options(digits=3, show.signif.stars=FALSE)
設定環境
#install.packages("pacman")
pacman::p_load(alr4, tidyverse)
data(UN11, package="alr4")
set.seed(6102)
隨機取樣
dta <- UN11 %>%
filter(region %in% c("Africa", "Asia", "Europe")) %>%
sample_n(81) %>%
arrange(region)
head(dta)
## region group fertility ppgdp lifeExpF pctUrban
## Ghana Africa africa 3.99 1333 65.8 52
## Seychelles Africa africa 2.34 11451 78.0 56
## Gabon Africa africa 3.19 12469 64.3 86
## Libya Africa africa 2.41 11321 77.9 78
## Benin Africa africa 5.08 741 58.7 42
## Burkina Faso Africa africa 5.75 520 57.0 27
dim(dta)
## [1] 81 6
資料維度:81列,6行
R3 <- table(dta$region)
從三個區域選出81個國家,有32個國家來自非洲,27個國家來自亞洲,有22個國家來自歐洲。
w <- R3/table(UN11$region)
print(w)
##
## Africa Asia Caribbean Europe Latin Amer
## 0.604 0.540 0.000 0.564 0.000
## North America NorthAtlantic Oceania
## 0.000 0.000 0.000
所選出來的81國中,有60.4%來自非洲,54%來自亞洲,56.4%來自歐洲。
dta$wt <- rep(1/w[w != 0], R3[R3 != 0])
將權重變數新增到資料中
summary(m0 <- lm(fertility ~ log(ppgdp), data=dta))
##
## Call:
## lm(formula = fertility ~ log(ppgdp), data = dta)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2686 -0.7716 0.0497 0.6811 2.6292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.313 0.575 14.46 < 2e-16
## log(ppgdp) -0.652 0.068 -9.58 7.2e-15
##
## Residual standard error: 1.07 on 79 degrees of freedom
## Multiple R-squared: 0.537, Adjusted R-squared: 0.532
## F-statistic: 91.8 on 1 and 79 DF, p-value: 7.15e-15
log(ppgdp)平均每人國民所得成長率增加1%,出生率減少0.65%。
summary(m1 <- update(m0, weights=wt))
##
## Call:
## lm(formula = fertility ~ log(ppgdp), data = dta, weights = wt)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -3.031 -1.001 0.063 0.921 3.425
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.210 0.577 14.22 < 2e-16
## log(ppgdp) -0.642 0.068 -9.44 1.3e-14
##
## Residual standard error: 1.42 on 79 degrees of freedom
## Multiple R-squared: 0.53, Adjusted R-squared: 0.524
## F-statistic: 89.1 on 1 and 79 DF, p-value: 1.35e-14
加權回歸結果:平均每人國民所得成長率增加1%,出生率減少0.642%
ggplot(dta,
aes(log(ppgdp), fertility, label=region)) +
stat_smooth(method="lm", formula=y ~ x, se=F, col="peru", lwd=rel(.5)) +
stat_smooth(aes(weight=wt), method="lm", formula=y ~ x, se=F, lwd=rel(.5), col="gray")+
geom_text(check_overlap=TRUE, size=rel(2.3), aes(color=region))+
labs(x="GDP (US$ in log unit)",
y="Number of children per woman") +
theme_minimal() +
theme(legend.position="NONE")