Hw exercise 2
## starting httpd help server ... done
## Subject RT Trial Sex NativeLanguage Correct PrevType PrevCorrect
## 1 A1 6.340359 23 F English correct word correct
## 2 A1 6.308098 27 F English correct nonword correct
## 3 A1 6.349139 29 F English correct nonword correct
## 4 A1 6.186209 30 F English correct word correct
## 5 A1 6.025866 32 F English correct nonword correct
## 6 A1 6.180017 33 F English correct word correct
## Word Frequency FamilySize SynsetCount Length Class FreqSingular
## 1 owl 4.859812 1.3862944 0.6931472 3 animal 54
## 2 mole 4.605170 1.0986123 1.9459101 4 animal 69
## 3 cherry 4.997212 0.6931472 1.6094379 6 plant 83
## 4 pear 4.727388 0.0000000 1.0986123 4 plant 44
## 5 dog 7.667626 3.1354942 2.0794415 3 animal 1233
## 6 blackberry 4.060443 0.6931472 1.3862944 10 plant 26
## FreqPlural DerivEntropy Complex rInfl meanRT SubjFreq meanSize
## 1 74 0.7912 simplex -0.3101549 6.3582 3.12 3.4758
## 2 30 0.6968 simplex 0.8145080 6.4150 2.40 2.9999
## 3 49 0.4754 simplex 0.5187938 6.3426 3.88 1.6278
## 4 68 0.0000 simplex -0.4274440 6.3353 4.52 1.9908
## 5 828 1.2129 simplex 0.3977961 6.2956 6.04 4.6429
## 6 31 0.3492 complex -0.1698990 6.3959 3.28 1.5831
## meanWeight BNCw BNCc BNCd BNCcRatio BNCdRatio
## 1 3.1806 12.057065 0.000000 6.175602 0.000000 0.512198
## 2 2.6112 5.738806 4.062251 2.850278 0.707856 0.496667
## 3 1.2081 5.716520 3.249801 12.588727 0.568493 2.202166
## 4 1.6114 2.050370 1.462410 7.363218 0.713242 3.591166
## 5 4.5167 74.838494 50.859385 241.561040 0.679589 3.227765
## 6 1.1365 1.270338 0.162490 1.187616 0.127911 0.934882
## 'data.frame': 1659 obs. of 28 variables:
## $ Subject : Factor w/ 21 levels "A1","A2","A3",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ RT : num 6.34 6.31 6.35 6.19 6.03 ...
## $ Trial : int 23 27 29 30 32 33 34 38 41 42 ...
## $ Sex : Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...
## $ NativeLanguage: Factor w/ 2 levels "English","Other": 1 1 1 1 1 1 1 1 1 1 ...
## $ Correct : Factor w/ 2 levels "correct","incorrect": 1 1 1 1 1 1 1 1 1 1 ...
## $ PrevType : Factor w/ 2 levels "nonword","word": 2 1 1 2 1 2 2 1 1 2 ...
## $ PrevCorrect : Factor w/ 2 levels "correct","incorrect": 1 1 1 1 1 1 1 1 1 1 ...
## $ Word : Factor w/ 79 levels "almond","ant",..: 55 47 20 58 25 12 71 69 62 1 ...
## $ Frequency : num 4.86 4.61 5 4.73 7.67 ...
## $ FamilySize : num 1.386 1.099 0.693 0 3.135 ...
## $ SynsetCount : num 0.693 1.946 1.609 1.099 2.079 ...
## $ Length : int 3 4 6 4 3 10 10 8 6 6 ...
## $ Class : Factor w/ 2 levels "animal","plant": 1 1 2 2 1 2 2 1 2 2 ...
## $ FreqSingular : int 54 69 83 44 1233 26 50 63 11 24 ...
## $ FreqPlural : int 74 30 49 68 828 31 65 47 9 42 ...
## $ DerivEntropy : num 0.791 0.697 0.475 0 1.213 ...
## $ Complex : Factor w/ 2 levels "complex","simplex": 2 2 2 2 2 1 1 2 2 2 ...
## $ rInfl : num -0.31 0.815 0.519 -0.427 0.398 ...
## $ meanRT : num 6.36 6.42 6.34 6.34 6.3 ...
## $ SubjFreq : num 3.12 2.4 3.88 4.52 6.04 3.28 5.04 2.8 3.12 3.72 ...
## $ meanSize : num 3.48 3 1.63 1.99 4.64 ...
## $ meanWeight : num 3.18 2.61 1.21 1.61 4.52 ...
## $ BNCw : num 12.06 5.74 5.72 2.05 74.84 ...
## $ BNCc : num 0 4.06 3.25 1.46 50.86 ...
## $ BNCd : num 6.18 2.85 12.59 7.36 241.56 ...
## $ BNCcRatio : num 0 0.708 0.568 0.713 0.68 ...
## $ BNCdRatio : num 0.512 0.497 2.202 3.591 3.228 ...
## `geom_smooth()` using formula 'y ~ x'



##
## Call:
## lm(formula = RT ~ Frequency, data = dta)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.55407 -0.16153 -0.03494 0.11699 1.08768
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.588778 0.022296 295.515 <2e-16 ***
## Frequency -0.042872 0.004533 -9.459 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2353 on 1657 degrees of freedom
## Multiple R-squared: 0.05123, Adjusted R-squared: 0.05066
## F-statistic: 89.47 on 1 and 1657 DF, p-value: < 2.2e-16
## Generalized least squares fit by maximum likelihood
## Model: RT ~ Frequency
## Data: dta
## AIC BIC logLik
## -88.57767 -72.33576 47.28883
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 6.588778 0.022295932 295.51482 0
## Frequency -0.042872 0.004532505 -9.45874 0
##
## Correlation:
## (Intr)
## Frequency -0.966
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.3560145 -0.6868771 -0.1485727 0.4974772 4.6250713
##
## Residual standard error: 0.2351709
## Degrees of freedom: 1659 total; 1657 residual
## Generalized least squares fit by maximum likelihood
## Model: RT ~ Frequency
## Data: dta
## AIC BIC logLik
## -514.6024 -492.9465 261.3012
##
## Correlation Structure: ARMA(1,0)
## Formula: ~Trial | Subject
## Parameter estimate(s):
## Phi1
## 0.6376182
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 6.589575 0.018923164 348.2280 0
## Frequency -0.041220 0.003458059 -11.9201 0
##
## Correlation:
## (Intr)
## Frequency -0.87
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.3238200 -0.7053022 -0.1811588 0.4533196 4.4989014
##
## Residual standard error: 0.2408258
## Degrees of freedom: 1659 total; 1657 residual
## Model df AIC BIC logLik Test L.Ratio p-value
## m0a 1 3 -88.5777 -72.3358 47.28883
## m1 2 4 -514.6024 -492.9465 261.30120 1 vs 2 428.0247 <.0001
##
## Durbin-Watson test
##
## data: res0 ~ Frequency
## DW = 0.99757, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is greater than 0
##
## Durbin-Watson test
##
## data: res1 ~ Frequency
## DW = 2.2241, p-value = 1
## alternative hypothesis: true autocorrelation is greater than 0
