1 2 0 1 0 0 0 1 0 3 1 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 3 0 2 1 0 1 2 1 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 6 0 1 2 0 3 3 0 1 0 0 1 2 0 1 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 0 1 1 1 0
frog-eye-leaf-spot 5 0 1 1 0 1 3 1 2 0 0 1 2 0 1 0 0 0 1 0 3 0 1 0 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 1 0 3 2 1 0 0 0 1 2 0 1 0 0 0 1 0 3 1 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 1 2 1 0 3 3 0 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 3 1 2 1 0 3 0 1 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 6 1 2 2 0 3 1 0 1 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 1 2 1 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 2 0 1 0 1 0 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 6 1 2 2 0 3 0 0 0 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 1 2 2 0 3 3 0 1 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 0 1 1 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 2 3 1 1 1 0 1 2 0 1 0 0 0 1 0 3 1 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 1 1 2 0 1 1 0 2 2 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 2 0 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 5 1 2 1 0 1 2 1 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 2 0 1 3 1 1 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 1 0 1 2 0 0 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 2 0 2 0 0 0 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 1 2 1 0 2 3 0 1 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
diaporthe-pod-&-stem-blight 5 0 2 2 NA 3 3 NA NA 0 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 0 1 1 1 1 NA
diaporthe-pod-&-stem-blight 6 0 2 2 NA 2 3 NA NA 1 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 1 1 1 1 1 NA
diaporthe-pod-&-stem-blight 5 0 2 2 NA 3 3 NA NA 0 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 1 1 1 1 1 NA
diaporthe-pod-&-stem-blight 1 1 1 2 NA 3 0 NA NA 2 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 0 1 1 1 1 NA
diaporthe-pod-&-stem-blight 5 NA 2 2 NA 2 3 NA NA NA 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 1 1 1 1 1 NA
diaporthe-pod-&-stem-blight 5 0 2 2 NA 2 3 NA NA 0 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 1 1 1 1 1 NA
cyst-nematode 2 NA NA NA NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
cyst-nematode 3 NA NA NA NA 3 2 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
cyst-nematode 4 NA NA NA NA 3 2 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
cyst-nematode 3 NA NA NA NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
cyst-nematode 3 NA NA NA NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
cyst-nematode 4 NA NA NA NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
2-4-d-injury NA NA NA NA NA NA NA NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
herbicide-injury 1 1 NA 0 NA 1 0 NA NA NA 1 1 2 1 1 0 1 NA 1 NA NA NA NA NA NA NA NA 3 NA NA NA NA NA NA 1
herbicide-injury 0 1 NA 0 NA 0 3 NA NA NA 1 1 0 2 2 0 1 NA 1 NA NA NA NA NA NA NA NA 3 NA NA NA NA NA NA 1
herbicide-injury 1 1 NA 0 NA 0 0 NA NA NA 1 1 0 2 2 0 1 NA 1 NA NA NA NA NA NA NA NA 3 NA NA NA NA NA NA 1
herbicide-injury 1 1 NA 0 NA 1 3 NA NA NA 1 1 2 1 1 0 1 NA 1 NA NA NA NA NA NA NA NA 3 NA NA NA NA NA NA 1
diaporthe-stem-canker 6 0 2 1 0 1 0 1 0 2 1 1 0 2 2 0 0 0 1 0 3 1 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 3 0 2 1 0 2 0 2 1 1 1 1 0 2 2 0 0 0 1 0 3 0 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 4 0 2 1 0 3 0 2 0 2 1 1 0 2 2 0 0 0 1 0 3 1 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 5 0 2 1 0 1 0 1 0 1 1 1 0 2 2 0 0 0 1 0 3 0 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 3 0 2 1 0 3 0 1 0 1 1 1 0 2 2 0 0 0 1 0 3 0 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 5 0 2 1 0 2 0 1 1 0 1 1 0 2 2 0 0 0 1 0 3 0 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 5 0 2 1 0 3 1 1 1 2 1 1 0 2 2 0 0 0 1 1 3 0 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 3 0 2 1 0 2 1 1 0 1 1 1 0 2 2 0 0 0 1 1 3 0 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 4 0 2 1 0 3 0 1 1 2 1 1 0 2 2 0 0 0 1 1 3 0 1 1 0 0 0 0 4 0 0 0 0 0 0
diaporthe-stem-canker 6 0 2 1 0 3 0 1 1 1 1 1 0 2 2 0 0 0 1 1 3 1 1 1 0 0 0 0 4 0 0 0 0 0 0
charcoal-rot 4 0 0 1 0 2 3 1 1 1 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 5 0 0 2 0 3 2 1 0 2 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 4 0 0 2 0 3 3 1 1 1 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 5 0 0 2 0 0 2 1 0 2 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 5 0 0 2 1 2 2 1 0 2 1 1 0 2 2 0 0 0 1 1 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 3 0 0 2 1 0 2 1 0 1 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 4 0 0 2 1 1 3 1 1 2 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 5 0 0 2 1 2 2 1 0 0 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 6 0 0 2 1 3 3 1 1 1 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
charcoal-rot 6 0 0 2 1 3 3 1 1 0 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 4 0 0 0 0 0 0
rhizoctonia-root-rot 0 1 2 0 0 0 1 1 0 1 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 1
rhizoctonia-root-rot 0 1 2 0 0 3 1 2 0 2 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 0 1 2 0 0 2 1 1 1 1 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 2 1 2 0 0 0 1 1 0 1 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 1 1 2 0 0 2 1 1 0 1 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 2 1 2 0 0 3 1 2 0 1 1 0 0 2 2 0 0 0 1 0 1 1 0 1 0 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 2 1 2 0 0 2 1 1 0 2 1 0 0 2 2 0 0 0 1 0 1 1 0 1 1 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 4 0 2 0 1 0 1 2 0 2 1 1 0 2 2 0 0 0 1 1 1 1 0 1 1 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 0 1 2 0 0 1 1 1 1 1 1 0 0 2 2 0 0 0 1 0 1 1 0 1 1 0 0 3 4 0 0 0 0 0 0
rhizoctonia-root-rot 2 1 2 0 0 3 1 2 0 2 1 0 0 2 2 0 0 0 1 0 1 1 0 1 1 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 2 1 1 0 0 3 1 2 0 2 1 1 0 2 2 0 0 0 1 0 1 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 1 1 2 0 0 3 1 1 1 2 1 1 0 2 2 0 0 0 1 0 2 2 0 0 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 2 1 2 1 1 3 1 2 1 2 1 1 0 2 2 0 0 0 1 0 2 2 0 1 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 1 1 2 1 1 2 3 1 1 1 1 1 0 2 2 0 0 0 1 0 2 2 0 1 0 0 0 3 4 0 0 0 0 0 0
phytophthora-rot 3 1 1 1 NA 2 1 NA NA NA 1 1 0 2 2 0 0 0 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 1 NA 3 1 NA NA NA 1 1 0 2 2 0 0 0 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 0 1 2 2 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 1 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 1 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 1 NA 0 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 0 2 NA 2 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 4 1 1 2 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 2 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 1 2 NA 2 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 1 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 1 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 2 2 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 4 1 1 1 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 1 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 1 2 NA 2 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 1 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 2 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 2 NA 1 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 2 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 1 2 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 1 2 NA 2 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 1 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 1 NA 1 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 2 NA 1 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 0 2 NA 2 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 2 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 1 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 4 1 1 1 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 2 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 0 2 NA 2 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 2 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 1 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 4 1 1 1 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 2 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 0 2 NA 2 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 2 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 1 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 2 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 0 2 NA 2 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 1 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 2 1 NA 1 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 2 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 0 2 NA 2 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 2 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 2 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 1 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 4 1 1 1 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 1 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 2 2 NA 2 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 1 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 1 NA 1 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 4 1 1 1 NA 1 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 1 1 2 2 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 2 2 NA 2 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 2 2 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 1 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 2 1 1 1 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 1 NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
phytophthora-rot 3 1 1 1 NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 1 NA 3 2 NA 0 0 0 0 NA NA NA NA NA NA NA 1
brown-stem-rot 3 0 0 0 1 1 0 2 0 0 1 1 2 0 1 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 4 0 1 0 1 2 2 1 1 1 1 0 0 2 2 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 3 0 0 0 1 3 2 2 0 1 1 1 2 0 1 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 5 0 0 1 1 3 0 1 0 0 1 1 2 0 2 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 6 0 0 1 1 2 1 1 1 1 1 1 2 0 1 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 4 0 1 0 1 3 2 2 0 2 1 0 0 2 2 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 5 0 0 2 0 2 3 1 0 2 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 5 0 0 1 0 1 0 1 1 0 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 4 0 0 1 0 3 2 1 0 1 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 5 0 0 1 0 2 3 1 0 2 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 5 0 0 1 0 2 2 1 1 1 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 3 1 1 0 0 2 0 2 0 2 1 0 0 2 2 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 5 1 1 1 0 2 3 2 0 0 1 0 0 2 2 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 4 1 0 0 0 2 2 2 0 1 1 1 2 0 1 0 0 0 1 0 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 5 1 1 0 0 3 3 1 1 2 1 0 0 2 2 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 4 1 1 0 0 3 1 1 1 0 1 0 0 2 2 0 0 0 1 0 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 6 1 1 1 0 3 3 1 1 1 1 0 0 2 2 0 0 0 1 1 0 3 0 0 0 1 0 0 4 0 0 0 0 0 0
brown-stem-rot 3 0 0 1 0 2 2 1 0 1 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 5 0 0 2 0 3 0 1 0 2 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 3 0 0 1 0 2 2 1 1 1 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 4 0 0 1 0 1 3 1 0 0 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 5 0 0 2 0 2 0 1 1 0 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 4 0 0 1 0 1 0 1 0 0 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
brown-stem-rot 5 0 0 2 0 3 2 1 1 1 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
powdery-mildew 1 0 0 0 1 0 0 0 0 0 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 2 0 1 1 1 1 1 1 1 1 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 3 0 2 0 1 2 2 0 0 2 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 4 0 0 1 1 3 3 1 0 0 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 5 0 1 0 1 0 0 0 0 1 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 4 0 1 0 1 2 2 0 1 0 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 3 1 0 1 0 3 3 1 1 2 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 4 1 1 0 0 0 0 0 2 0 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 2 1 1 0 0 0 0 0 0 1 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
powdery-mildew 5 1 0 1 0 3 3 1 0 1 0 1 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
downy-mildew 3 0 2 0 1 2 2 1 0 1 0 1 1 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 4 0 2 1 1 3 3 1 1 2 0 1 2 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 5 0 2 1 1 1 0 1 0 1 0 1 1 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 2 0 2 0 1 0 3 1 1 2 0 1 2 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 3 0 2 1 1 1 0 1 0 1 0 1 2 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 6 1 2 0 0 1 3 0 1 2 0 1 2 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 3 1 2 2 0 3 1 1 1 2 0 1 1 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 5 1 2 1 0 2 3 0 1 2 0 1 1 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 3 1 2 1 0 1 1 0 1 2 0 1 2 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
downy-mildew 5 1 2 0 0 3 3 0 1 2 0 1 2 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
brown-spot 1 1 2 1 0 3 2 1 0 2 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 1 1 1 0 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 0 2 1 0 2 3 1 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 1 2 1 0 3 3 1 0 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 2 2 1 0 1 0 1 2 0 1 1 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 5 0 2 1 0 2 3 2 1 1 0 1 2 0 1 0 0 0 1 0 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 3 3 1 1 1 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 2 1 0 2 3 1 2 1 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 1 1 1 1 2 2 1 1 2 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 1 2 2 1 1 1 0 2 1 0 1 2 0 1 0 0 0 1 0 3 1 0 0 0 0 0 1 2 0 0 0 0 0 0
brown-spot 0 0 1 1 0 0 0 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 2 2 0 1 1 0 1 1 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 1 1 0 2 2 1 2 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 0 2 2 0 3 3 0 0 1 1 1 2 0 1 0 0 0 1 0 3 1 0 0 0 0 0 0 1 0 0 0 0 0 0
brown-spot 4 0 1 1 0 1 0 1 1 2 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 1 2 0 0 0 0 0 0
brown-spot 0 0 2 2 0 2 1 1 2 1 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 1 1 0 3 2 0 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 2 0 1 3 0 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 0 0 1 1 0 2 0 0 2 2 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 1 2 2 1 3 1 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 2 1 0 1 1 1 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 2 2 1 0 1 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 1 2 1 0 3 3 1 0 2 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 4 0 2 1 0 2 1 1 0 0 0 1 2 0 1 1 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 5 0 2 1 0 3 2 1 0 1 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 1 2 1 0 2 3 1 0 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 3 3 1 0 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 0 2 1 0 2 3 1 0 1 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 1 2 1 0 3 3 1 0 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 1 1 1 0 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 0 2 1 0 2 2 1 0 1 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 1 2 1 0 3 3 1 0 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 2 3 1 0 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 0 2 1 0 3 3 1 0 1 0 1 2 0 1 1 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 1 2 1 0 2 1 1 0 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 3 2 1 0 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 0 2 1 0 2 3 1 0 1 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 4 1 2 1 0 3 1 1 0 2 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 5 0 2 1 0 1 2 1 0 0 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 2 1 0 2 3 1 0 1 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 1 2 1 0 3 3 1 0 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 0 2 1 0 2 1 1 0 0 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 4 0 2 1 0 3 3 1 0 1 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 5 1 2 1 0 3 3 1 0 2 0 1 2 0 1 0 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 2 1 0 1 1 1 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 2 2 1 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 1 2 1 0 3 3 1 0 2 0 1 2 0 1 1 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 2 1 0 1 1 1 0 0 0 1 2 0 1 1 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 2 2 1 0 1 0 1 2 0 1 1 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 3 1 2 1 0 3 3 1 0 2 0 1 2 0 1 1 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 1 0 2 1 0 1 3 1 0 0 0 1 2 0 1 1 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
brown-spot 2 0 2 1 0 2 2 1 0 1 0 1 2 0 1 1 0 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 3 0 2 1 1 1 1 1 1 1 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 4 1 1 1 0 2 2 0 0 2 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 2 1 1 1 0 1 0 0 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 4 0 1 2 0 3 2 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 5 1 2 1 1 1 3 1 1 2 1 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 3 0 1 1 0 2 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 4 0 2 1 1 3 1 1 1 1 0 1 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 3 0 2 1 1 1 2 1 1 1 1 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 4 1 1 1 0 2 3 0 0 2 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-blight 5 0 2 1 1 3 0 1 1 1 1 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bacterial-pustule 3 0 1 0 1 3 3 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
bacterial-pustule 1 1 1 1 0 1 0 0 1 2 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
bacterial-pustule 2 0 1 2 1 2 1 0 0 1 0 1 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
bacterial-pustule 3 1 1 1 0 3 2 0 0 2 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
bacterial-pustule 2 0 2 1 1 3 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
bacterial-pustule 2 0 2 1 1 1 3 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
bacterial-pustule 1 0 1 1 1 3 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
bacterial-pustule 2 1 2 2 0 1 2 1 1 2 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
bacterial-pustule 5 0 1 2 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
bacterial-pustule 2 1 2 0 0 1 2 1 0 2 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
purple-seed-stain 5 0 2 2 1 2 2 0 0 1 0 1 2 0 0 0 0 0 0 1 0 3 0 0 0 0 0 1 1 1 0 1 0 0 0
purple-seed-stain 6 0 2 0 1 3 3 0 1 2 0 1 2 0 0 0 0 0 1 0 0 3 0 0 0 0 0 1 1 1 0 1 0 0 0
purple-seed-stain 5 0 2 2 1 1 1 0 1 2 0 1 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1 1 1 0 1 0 0 0
purple-seed-stain 4 0 2 2 1 0 0 0 0 2 0 1 2 0 0 0 0 0 0 1 0 3 0 0 0 0 0 1 1 1 0 1 0 0 0
purple-seed-stain 5 0 2 0 0 1 1 0 0 1 0 1 2 0 0 0 0 0 1 0 0 3 0 0 0 0 0 1 1 1 0 1 0 0 0
purple-seed-stain 6 0 2 1 0 2 2 0 0 2 0 0 0 2 2 0 0 0 1 0 0 3 0 0 0 0 0 1 1 1 0 1 0 0 0
purple-seed-stain 3 0 2 2 0 3 3 0 0 1 0 0 0 2 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 1 0 0 0
purple-seed-stain 3 0 2 0 0 3 3 0 0 2 0 0 0 2 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 1 0 0 0
purple-seed-stain 5 0 2 2 0 1 1 0 1 2 0 0 0 2 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 1 0 0 0
purple-seed-stain 6 0 2 1 0 3 3 0 1 2 0 1 2 0 0 0 0 0 1 0 0 3 0 0 0 0 0 1 1 1 0 1 0 0 0
anthracnose 0 0 2 1 0 0 0 0 0 0 0 1 0 2 2 0 0 0 1 0 2 1 0 1 0 0 0 0 0 1 0 1 1 1 0
anthracnose 2 0 2 1 0 2 2 0 2 2 1 1 0 2 2 0 0 0 1 0 3 1 0 1 0 0 0 0 0 1 0 1 1 1 0
anthracnose 4 0 2 1 0 0 0 0 1 1 0 1 0 2 2 0 0 0 1 0 3 1 1 1 0 0 0 1 2 1 1 0 1 1 0
anthracnose 1 0 2 1 0 0 0 0 2 1 1 1 0 2 2 0 0 0 1 0 2 1 0 1 0 0 0 0 0 1 0 1 0 1 0
anthracnose 4 1 2 2 1 1 1 1 0 0 0 1 0 2 2 0 0 0 1 1 3 2 1 1 0 0 0 1 2 1 1 0 1 0 0
anthracnose 6 0 2 1 0 3 3 1 0 1 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 6 1 2 1 0 1 1 1 1 0 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 6 1 2 1 0 3 3 1 0 0 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 5 1 2 1 0 2 2 1 0 2 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 5 0 2 1 0 3 3 1 1 0 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 4 0 2 1 0 2 2 1 1 2 0 0 0 2 2 0 0 0 1 0 3 2 0 0 0 0 0 1 2 0 0 0 0 0 0
anthracnose 3 1 2 2 1 1 1 0 1 2 1 1 0 2 2 0 0 0 1 1 3 2 1 1 0 0 0 1 2 0 0 0 0 0 0
anthracnose 4 1 2 2 1 1 1 0 1 0 1 1 0 2 2 0 0 0 1 1 3 2 1 1 0 0 0 1 2 0 0 0 0 0 0
anthracnose 5 1 2 2 1 2 2 1 0 1 0 1 0 2 2 0 0 0 1 0 3 1 1 1 0 0 0 1 2 0 0 0 0 0 0
anthracnose 6 1 2 2 1 3 3 0 1 2 0 1 0 2 2 0 0 0 1 0 3 2 1 1 0 0 0 1 2 0 0 0 0 0 0
anthracnose 4 0 2 1 0 1 1 2 0 0 0 0 0 2 2 0 0 0 1 0 3 2 0 0 0 0 0 1 2 0 0 0 0 0 0
anthracnose 5 1 2 1 0 2 2 1 1 1 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 6 0 2 1 0 3 3 1 0 0 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 4 1 2 1 0 1 1 2 1 1 0 0 0 2 2 0 0 0 1 0 3 2 0 0 0 0 0 1 2 0 0 0 0 0 0
anthracnose 5 0 2 1 0 2 2 1 0 0 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 6 1 2 1 0 3 3 1 1 1 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 1 1 0 1 1 0
anthracnose 5 0 2 1 0 3 3 1 0 0 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 0 0 0 0 0 0
anthracnose 5 1 2 1 0 1 1 1 1 1 0 0 0 2 2 0 0 0 1 0 3 2 0 0 0 0 0 1 2 0 0 0 0 0 0
anthracnose 5 0 2 1 0 1 1 1 0 1 0 0 0 2 2 0 0 0 1 0 3 2 1 0 0 0 0 1 2 0 0 0 0 0 0
phyllosticta-leaf-spot 1 0 0 1 1 0 0 1 0 0 0 1 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 3 0 0 1 1 2 3 0 0 2 1 1 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 1 1 1 1 0 2 3 1 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 2 1 1 1 0 2 0 1 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 2 0 0 2 1 1 2 0 1 1 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 2 0 0 2 1 1 3 0 0 2 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 3 1 1 2 0 1 0 0 0 0 1 1 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 4 1 1 2 0 1 2 0 1 1 1 1 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 2 1 1 2 0 3 0 0 1 1 0 1 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
phyllosticta-leaf-spot 4 1 1 2 0 1 3 0 1 1 0 1 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 2 0 2 2 0 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 2 2 1 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 1 2 2 0 2 3 1 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 2 1 0 2 2 0 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 1 0 3 3 0 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 1 0 2 2 0 0 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 1 0 3 3 0 1 1 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 1 0 3 0 0 1 1 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 2 1 1 0 0 1 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
alternarialeaf-spot 5 1 2 1 1 1 1 1 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 0 2 1 1 0 0 1 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
alternarialeaf-spot 6 1 1 2 1 1 1 0 2 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 1 2 1 0 2 2 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
alternarialeaf-spot 6 0 1 1 1 0 0 0 2 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
alternarialeaf-spot 5 0 2 1 1 2 2 1 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
alternarialeaf-spot 6 0 1 2 1 3 3 0 2 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
alternarialeaf-spot 4 1 2 2 0 0 0 0 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
alternarialeaf-spot 5 1 1 2 1 0 0 1 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
alternarialeaf-spot 6 0 2 1 0 1 1 0 2 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 1 2 1 2 2 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
alternarialeaf-spot 4 0 2 1 0 1 0 1 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 2 1 1 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 1 2 2 0 3 2 0 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 1 3 0 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 2 0 1 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 2 2 0 3 1 0 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 2 3 0 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 2 2 0 3 0 1 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 1 1 0 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 0 2 1 0 2 2 1 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 2 2 0 3 3 0 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 2 0 1 0 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 3 0 2 1 0 2 1 1 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 1 2 1 0 3 2 1 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 1 3 1 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 2 0 2 0 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 1 2 1 0 3 1 1 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 4 0 2 1 0 1 2 1 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 2 3 0 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 2 2 0 3 0 0 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 1 1 1 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 2 0 2 2 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 1 2 2 0 3 3 0 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 1 0 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 2 0 2 1 1 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 1 2 2 0 3 2 0 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 2 0 3 3 1 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 3 1 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 1 2 2 0 3 2 1 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 5 0 2 2 0 2 1 1 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alternarialeaf-spot 6 0 2 2 0 2 2 0 1 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 4 1 2 1 0 3 0 1 0 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 2 2 1 0 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 3 0 2 1 0 1 0 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 1 3 1 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 4 1 2 1 0 3 1 1 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 4 1 2 1 0 2 1 0 1 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 1 2 1 0 3 0 1 0 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 1 1 1 3 1 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 6 0 1 1 0 2 3 0 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 1 1 1 0 1 0 0 0 0 1 2 0 1 0 0 0 1 0 3 0 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 3 0 2 1 1 0 0 1 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 1 1 2 2 0 2 0 0 1 2 0 1 0 0 0 1 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 3 1 2 1 1 0 0 1 1 2 1 1 2 0 1 0 0 0 0 1 2 1 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 1 1 2 2 0 0 0 0 1 2 0 1 0 0 0 1 0 3 1 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 2 1 1 0 1 2 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 2 1 3 2 0 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 3 1 2 2 1 2 0 1 0 2 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 4 1 2 2 1 3 0 1 2 2 1 1 2 0 1 0 0 0 0 1 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 3 0 2 2 0 2 2 1 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frog-eye-leaf-spot 3 0 2 1 0 1 0 1 0 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 2 0 2 1 1 1 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 1 2 1 0 3 2 0 0 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 6 0 2 2 0 1 3 0 1 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 2 0 1 0 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 1 2 2 0 3 1 0 1 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 6 0 2 1 0 1 2 0 0 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 2 0 2 3 1 1 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 1 2 1 0 3 0 0 0 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 6 0 2 2 0 1 1 0 1 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 2 2 1 0 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 1 2 2 0 3 3 0 1 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 6 0 2 1 0 1 0 0 0 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 3 0 2 2 0 2 1 1 1 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 1 2 1 0 3 2 1 0 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 2 0 1 3 0 1 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 6 0 2 2 0 2 0 0 0 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 3 1 2 1 0 3 1 1 1 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 1 2 1 0 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 1 0 2 3 0 1 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 6 1 2 2 0 3 0 0 0 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 3 0 2 1 0 1 1 1 1 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 2 2 1 0 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 1 2 2 0 3 3 0 1 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 1 0 1 0 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 2 0 2 1 0 1 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 6 1 2 1 0 3 2 0 0 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 2 0 1 3 1 1 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 1 0 2 0 0 0 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 6 1 2 2 0 3 1 0 1 2 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 4 0 2 1 0 1 2 1 0 0 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
frog-eye-leaf-spot 5 0 2 2 0 2 3 0 1 1 0 1 2 0 1 0 0 0 1 0 3 2 0 1 0 0 0 1 1 0 0 0 0 0 0
diaporthe-pod-&-stem-blight 6 NA 2 2 NA 2 3 NA NA NA 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 1 1 1 1 1 NA
diaporthe-pod-&-stem-blight 6 NA 2 2 NA 1 3 NA NA NA 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 1 1 1 1 1 NA
diaporthe-pod-&-stem-blight 5 NA 2 2 NA 1 3 NA NA NA 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 1 1 1 1 1 NA
diaporthe-pod-&-stem-blight 6 NA 2 2 NA 3 3 NA NA NA 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 1 1 1 1 1 NA
diaporthe-pod-&-stem-blight 6 NA 2 2 NA 0 3 NA NA NA 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 1 1 1 1 1 NA
diaporthe-pod-&-stem-blight 1 1 1 2 NA 0 0 NA NA 2 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 0 1 1 1 1 NA
diaporthe-pod-&-stem-blight 5 0 2 2 NA 1 3 NA NA 0 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 1 1 1 1 1 NA
diaporthe-pod-&-stem-blight 5 0 2 2 NA 3 3 NA NA 0 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 1 1 1 1 1 NA
diaporthe-pod-&-stem-blight 6 0 2 2 NA 3 3 NA NA 1 0 0 NA NA NA NA NA NA 1 NA 0 0 1 0 0 0 0 1 2 1 1 1 1 1 NA
cyst-nematode 2 NA NA NA NA 1 1 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
cyst-nematode 3 NA NA NA NA 2 2 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
cyst-nematode 4 NA NA NA NA 1 1 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
cyst-nematode 2 NA NA NA NA 2 2 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
cyst-nematode 3 NA NA NA NA 2 1 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
cyst-nematode 4 NA NA NA NA 3 2 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
cyst-nematode 4 NA NA NA NA 3 1 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
cyst-nematode 3 NA NA NA NA 3 2 NA NA NA 1 1 NA NA NA NA NA NA 0 NA NA NA NA NA NA NA NA 2 NA 1 0 NA 1 NA 2
2-4-d-injury 5 NA NA NA NA NA 1 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 0 NA NA NA NA NA 0 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 1 NA NA NA NA NA 1 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 2 NA NA NA NA NA 2 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 3 NA NA NA NA NA 3 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 4 NA NA NA NA NA 0 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 6 NA NA NA NA NA 2 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 0 NA NA NA NA NA 3 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 1 NA NA NA NA NA 0 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 2 NA NA NA NA NA 1 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 3 NA NA NA NA NA 2 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 4 NA NA NA NA NA 3 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 5 NA NA NA NA NA 0 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 6 NA NA NA NA NA 1 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2-4-d-injury 0 NA NA NA NA NA 2 NA NA NA NA 1 0 2 2 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
herbicide-injury 0 1 NA 0 NA 0 0 NA NA NA 1 1 0 2 2 0 1 NA 1 NA NA NA NA NA NA NA NA 3 NA NA NA NA NA NA 1
herbicide-injury 2 1 NA 0 NA 0 0 NA NA NA 1 1 0 2 2 0 1 NA 1 NA NA NA NA NA NA NA NA 3 NA NA NA NA NA NA 1
herbicide-injury 0 1 NA 0 NA 1 3 NA NA NA 1 1 2 1 1 0 1 NA 1 NA NA NA NA NA NA NA NA 3 NA NA NA NA NA NA 1
herbicide-injury 2 1 NA 0 NA 1 3 NA NA NA 1 1 2 1 1 0 1 NA 1 NA NA NA NA NA NA NA NA 3 NA NA NA NA NA NA 1
  1. Investigate the frequency distributions for the categorical predictors. Are any of the distributions degenerate in the ways discussed earlier in this chapter?

Frequency Distribution Histogram Plots

Soybean %>% 
  gather(variable, value) %>%
  ggplot(., aes(value)) + 
  geom_histogram(alpha=0.5, stat = "count", color="dodgerblue4", fill = "dodgerblue4") +
  facet_wrap(~variable, scales ="free", ncol = 4) +
  labs(x = element_blank(), y = element_blank()) +
  ggtitle("Frequency Distribution Plot for Class variable + Categorical Predictor")
## Warning: attributes are not identical across measure variables;
## they will be dropped
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Based on the frequency distribution histogram plot above, it appears that there are few categorical predictors demonstrating degenrate distribution. These predictors include -

  • leaf.malf
  • leaf.shread
  • leaves
  • lodging
  • mold.growth
  • mycelium
  • sclerotia

Identifying Near Zero Variance Predictors

The caret package function nearZeroVar() will return the column numbers of any predictors that fulfill the conditions of degenrate distributions -

## Determine a predictor set without highly sparse and unbalanced distributions:
isNZV <- nearZeroVar(Soybean)
colnames(Soybean)[isNZV]
## [1] "leaf.mild" "mycelium"  "sclerotia"

NZV predictors as identified above can be safely removed from the model toward better prediction and model simplification.

  1. Roughly 18% of the data are missing. Are there particular predictors that are more likely to be missing? Is the pattern of missing data related to the classes?

Missing Value Analysis

Below is an analysis of predictors with NA values.

## Counts of missing data per feature
train_na_df <- data.frame(apply(Soybean, 2, function(x) length(which(is.na(x)))))
train_na_df1 <- data.frame(apply(Soybean, 2,function(x) {sum(is.na(x)) / length(x) * 100}))

train_na_df <- cbind(Feature = rownames(train_na_df), train_na_df, train_na_df1)
colnames(train_na_df) <- c('Feature Name','No. of NA Recocrds','Percentage of NA Records')
rownames(train_na_df) <- NULL


train_na_df%>% filter(`No. of NA Recocrds` != 0) %>% arrange(desc(`No. of NA Recocrds`)) %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
Feature Name No. of NA Recocrds Percentage of NA Records
hail 121 17.7159590
sever 121 17.7159590
seed.tmt 121 17.7159590
lodging 121 17.7159590
germ 112 16.3982430
leaf.mild 108 15.8125915
fruiting.bodies 106 15.5197657
fruit.spots 106 15.5197657
seed.discolor 106 15.5197657
shriveling 106 15.5197657
leaf.shread 100 14.6412884
seed 92 13.4699854
mold.growth 92 13.4699854
seed.size 92 13.4699854
leaf.halo 84 12.2986823
leaf.marg 84 12.2986823
leaf.size 84 12.2986823
leaf.malf 84 12.2986823
fruit.pods 84 12.2986823
precip 38 5.5636896
stem.cankers 38 5.5636896
canker.lesion 38 5.5636896
ext.decay 38 5.5636896
mycelium 38 5.5636896
int.discolor 38 5.5636896
sclerotia 38 5.5636896
plant.stand 36 5.2708638
roots 31 4.5387994
temp 30 4.3923865
crop.hist 16 2.3426061
plant.growth 16 2.3426061
stem 16 2.3426061
date 1 0.1464129
area.dam 1 0.1464129

Based on above analysis, it looks like there are certain predictors which are more likely to be missing. Some of these most missing value predictors are - hail, sever, seed.tmt, lodging, germ etc.

gg_miss_fct(x = Soybean, fct = Class) + labs(title = "NA in Soybean Predictors and Disease Class")

From the above plot, there seems to be a pattern of missing data related to classses. For example, out of 19 prediction classes, only 5 classes - 2-4-d-injury, cyst-nematode, herbiside-injury, diaporthe-pod-&-stem-blight & phytopthora-rot seem to have predictors with missing values.

  1. Develop a strategy for handling missing data, either by eliminating predictors or imputation.

In order to optimize the prediction model, we need to re-evaluate the list of predictors that need to be part of the model and also handle the missing values by deploying appropriate imputation techniques.

Removing Near Zero Variance Predictors

It can also be noted that the 3 Near Zero Variance predictors ("leaf.mild", "mycelium" & "sclerotia") identified in the first part of the problem also showed up in the list of missing value predictors. So, as a first step these predictors can be removed from the data set.

SoybeanTrans <- Soybean %>% select(-c("leaf.mild", "mycelium","sclerotia"))

Imputation Strategy:

For imputation of the missing data for the categorical predictors, various methods can be adopted. Below are some of the strategies that can be followed -

  • Ignore observation which can cause loosing out on some of the information present in original data. This method typically works well for large data sets.
  • Replace by most frequent value. This is simplistic approach but may not yield the best possible result.
  • Replace using an algorithm like KNN using the neighbours. The advantage of this approach is that the imputed data are confined to be within the range of the training set values. The disadvantage of this approach is that the entire training set is required every time a missing value needs to be imputed. But in general, nearest neighbor approach is fairly robust to the tuning parameters, as well as the amount of missing data.
  • Leveraging the training data set, predict the observation using a multiclass predictor.

K Nearest Neighbor Technique

I have adopted the KNN approach for imputation for the current categorical data set using the knnImputation() fruntion from DMwR package. I am using k=10 as a tuning parameter.

#data <- prodNA(SoybeanTrans, noNA = 0.2)
SoybeanImputed <- knnImputation(SoybeanTrans, k = 10)

gg_miss_fct(x = SoybeanImputed, fct = Class) + labs(title = "NA in Soybean Imputed Predictors and Disease Class")

From the above plot, we can conform that post imputation, all the missing values have been imputed using KNN.

Also, we need to check the colinearity amongst the predictors to identify if there is additional scope to remove predictors further from the data set.

Correlation Plot

SoybeanImputed <- SoybeanImputed %>% select(-c("Class"))

indx <- sapply(SoybeanImputed, is.factor)
SoybeanImputed[indx] <- lapply(SoybeanImputed[indx], function(x) as.numeric(as.character(x)))

corrMatrix <- round(cor(SoybeanImputed),4)

corrMatrix %>% corrplot(., method = "color", outline = T, addgrid.col = "darkgray", order="hclust", addrect = 4, rect.col = "black", rect.lwd = 5,cl.pos = "b", tl.col = "indianred4", tl.cex = 1.0, cl.cex = 1.0, addCoef.col = "white", number.digits = 2, number.cex = 0.8, col = colorRampPalette(c("darkred","white","dodgerblue4"))(100))

Based on the above Corrplot, further anlysis can be done to identify colinearity amongst predictors and a decision can be made to remove more predictors from the model.