1 Hw exercise 3

1.1 load and see data

## 'data.frame':    100 obs. of  4 variables:
##  $ Height: num  111 116 122 126 130 ...
##  $ Girl  : Factor w/ 20 levels "G1","G10","G11",..: 1 1 1 1 1 12 12 12 12 12 ...
##  $ Age   : int  6 7 8 9 10 6 7 8 9 10 ...
##  $ Mother: Factor w/ 3 levels "M","S","T": 2 2 2 2 2 2 2 2 2 2 ...

1.2 this data structure goes with lattice plot

##   Height Girl Age Mother
## 1  111.0   G1   6      S
## 2  116.4   G1   7      S
## 3  121.7   G1   8      S
## 4  126.3   G1   9      S
## 5  130.5   G1  10      S
## 6  110.0   G2   6      S

1.4 get compute correlations of heights

##           Height       Age
## Height 1.0000000 0.8551367
## Age    0.8551367 1.0000000

1.5 get variance at each occasion

##    Height       Age 
## 90.278448  2.020202

1.6 set plot theme to black-n-white

1.9 regression with unequal variances

1.10 regression with autocorrelation and unequal variances

1.11 model selection with AICc

## Model selection table 
##    (Intrc)   Age correlation  weights REML df   logLik  AICc  delta weight
## m3   82.47 5.558 crAR1(Girl) vrI(Mth)    F  6 -162.798 338.5   0.00      1
## m1   82.47 5.684 crAR1(Girl)             F  4 -172.671 353.8  15.26      0
## m2   82.46 5.549             vrI(Mth)       5 -291.999 594.6 256.14      0
## m0   82.52 5.716                            3 -300.761 607.8 269.27      0
## Abbreviations:
## correlation: crAR1(Girl) = 'corAR1(~1|Girl)'
## weights: vrI(Mth) = 'varIdent(~1|Mother)'
## REML: F = 'FALSE'
## Models ranked by AICc(x)

1.12 summary model output

## [[1]]
## Generalized least squares fit by REML
##   Model: Height ~ Age 
##   Data: girlheight 
##        AIC      BIC    logLik
##   607.5218 615.2767 -300.7609
## 
## Coefficients:
##               Value Std.Error  t-value p-value
## (Intercept) 82.5240  2.843942 29.01747       0
## Age          5.7165  0.350065 16.32982       0
## 
##  Correlation: 
##     (Intr)
## Age -0.985
## 
## Standardized residuals:
##        Min         Q1        Med         Q3        Max 
## -1.8561136 -0.7401528 -0.1695731  0.7974431  2.6347966 
## 
## Residual standard error: 4.950667 
## Degrees of freedom: 100 total; 98 residual
## 
## [[2]]
## Generalized least squares fit by maximum likelihood
##   Model: Height ~ Age 
##   Data: girlheight 
##        AIC      BIC    logLik
##   353.3411 363.7618 -172.6705
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Girl 
##  Parameter estimate(s):
##       Phi 
## 0.9781674 
## 
## Coefficients:
##                Value Std.Error  t-value p-value
## (Intercept) 82.47456 1.3803440 59.74927       0
## Age          5.68379 0.1109941 51.20803       0
## 
##  Correlation: 
##     (Intr)
## Age -0.643
## 
## Standardized residuals:
##        Min         Q1        Med         Q3        Max 
## -1.8432405 -0.7004707 -0.1173561  0.8830952  2.7934077 
## 
## Residual standard error: 4.780948 
## Degrees of freedom: 100 total; 98 residual
## 
## [[3]]
## Generalized least squares fit by REML
##   Model: Height ~ Age 
##   Data: girlheight 
##       AIC      BIC   logLik
##   593.998 606.9228 -291.999
## 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | Mother 
##  Parameter estimates:
##         S         M         T 
## 1.0000000 0.8013775 1.8171062 
## 
## Coefficients:
##                Value Std.Error  t-value p-value
## (Intercept) 82.46268 2.3330969 35.34473       0
## Age          5.54936 0.2871844 19.32334       0
## 
##  Correlation: 
##     (Intr)
## Age -0.985
## 
## Standardized residuals:
##         Min          Q1         Med          Q3         Max 
## -1.88259506 -0.64836209  0.07567592  0.75426807  2.40785034 
## 
## Residual standard error: 3.96064 
## Degrees of freedom: 100 total; 98 residual
## 
## [[4]]
## Generalized least squares fit by maximum likelihood
##   Model: Height ~ Age 
##   Data: girlheight 
##       AIC     BIC    logLik
##   337.597 353.228 -162.7985
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | Girl 
##  Parameter estimate(s):
##       Phi 
## 0.9786546 
## Variance function:
##  Structure: Different standard deviations per stratum
##  Formula: ~1 | Mother 
##  Parameter estimates:
##         S         M         T 
## 1.0000000 0.6922724 1.5493547 
## 
## Coefficients:
##                Value Std.Error  t-value p-value
## (Intercept) 82.47292 1.1305458 72.94965       0
## Age          5.55833 0.0902996 61.55430       0
## 
##  Correlation: 
##     (Intr)
## Age -0.639
## 
## Standardized residuals:
##         Min          Q1         Med          Q3         Max 
## -1.77188602 -0.71727072  0.06483833  0.80091331  2.56095242 
## 
## Residual standard error: 4.264505 
## Degrees of freedom: 100 total; 98 residual