Question 1

x<-c(5,10,15,20,25,30)
y<-c(-1, NA, 3, 5, 8, 75)
z<-c(5)

Question 2

x*z
## [1]  25  50  75 100 125 150
y*z
## [1]  -5  NA  15  25  40 375
xz<-c(25,  50,  75, 100, 125, 150)
yz<-c(-5,  NA,  15,  25,  40, 375)
#print(xz,yz)

Question 3

library(haven)
stata_PSID_w1 <- read_dta("stata_PSID_w1.dta")
View(stata_PSID_w1)
View(stata_PSID_w1)
##select variables into a new data set*
assignment1<-subset(x=stata_PSID_w1,select=c("id","age","marpi","adjwlth2","educ","pubhs", "h_race_ethnic_new", "race5"))

Question 3.1

length(assignment1)
## [1] 8
str(assignment1)
## tibble [131,361 x 8] (S3: tbl_df/tbl/data.frame)
##  $ id               : num [1:131361] 4003 4003 4003 4003 4003 ...
##   ..- attr(*, "format.stata")= chr "%9.0g"
##  $ age              : num [1:131361] 49 51 53 55 57 59 47 49 51 53 ...
##   ..- attr(*, "label")= chr "Age of respondent"
##   ..- attr(*, "format.stata")= chr "%8.0g"
##  $ marpi            : num [1:131361] 1 1 1 1 1 1 0 0 0 0 ...
##   ..- attr(*, "label")= chr "Marital pairs indicator"
##   ..- attr(*, "format.stata")= chr "%8.0g"
##  $ adjwlth2         : num [1:131361] 113 119 116 129 112 ...
##   ..- attr(*, "label")= chr "Wealth (including home equity) in 1000s of yr 2000 "
##   ..- attr(*, "format.stata")= chr "%9.0g"
##  $ educ             : num [1:131361] 9 9 9 9 9 10 12 12 12 12 ...
##   ..- attr(*, "label")= chr "Years completed education"
##   ..- attr(*, "format.stata")= chr "%9.0g"
##  $ pubhs            : num [1:131361] 0 0 0 0 0 0 0 0 0 0 ...
##   ..- attr(*, "label")= chr "1 = lives in public housing"
##   ..- attr(*, "format.stata")= chr "%8.0g"
##  $ h_race_ethnic_new: chr [1:131361] "NL White" "NL White" "NL White" "NL White" ...
##   ..- attr(*, "label")= chr "Race/ethnicity updated codes (5/26/14)"
##   ..- attr(*, "format.stata")= chr "%16s"
##  $ race5            : dbl+lbl [1:131361] 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, ...
##    ..@ label       : chr "Race/ethnicity updated codes (5/26/14)"
##    ..@ format.stata: chr "%16.0g"
##    ..@ labels      : Named num [1:5] 1 2 3 4 5
##    .. ..- attr(*, "names")= chr [1:5] "Latino- Any Race" "NL Asian" "NL Black" "NL Other" ...
names(assignment1)
## [1] "id"                "age"               "marpi"            
## [4] "adjwlth2"          "educ"              "pubhs"            
## [7] "h_race_ethnic_new" "race5"
dim(assignment1)
## [1] 131361      8

Question 3.2

hist(assignment1$race5)

Question 3.3

mean(assignment1$adjwlth2,na.rm = T)
## [1] 187.1656
median(assignment1$adjwlth2,na.rm = T)
## [1] 32.804

Question 3.4

min(assignment1$age)
## [1] 1
max(assignment1$age)
## [1] 999
mean(assignment1$age)
## [1] 32.02676
median(assignment1$age)
## [1] 29
IQR(assignment1$age)
## [1] 33

Question 3.5

summary(assignment1)
##        id               age             marpi           adjwlth2       
##  Min.   :   4003   Min.   :  1.00   Min.   :0.0000   Min.   :-2304.98  
##  1st Qu.:1269033   1st Qu.: 14.00   1st Qu.:0.0000   1st Qu.:    1.91  
##  Median :2464171   Median : 29.00   Median :0.0000   Median :   32.80  
##  Mean   :3014466   Mean   : 32.03   Mean   :0.4178   Mean   :  187.17  
##  3rd Qu.:5381175   3rd Qu.: 47.00   3rd Qu.:1.0000   3rd Qu.:  143.55  
##  Max.   :6872185   Max.   :999.00   Max.   :4.0000   Max.   :80303.23  
##                                     NA's   :28       NA's   :48        
##       educ           pubhs         h_race_ethnic_new      race5      
##  Min.   : 0.00   Min.   :0.00000   Length:131361      Min.   :1.000  
##  1st Qu.:12.00   1st Qu.:0.00000   Class :character   1st Qu.:3.000  
##  Median :12.00   Median :0.00000   Mode  :character   Median :5.000  
##  Mean   :13.04   Mean   :0.05301                      Mean   :3.927  
##  3rd Qu.:15.00   3rd Qu.:0.00000                      3rd Qu.:5.000  
##  Max.   :20.00   Max.   :1.00000                      Max.   :5.000  
##  NA's   :2496    NA's   :34
psid<-data.frame(assignment1)
hist(psid$pubhs)

psid$pubhs<-factor(psid$pubhs,
                   levels=c(1,0),
                   labels=c("Did", "Didnt" ))
prop.table(table(psid$pubhs))
## 
##        Did      Didnt 
## 0.05300509 0.94699491
#hist(psid$pubhs, main="Frequency Distribution of pubhs")
barplot(prop.table(table(psid$pubhs)))

barplot(table(psid$race5))

mean(assignment1$pubhs,na.rm = T)
## [1] 0.05300509
median(assignment1$pubhs,na.rm = T)
## [1] 0
summary(assignment1)
##        id               age             marpi           adjwlth2       
##  Min.   :   4003   Min.   :  1.00   Min.   :0.0000   Min.   :-2304.98  
##  1st Qu.:1269033   1st Qu.: 14.00   1st Qu.:0.0000   1st Qu.:    1.91  
##  Median :2464171   Median : 29.00   Median :0.0000   Median :   32.80  
##  Mean   :3014466   Mean   : 32.03   Mean   :0.4178   Mean   :  187.17  
##  3rd Qu.:5381175   3rd Qu.: 47.00   3rd Qu.:1.0000   3rd Qu.:  143.55  
##  Max.   :6872185   Max.   :999.00   Max.   :4.0000   Max.   :80303.23  
##                                     NA's   :28       NA's   :48        
##       educ           pubhs         h_race_ethnic_new      race5      
##  Min.   : 0.00   Min.   :0.00000   Length:131361      Min.   :1.000  
##  1st Qu.:12.00   1st Qu.:0.00000   Class :character   1st Qu.:3.000  
##  Median :12.00   Median :0.00000   Mode  :character   Median :5.000  
##  Mean   :13.04   Mean   :0.05301                      Mean   :3.927  
##  3rd Qu.:15.00   3rd Qu.:0.00000                      3rd Qu.:5.000  
##  Max.   :20.00   Max.   :1.00000                      Max.   :5.000  
##  NA's   :2496    NA's   :34
psid<-data.frame(assignment1)
hist(psid$race5)

psid$race5<-factor(psid$race5,
                   levels=c(1,2,3,4,5),
                   labels=c("Latino","Asian","Black", "Other","White" ))
prop.table(table(psid$race5 ))
## 
##      Latino       Asian       Black       Other       White 
## 0.075311546 0.016123507 0.357297828 0.008632699 0.542634420
#hist(psid$race5, main="Frequency Distribution of Race")
barplot(prop.table(table(psid$race5)))

barplot(table(psid$race5))

mean(assignment1$race5,na.rm = T)
## [1] 3.927155
median(assignment1$race5,na.rm = T)
## [1] 5
publicassistance<-
  subset(x=assignment1, select=c("race5", "pubhs"))
         
names(publicassistance)
## [1] "race5" "pubhs"
nrow(publicassistance)
## [1] 131361
ncol(publicassistance)
## [1] 2