library(TAM)
## Loading required package: CDM
## Loading required package: mvtnorm
## **********************************
## ** CDM 7.5-15 (2020-03-10 14:19:21)      
## ** Cognitive Diagnostic Models  **
## **********************************
## * TAM 3.5-19 (2020-05-05 22:45:39)
library(WrightMap)
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
library(formattable)
transreas <- read.csv("~/Box/Courses/2020 Fall/BER 670 Rasch/HW/transreas.csv")
library(psych)
## 
## Attaching package: 'psych'
## The following object is masked from 'package:Hmisc':
## 
##     describe
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
describe(transreas)
##         vars   n   mean     sd median trimmed    mad min max range  skew
## Student    1 425 213.00 122.83    213  213.00 157.16   1 425   424  0.00
## Grade      2 425   4.00   1.43      4    4.01   1.48   2   6     4  0.00
## task_01    3 425   0.94   0.24      1    1.00   0.00   0   1     1 -3.74
## task_02    4 425   0.81   0.39      1    0.89   0.00   0   1     1 -1.57
## task_03    5 425   0.88   0.32      1    0.98   0.00   0   1     1 -2.40
## task_04    6 425   0.78   0.41      1    0.85   0.00   0   1     1 -1.37
## task_05    7 425   0.80   0.40      1    0.88   0.00   0   1     1 -1.51
## task_06    8 425   0.97   0.16      1    1.00   0.00   0   1     1 -5.95
## task_07    9 425   0.84   0.36      1    0.93   0.00   0   1     1 -1.90
## task_08   10 425   0.97   0.18      1    1.00   0.00   0   1     1 -5.22
## task_09   11 425   0.30   0.46      0    0.25   0.00   0   1     1  0.86
## task_10   12 425   0.52   0.50      1    0.52   0.00   0   1     1 -0.08
##         kurtosis   se
## Student    -1.21 5.96
## Grade      -1.33 0.07
## task_01    11.99 0.01
## task_02     0.47 0.02
## task_03     3.77 0.02
## task_04    -0.12 0.02
## task_05     0.29 0.02
## task_06    33.49 0.01
## task_07     1.60 0.02
## task_08    25.26 0.01
## task_09    -1.26 0.02
## task_10    -2.00 0.02

Above is a summary of our

data <- transreas[,c(-1,-2)]
describe(data)
##         vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## task_01    1 425 0.94 0.24      1    1.00   0   0   1     1 -3.74    11.99 0.01
## task_02    2 425 0.81 0.39      1    0.89   0   0   1     1 -1.57     0.47 0.02
## task_03    3 425 0.88 0.32      1    0.98   0   0   1     1 -2.40     3.77 0.02
## task_04    4 425 0.78 0.41      1    0.85   0   0   1     1 -1.37    -0.12 0.02
## task_05    5 425 0.80 0.40      1    0.88   0   0   1     1 -1.51     0.29 0.02
## task_06    6 425 0.97 0.16      1    1.00   0   0   1     1 -5.95    33.49 0.01
## task_07    7 425 0.84 0.36      1    0.93   0   0   1     1 -1.90     1.60 0.02
## task_08    8 425 0.97 0.18      1    1.00   0   0   1     1 -5.22    25.26 0.01
## task_09    9 425 0.30 0.46      0    0.25   0   0   1     1  0.86    -1.26 0.02
## task_10   10 425 0.52 0.50      1    0.52   0   0   1     1 -0.08    -2.00 0.02
model1 <- tam(data) 
## ....................................................
## Processing Data      2020-09-28 16:55:47 
##     * Response Data: 425 Persons and  10 Items 
##     * Numerical integration with 21 nodes
##     * Created Design Matrices   ( 2020-09-28 16:55:47 )
##     * Calculated Sufficient Statistics   ( 2020-09-28 16:55:47 )
## ....................................................
## Iteration 1     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |----
##   Deviance = 3376.8929
##   Maximum item intercept parameter change: 0.299715
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.081181
## ....................................................
## Iteration 2     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |---
##   Deviance = 3356.6709 | Absolute change: 20.222 | Relative change: 0.00602442
##   Maximum item intercept parameter change: 0.042548
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.006668
## ....................................................
## Iteration 3     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |---
##   Deviance = 3355.3971 | Absolute change: 1.2738 | Relative change: 0.00037963
##   Maximum item intercept parameter change: 0.021467
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000424
## ....................................................
## Iteration 4     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3355.0655 | Absolute change: 0.3316 | Relative change: 9.884e-05
##   Maximum item intercept parameter change: 0.011539
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.002073
## ....................................................
## Iteration 5     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9737 | Absolute change: 0.0918 | Relative change: 2.736e-05
##   Maximum item intercept parameter change: 0.006618
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.002935
## ....................................................
## Iteration 6     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9439 | Absolute change: 0.0298 | Relative change: 8.89e-06
##   Maximum item intercept parameter change: 0.004037
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.003046
## ....................................................
## Iteration 7     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9314 | Absolute change: 0.0125 | Relative change: 3.71e-06
##   Maximum item intercept parameter change: 0.002638
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.002835
## ....................................................
## Iteration 8     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9248 | Absolute change: 0.0066 | Relative change: 1.98e-06
##   Maximum item intercept parameter change: 0.00184
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.002508
## ....................................................
## Iteration 9     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9207 | Absolute change: 0.0041 | Relative change: 1.22e-06
##   Maximum item intercept parameter change: 0.001357
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.00216
## ....................................................
## Iteration 10     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.918 | Absolute change: 0.0027 | Relative change: 8.1e-07
##   Maximum item intercept parameter change: 0.001042
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001832
## ....................................................
## Iteration 11     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9161 | Absolute change: 0.0018 | Relative change: 5.5e-07
##   Maximum item intercept parameter change: 0.000824
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.00154
## ....................................................
## Iteration 12     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9149 | Absolute change: 0.0013 | Relative change: 3.8e-07
##   Maximum item intercept parameter change: 0.000664
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001288
## ....................................................
## Iteration 13     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.914 | Absolute change: 9e-04 | Relative change: 2.6e-07
##   Maximum item intercept parameter change: 0.000541
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001074
## ....................................................
## Iteration 14     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9134 | Absolute change: 6e-04 | Relative change: 1.8e-07
##   Maximum item intercept parameter change: 0.000444
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000894
## ....................................................
## Iteration 15     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.913 | Absolute change: 4e-04 | Relative change: 1.2e-07
##   Maximum item intercept parameter change: 0.000366
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000742
## ....................................................
## Iteration 16     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9127 | Absolute change: 3e-04 | Relative change: 8e-08
##   Maximum item intercept parameter change: 0.000302
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000616
## ....................................................
## Iteration 17     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9125 | Absolute change: 2e-04 | Relative change: 6e-08
##   Maximum item intercept parameter change: 0.00025
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000511
## ....................................................
## Iteration 18     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9124 | Absolute change: 1e-04 | Relative change: 4e-08
##   Maximum item intercept parameter change: 0.000207
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000424
## ....................................................
## Iteration 19     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9123 | Absolute change: 1e-04 | Relative change: 3e-08
##   Maximum item intercept parameter change: 0.000172
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000352
## ....................................................
## Iteration 20     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9123 | Absolute change: 1e-04 | Relative change: 2e-08
##   Maximum item intercept parameter change: 0.000142
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000292
## ....................................................
## Iteration 21     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |--
##   Deviance = 3354.9122 | Absolute change: 0 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000118
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000242
## ....................................................
## Iteration 22     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |-
##   Deviance = 3354.9122 | Absolute change: 0 | Relative change: 1e-08
##   Maximum item intercept parameter change: 9.8e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 2e-04
## ....................................................
## Iteration 23     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |-
##   Deviance = 3354.9122 | Absolute change: 0 | Relative change: 1e-08
##   Maximum item intercept parameter change: 8.1e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000166
## ....................................................
## Iteration 24     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |-
##   Deviance = 3354.9122 | Absolute change: 0 | Relative change: 0
##   Maximum item intercept parameter change: 6.7e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000138
## ....................................................
## Iteration 25     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |-
##   Deviance = 3354.9121 | Absolute change: 0 | Relative change: 0
##   Maximum item intercept parameter change: 5.6e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000114
## ....................................................
## Iteration 26     2020-09-28 16:55:47
## E Step
## M Step Intercepts   |-
##   Deviance = 3354.9121 | Absolute change: 0 | Relative change: 0
##   Maximum item intercept parameter change: 4.6e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 9.4e-05
## ....................................................
## Item Parameters
##    xsi.index xsi.label     est
## 1          1   task_01 -3.1686
## 2          2   task_02 -1.7009
## 3          3   task_03 -2.3678
## 4          4   task_04 -1.5172
## 5          5   task_05 -1.6492
## 6          6   task_06 -4.0699
## 7          7   task_07 -1.9824
## 8          8   task_08 -3.8109
## 9          9   task_09  1.0024
## 10        10   task_10 -0.0932
## ...................................
## Regression Coefficients
##      [,1]
## [1,]    0
## 
## Variance:
##        [,1]
## [1,] 0.9378
## 
## 
## EAP Reliability:
## [1] 0.503
## 
## -----------------------------
## Start:  2020-09-28 16:55:47
## End:  2020-09-28 16:55:47 
## Time difference of 0.04288316 secs
summary(model1)
## ------------------------------------------------------------
## TAM 3.5-19 (2020-05-05 22:45:39) 
## R version 4.0.2 (2020-06-22) x86_64, darwin17.0 | nodename=Qingzhous-iMac.local | login=root 
## 
## Date of Analysis: 2020-09-28 16:55:47 
## Time difference of 0.04288316 secs
## Computation time: 0.04288316 
## 
## Multidimensional Item Response Model in TAM 
## 
## IRT Model: 1PL
## Call:
## tam.mml(resp = resp)
## 
## ------------------------------------------------------------
## Number of iterations = 26 
## Numeric integration with 21 integration points
## 
## Deviance = 3354.91 
## Log likelihood = -1677.46 
## Number of persons = 425 
## Number of persons used = 425 
## Number of items = 10 
## Number of estimated parameters = 11 
##     Item threshold parameters = 10 
##     Item slope parameters = 0 
##     Regression parameters = 0 
##     Variance/covariance parameters = 1 
## 
## AIC = 3377  | penalty=22    | AIC=-2*LL + 2*p 
## AIC3 = 3388  | penalty=33    | AIC3=-2*LL + 3*p 
## BIC = 3421  | penalty=66.57    | BIC=-2*LL + log(n)*p 
## aBIC = 3386  | penalty=31.56    | aBIC=-2*LL + log((n-2)/24)*p  (adjusted BIC) 
## CAIC = 3432  | penalty=77.57    | CAIC=-2*LL + [log(n)+1]*p  (consistent AIC) 
## AICc = 3378  | penalty=22.64    | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1)  (bias corrected AIC) 
## GHP = 0.39728     | GHP=( -LL + p ) / (#Persons * #Items)  (Gilula-Haberman log penalty) 
## 
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.503
## ------------------------------------------------------------
## Covariances and Variances
##       [,1]
## [1,] 0.938
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
##       [,1]
## [1,] 0.968
## ------------------------------------------------------------
## Regression Coefficients
##      [,1]
## [1,]    0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
##       item   N     M xsi.item AXsi_.Cat1 B.Cat1.Dim1
## 1  task_01 425 0.941   -3.169     -3.169           1
## 2  task_02 425 0.809   -1.701     -1.701           1
## 3  task_03 425 0.885   -2.368     -2.368           1
## 4  task_04 425 0.784   -1.517     -1.517           1
## 5  task_05 425 0.802   -1.649     -1.649           1
## 6  task_06 425 0.974   -4.070     -4.070           1
## 7  task_07 425 0.845   -1.982     -1.982           1
## 8  task_08 425 0.967   -3.811     -3.811           1
## 9  task_09 425 0.301    1.002      1.002           1
## 10 task_10 425 0.520   -0.093     -0.093           1
## 
## Item Parameters in IRT parameterization
##       item alpha   beta
## 1  task_01     1 -3.169
## 2  task_02     1 -1.701
## 3  task_03     1 -2.368
## 4  task_04     1 -1.517
## 5  task_05     1 -1.649
## 6  task_06     1 -4.070
## 7  task_07     1 -1.982
## 8  task_08     1 -3.811
## 9  task_09     1  1.002
## 10 task_10     1 -0.093
IRT.WrightMap(model1, show.thr.lab=FALSE)

difficulty = model1$xsi
head(difficulty,10)
##                 xsi    se.xsi
## task_01 -3.16864785 0.2133573
## task_02 -1.70089350 0.1321453
## task_03 -2.36782604 0.1600094
## task_04 -1.51715819 0.1265292
## task_05 -1.64916897 0.1304829
## task_06 -4.06989050 0.3113083
## task_07 -1.98241949 0.1423829
## task_08 -3.81092249 0.2780165
## task_09  1.00240165 0.1145384
## task_10 -0.09324812 0.1061752
mean(difficulty$xsi)
## [1] -1.935777
sd(difficulty$xsi)
## [1] 1.567723
mean(difficulty$se.xsi)
## [1] 0.1714946
sd(difficulty$se.xsi)
## [1] 0.07179407
hist(difficulty$xsi,breaks = 10)

i_fit = tam.fit(model1)
## Item fit calculation based on 40 simulations
## |**********|
## |----------|
head(i_fit,10)
## $itemfit
##    parameter    Outfit    Outfit_t     Outfit_p Outfit_pholm     Infit
## 1    task_01 0.8661123 -0.81413242 0.4155690953  1.000000000 0.9309860
## 2    task_02 1.1527227  1.91455026 0.0555498830  0.355202301 1.0894633
## 3    task_03 0.8005011 -1.95364525 0.0507431858  0.355202301 0.9100646
## 4    task_04 1.2560647  3.46477479 0.0005306757  0.005306757 1.1210663
## 5    task_05 1.0363349  0.47977820 0.6313851172  1.000000000 1.0262831
## 6    task_06 0.3921922 -2.85637333 0.0042851095  0.038565985 0.8909956
## 7    task_07 0.8712103 -1.51850026 0.1288883350  0.644441675 0.9445009
## 8    task_08 0.5619545 -2.16906103 0.0300780508  0.240624406 0.9100683
## 9    task_09 1.0659736  1.22759402 0.2195994085  0.878397634 1.0104951
## 10   task_10 0.9969621 -0.08435675 0.9327727920  1.000000000 1.0000688
##         Infit_t    Infit_p Infit_pholm
## 1  -0.366815506 0.71375664   1.0000000
## 2   1.162402789 0.24507189   1.0000000
## 3  -0.820153038 0.41212887   1.0000000
## 4   1.720665512 0.08531154   0.8531154
## 5   0.370140517 0.71127779   1.0000000
## 6  -0.325128706 0.74508366   1.0000000
## 7  -0.619285978 0.53572798   1.0000000
## 8  -0.312139485 0.75493452   1.0000000
## 9   0.204911640 0.83764116   1.0000000
## 10  0.003772792 0.99698975   1.0000000
## 
## $time
## [1] "2020-09-28 16:55:48 CDT" "2020-09-28 16:55:48 CDT"
## 
## $CALL
## tam.fit(tamobj = model1)
mean(i_fit[["itemfit"]][["Outfit"]])
## [1] 0.9000028
sd(i_fit[["itemfit"]][["Outfit"]])
## [1] 0.2646187
mean(i_fit[["itemfit"]][["Infit"]])
## [1] 0.9833992
sd(i_fit[["itemfit"]][["Infit"]])
## [1] 0.07930738
ability = tam.wle(model1)
## Iteration in WLE/MLE estimation  1   | Maximal change  2.783 
## Iteration in WLE/MLE estimation  2   | Maximal change  0.8352 
## Iteration in WLE/MLE estimation  3   | Maximal change  0.0976 
## Iteration in WLE/MLE estimation  4   | Maximal change  0.0058 
## Iteration in WLE/MLE estimation  5   | Maximal change  4e-04 
## Iteration in WLE/MLE estimation  6   | Maximal change  0 
## ----
##  WLE Reliability= 0.308
mean(ability$theta)
## [1] -0.05565378
sd(ability$theta)
## [1] 1.281021
mean(ability$error)
## [1] 1.022701
sd(ability$error)
## [1] 0.2990593
hist(ability$theta)

p_fit = tam.personfit(model1)
head(p_fit)
##   outfitPerson outfitPerson_t infitPerson infitPerson_t
## 1   0.23116561     -0.6747306   0.3612124    -1.3926697
## 2   1.06501332      0.3075433   1.1169890     0.4450260
## 3   4.21519230      2.8424540   2.0818362     2.5767465
## 4   0.04344653      0.8893776   0.1568586    -0.5789409
## 5   0.54777995     -0.4591824   0.6968196    -0.6503183
## 6   0.16335767     -0.1230185   0.3844617    -0.9719057
describe(p_fit)
##                vars   n  mean   sd median trimmed  mad   min  max range skew
## outfitPerson      1 425  0.61 0.57   0.46    0.53 0.44  0.04 4.22  4.17 1.79
## outfitPerson_t    2 425  0.06 0.65  -0.07    0.02 0.89 -0.96 2.84  3.80 0.54
## infitPerson       3 425  0.77 0.50   0.64    0.73 0.42  0.16 2.20  2.04 0.74
## infitPerson_t     4 425 -0.30 0.92  -0.58   -0.38 0.91 -1.50 2.58  4.08 0.74
##                kurtosis   se
## outfitPerson       5.03 0.03
## outfitPerson_t    -0.14 0.03
## infitPerson       -0.37 0.02
## infitPerson_t     -0.30 0.04
mean(p_fit$outfitPerson)
## [1] 0.6100661
sd(p_fit$outfitPerson)
## [1] 0.5672632
mean(p_fit$infitPerson)
## [1] 0.7734645
sd(p_fit$infitPerson)
## [1] 0.4990325
i_table = data.frame()
i_table = setNames(data.frame(matrix(ncol=8,nrow=10)),c("TaskID", "PropCorrect","Delta","SE","Outfit","Outfit_P","Infit","Infit_P"))
TaskCorect = apply(data,2,sum)
PropCorrect = percent(TaskCorect/425)
i_table$TaskID = 1:10
i_table$PropCorrect = PropCorrect
i_table$Delta = difficulty$xsi
i_table$SE = difficulty$se.xsi
i_table$Outfit = i_fit[["itemfit"]][["Outfit"]]
i_table$Outfit_P = i_fit[["itemfit"]][["Outfit_p"]]
i_table$Infit = i_fit[["itemfit"]][["Infit"]]
i_table$Infit_P = i_fit[["itemfit"]][["Infit_p"]]
i_table = i_table[order(-PropCorrect),]
View(i_table)
p_table = data.frame()
p_table = setNames(data.frame(matrix(ncol=8,nrow=425)),c("TestTakerID", "P_PropCorrect","Theta","SE","Outfit","Outfit_t","Infit","Infit_t"))
p_score = rowSums(data,na.rm = FALSE)
P_PropCorrect = percent(p_score/10)
p_table$TestTakerID = 1:425
p_table$P_PropCorrect = P_PropCorrect
p_table$Theta = ability$theta
p_table$SE = ability$error
p_table$Outfit = p_fit$outfitPerson
p_table$Outfit_t = p_fit$outfitPerson_t
p_table$Infit = p_fit$infitPerson
p_table$Infit_t = p_fit$infitPerson_t
View(p_table)
subset(p_table, p_table$P_PropCorrect==1)
##     TestTakerID P_PropCorrect    Theta       SE     Outfit  Outfit_t     Infit
## 4             4       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 7             7       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 13           13       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 14           14       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 67           67       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 73           73       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 79           79       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 80           80       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 88           88       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 117         117       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 131         131       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 138         138       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 144         144       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 147         147       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 154         154       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 164         164       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 166         166       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 169         169       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 187         187       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 188         188       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 190         190       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 191         191       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 194         194       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 197         197       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 199         199       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 202         202       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 204         204       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 214         214       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 224         224       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 232         232       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 233         233       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 251         251       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 254         254       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 266         266       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 277         277       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 282         282       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 292         292       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 308         308       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 317         317       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 328         328       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 358         358       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 380         380       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 398         398       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 402         402       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 405         405       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 407         407       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 414         414       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 415         415       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 419         419       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 420         420       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
## 422         422       100.00% 2.347125 1.762825 0.04344653 0.8893776 0.1568586
##        Infit_t
## 4   -0.5789409
## 7   -0.5789409
## 13  -0.5789409
## 14  -0.5789409
## 67  -0.5789409
## 73  -0.5789409
## 79  -0.5789409
## 80  -0.5789409
## 88  -0.5789409
## 117 -0.5789409
## 131 -0.5789409
## 138 -0.5789409
## 144 -0.5789409
## 147 -0.5789409
## 154 -0.5789409
## 164 -0.5789409
## 166 -0.5789409
## 169 -0.5789409
## 187 -0.5789409
## 188 -0.5789409
## 190 -0.5789409
## 191 -0.5789409
## 194 -0.5789409
## 197 -0.5789409
## 199 -0.5789409
## 202 -0.5789409
## 204 -0.5789409
## 214 -0.5789409
## 224 -0.5789409
## 232 -0.5789409
## 233 -0.5789409
## 251 -0.5789409
## 254 -0.5789409
## 266 -0.5789409
## 277 -0.5789409
## 282 -0.5789409
## 292 -0.5789409
## 308 -0.5789409
## 317 -0.5789409
## 328 -0.5789409
## 358 -0.5789409
## 380 -0.5789409
## 398 -0.5789409
## 402 -0.5789409
## 405 -0.5789409
## 407 -0.5789409
## 414 -0.5789409
## 415 -0.5789409
## 419 -0.5789409
## 420 -0.5789409
## 422 -0.5789409
subset(p_table, p_table$P_PropCorrect==0.1)
##     TestTakerID P_PropCorrect     Theta       SE   Outfit Outfit_t    Infit
## 148         148        10.00% -4.528473 1.029438 1.859619 1.012249 1.284249
##       Infit_t
## 148 0.6294794
subset(p_table, p_table$Outfit>1.4)
##     TestTakerID P_PropCorrect      Theta        SE   Outfit  Outfit_t    Infit
## 3             3        40.00% -2.5351672 0.7587624 4.215192 2.8424540 2.081836
## 21           21        40.00% -2.5351672 0.7587624 1.471466 0.8180884 1.696670
## 46           46        60.00% -1.4663564 0.7688974 2.339554 1.8161267 1.892995
## 60           60        90.00%  0.7916991 1.1106587 1.406800 0.8106603 1.559081
## 74           74        90.00%  0.7916991 1.1106587 1.406800 0.8106603 1.559081
## 89           89        80.00% -0.1632616 0.9172265 1.849681 0.9850767 2.037078
## 90           90        80.00% -0.1632616 0.9172265 1.849681 0.9850767 2.037078
## 94           94        80.00% -0.1632616 0.9172265 3.149713 1.6295306 2.200562
## 102         102        60.00% -1.4663564 0.7688974 1.640166 1.0861630 1.718998
## 103         103        90.00%  0.7916991 1.1106587 1.406800 0.8106603 1.559081
## 107         107        70.00% -0.8772971 0.8190927 2.067709 1.3305471 1.647437
## 116         116        90.00%  0.7916991 1.1106587 1.802020 0.9675062 1.602602
## 148         148        10.00% -4.5284734 1.0294383 1.859619 1.0122491 1.284249
## 198         198        40.00% -2.5351672 0.7587624 1.778577 1.1322964 1.891745
## 209         209        60.00% -1.4663564 0.7688974 1.886952 1.3639660 1.482815
## 212         212        50.00% -2.0031302 0.7508743 1.403611 0.8007844 1.243289
## 245         245        80.00% -0.1632616 0.9172265 2.259629 1.2141350 1.152576
## 247         247        60.00% -1.4663564 0.7688974 1.496786 0.9117326 1.100455
## 264         264        90.00%  0.7916991 1.1106587 1.406800 0.8106603 1.559081
## 280         280        70.00% -0.8772971 0.8190927 1.852449 1.1505426 1.581965
## 299         299        70.00% -0.8772971 0.8190927 1.583239 0.9045869 1.819347
## 340         340        80.00% -0.1632616 0.9172265 2.331384 1.2513049 1.189245
## 354         354        90.00%  0.7916991 1.1106587 1.406800 0.8106603 1.559081
## 360         360        30.00% -3.0995710 0.7930736 1.422658 0.7114111 1.533438
## 361         361        50.00% -2.0031302 0.7508743 2.589188 2.0763806 1.973656
## 362         362        50.00% -2.0031302 0.7508743 2.643382 2.1242545 1.319733
## 370         370        60.00% -1.4663564 0.7688974 1.878329 1.3546815 1.217796
## 372         372        70.00% -0.8772971 0.8190927 1.834491 1.1349078 1.996782
## 384         384        90.00%  0.7916991 1.1106587 2.290376 1.1322744 1.647064
## 385         385        30.00% -3.0995710 0.7930736 1.980269 1.1303443 2.138197
## 392         392        40.00% -2.5351672 0.7587624 1.471466 0.8180884 1.696670
## 399         399        90.00%  0.7916991 1.1106587 1.406800 0.8106603 1.559081
## 411         411        30.00% -3.0995710 0.7930736 2.437419 1.4180786 1.064266
## 417         417        90.00%  0.7916991 1.1106587 2.292715 1.1330042 1.701384
## 423         423        20.00% -3.7363473 0.8659962 2.048229 1.0534841 1.808065
##       Infit_t
## 3   2.5767465
## 21  1.8275475
## 46  2.2068066
## 60  0.9288260
## 74  0.9288260
## 89  1.6477059
## 90  1.6477059
## 94  1.8285632
## 102 1.8612377
## 103 0.9288260
## 107 1.4091239
## 116 0.9758182
## 148 0.6294794
## 198 2.2197350
## 209 1.3526161
## 212 0.8289327
## 245 0.4480047
## 247 0.3995857
## 264 0.9288260
## 280 1.2982300
## 299 1.6869571
## 340 0.5082289
## 354 0.9288260
## 360 1.3263844
## 361 2.5537001
## 362 1.0369827
## 370 0.7128075
## 372 1.9559238
## 384 1.0229552
## 385 2.3839739
## 392 1.8275475
## 399 0.9288260
## 411 0.2919580
## 417 1.0794071
## 423 1.6196842
subset(p_table, p_table$Outfit<0.6)
##     TestTakerID P_PropCorrect      Theta        SE     Outfit   Outfit_t
## 1             1        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 4             4       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 5             5        70.00% -0.8772971 0.8190927 0.54777995 -0.4591824
## 6             6        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 7             7       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 9             9        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 10           10        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 11           11        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 13           13       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 14           14       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 15           15        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 16           16        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 22           22        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 23           23        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 24           24        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 25           25        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 26           26        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 27           27        70.00% -0.8772971 0.8190927 0.54777995 -0.4591824
## 28           28        70.00% -0.8772971 0.8190927 0.44910415 -0.6650168
## 29           29        60.00% -1.4663564 0.7688974 0.51083922 -0.7849302
## 30           30        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 31           31        70.00% -0.8772971 0.8190927 0.44910415 -0.6650168
## 32           32        70.00% -0.8772971 0.8190927 0.46292055 -0.6344895
## 33           33        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 34           34        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 35           35        60.00% -1.4663564 0.7688974 0.47366530 -0.8828442
## 36           36        70.00% -0.8772971 0.8190927 0.54777995 -0.4591824
## 37           37        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 41           41        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 42           42        70.00% -0.8772971 0.8190927 0.44910415 -0.6650168
## 44           44        40.00% -2.5351672 0.7587624 0.56395886 -0.5000307
## 47           47        70.00% -0.8772971 0.8190927 0.46292055 -0.6344895
## 50           50        50.00% -2.0031302 0.7508743 0.45714814 -0.9568200
## 52           52        70.00% -0.8772971 0.8190927 0.54777995 -0.4591824
## 53           53        60.00% -1.4663564 0.7688974 0.48423744 -0.8544915
## 56           56        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 57           57        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 59           59        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 61           61        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 62           62        70.00% -0.8772971 0.8190927 0.46292055 -0.6344895
## 66           66        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 67           67       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 69           69        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 71           71        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 72           72        70.00% -0.8772971 0.8190927 0.54777995 -0.4591824
## 73           73       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 79           79       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 80           80       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 81           81        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 82           82        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 83           83        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 84           84        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 86           86        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 87           87        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 88           88       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 92           92        70.00% -0.8772971 0.8190927 0.46292055 -0.6344895
## 93           93        70.00% -0.8772971 0.8190927 0.46292055 -0.6344895
## 95           95        60.00% -1.4663564 0.7688974 0.51083922 -0.7849302
## 96           96        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 97           97        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 99           99        60.00% -1.4663564 0.7688974 0.47366530 -0.8828442
## 100         100        70.00% -0.8772971 0.8190927 0.44910415 -0.6650168
## 101         101        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 109         109        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 111         111        70.00% -0.8772971 0.8190927 0.54777995 -0.4591824
## 112         112        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 113         113        70.00% -0.8772971 0.8190927 0.46292055 -0.6344895
## 114         114        60.00% -1.4663564 0.7688974 0.57135586 -0.6352286
## 117         117       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 118         118        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 120         120        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 121         121        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 122         122        70.00% -0.8772971 0.8190927 0.54777995 -0.4591824
## 124         124        60.00% -1.4663564 0.7688974 0.54475408 -0.6996636
## 127         127        70.00% -0.8772971 0.8190927 0.46292055 -0.6344895
## 128         128        50.00% -2.0031302 0.7508743 0.45714814 -0.9568200
## 129         129        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 130         130        60.00% -1.4663564 0.7688974 0.48423744 -0.8544915
## 131         131       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 132         132        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 133         133        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 135         135        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 137         137        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 138         138       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 139         139        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 141         141        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 144         144       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 146         146        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 147         147       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 149         149        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 152         152        70.00% -0.8772971 0.8190927 0.44910415 -0.6650168
## 154         154       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 156         156        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 157         157        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 161         161        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 163         163        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 164         164       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 165         165        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 166         166       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 167         167        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 169         169       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 170         170        70.00% -0.8772971 0.8190927 0.44910415 -0.6650168
## 171         171        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 173         173        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 174         174        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 175         175        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 176         176        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 178         178        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 181         181        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 183         183        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 184         184        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 185         185        60.00% -1.4663564 0.7688974 0.54475408 -0.6996636
## 186         186        60.00% -1.4663564 0.7688974 0.48423744 -0.8544915
## 187         187       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 188         188       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 189         189        70.00% -0.8772971 0.8190927 0.44910415 -0.6650168
## 190         190       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 191         191       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 192         192        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 193         193        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 194         194       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 195         195        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 197         197       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 199         199       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 201         201        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 202         202       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 203         203        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 204         204       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 205         205        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 206         206        60.00% -1.4663564 0.7688974 0.57135586 -0.6352286
## 213         213        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 214         214       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 215         215        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 216         216        70.00% -0.8772971 0.8190927 0.54777995 -0.4591824
## 219         219        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 220         220        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 221         221        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 223         223        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 224         224       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 227         227        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 229         229        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 230         230        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 232         232       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 233         233       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 234         234        70.00% -0.8772971 0.8190927 0.44910415 -0.6650168
## 235         235        60.00% -1.4663564 0.7688974 0.54475408 -0.6996636
## 236         236        70.00% -0.8772971 0.8190927 0.44910415 -0.6650168
## 237         237        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 238         238        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 239         239        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 240         240        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 241         241        70.00% -0.8772971 0.8190927 0.44910415 -0.6650168
## 243         243        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 244         244        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 246         246        50.00% -2.0031302 0.7508743 0.45714814 -0.9568200
## 248         248        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 249         249        70.00% -0.8772971 0.8190927 0.44910415 -0.6650168
## 250         250        70.00% -0.8772971 0.8190927 0.46292055 -0.6344895
## 251         251       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 252         252        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 254         254       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 256         256        60.00% -1.4663564 0.7688974 0.48423744 -0.8544915
## 259         259        70.00% -0.8772971 0.8190927 0.46292055 -0.6344895
## 260         260        60.00% -1.4663564 0.7688974 0.48423744 -0.8544915
## 261         261        70.00% -0.8772971 0.8190927 0.54777995 -0.4591824
## 262         262        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 265         265        70.00% -0.8772971 0.8190927 0.44910415 -0.6650168
## 266         266       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 267         267        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 268         268        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 270         270        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 272         272        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 273         273        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 277         277       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 278         278        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 279         279        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 281         281        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 282         282       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 283         283        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 284         284        70.00% -0.8772971 0.8190927 0.46292055 -0.6344895
## 286         286        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 287         287        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 289         289        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 290         290        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 292         292       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 294         294        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 295         295        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 296         296        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 298         298        20.00% -3.7363473 0.8659962 0.30371981 -0.3044809
## 300         300        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 304         304        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 305         305        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 307         307        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 308         308       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 309         309        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 310         310        70.00% -0.8772971 0.8190927 0.46292055 -0.6344895
## 312         312        60.00% -1.4663564 0.7688974 0.57135586 -0.6352286
## 314         314        60.00% -1.4663564 0.7688974 0.48423744 -0.8544915
## 316         316        50.00% -2.0031302 0.7508743 0.52528548 -0.7730871
## 317         317       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 318         318        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 319         319        50.00% -2.0031302 0.7508743 0.45714814 -0.9568200
## 321         321        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 322         322        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 324         324        70.00% -0.8772971 0.8190927 0.46292055 -0.6344895
## 325         325        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 327         327        70.00% -0.8772971 0.8190927 0.46292055 -0.6344895
## 328         328       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 329         329        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 330         330        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 331         331        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 334         334        60.00% -1.4663564 0.7688974 0.48423744 -0.8544915
## 335         335        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 336         336        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 337         337        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 344         344        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 346         346        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 349         349        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 352         352        60.00% -1.4663564 0.7688974 0.57135586 -0.6352286
## 358         358       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 363         363        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 366         366        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 368         368        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 369         369        50.00% -2.0031302 0.7508743 0.51437753 -0.8013862
## 371         371        70.00% -0.8772971 0.8190927 0.44910415 -0.6650168
## 373         373        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 374         374        70.00% -0.8772971 0.8190927 0.54777995 -0.4591824
## 375         375        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 376         376        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 378         378        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 380         380       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 382         382        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 386         386        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 388         388        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 394         394        70.00% -0.8772971 0.8190927 0.54777995 -0.4591824
## 396         396        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 398         398       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 400         400        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 401         401        90.00%  0.7916991 1.1106587 0.40682274  0.1931481
## 402         402       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 403         403        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 404         404        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 405         405       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 406         406        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 407         407       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 408         408        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 409         409        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 414         414       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 415         415       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 416         416        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 419         419       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 420         420       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 421         421        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 422         422       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 424         424        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 425         425        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
##         Infit    Infit_t
## 1   0.3612124 -1.3926697
## 4   0.1568586 -0.5789409
## 5   0.6968196 -0.6503183
## 6   0.3844617 -0.9719057
## 7   0.1568586 -0.5789409
## 9   0.3844617 -0.9719057
## 10  0.5673364 -1.0609277
## 11  0.3844617 -0.9719057
## 13  0.1568586 -0.5789409
## 14  0.1568586 -0.5789409
## 15  0.3612124 -1.3926697
## 16  0.3612124 -1.3926697
## 22  0.3612124 -1.3926697
## 23  0.3612124 -1.3926697
## 24  0.3844617 -0.9719057
## 25  0.3844617 -0.9719057
## 26  0.3612124 -1.3926697
## 27  0.6968196 -0.6503183
## 28  0.6065230 -0.9305953
## 29  0.6817199 -0.9457080
## 30  0.3844617 -0.9719057
## 31  0.6065230 -0.9305953
## 32  0.6213820 -0.8826450
## 33  0.3612124 -1.3926697
## 34  0.3612124 -1.3926697
## 35  0.6277196 -1.1566257
## 36  0.6968196 -0.6503183
## 37  0.3612124 -1.3926697
## 41  0.3844617 -0.9719057
## 42  0.6065230 -0.9305953
## 44  0.6861057 -0.9380218
## 47  0.6213820 -0.8826450
## 50  0.5789023 -1.5004777
## 52  0.6968196 -0.6503183
## 53  0.6428436 -1.0963720
## 56  0.3612124 -1.3926697
## 57  0.5673364 -1.0609277
## 59  0.3612124 -1.3926697
## 61  0.5673364 -1.0609277
## 62  0.6213820 -0.8826450
## 66  0.3612124 -1.3926697
## 67  0.1568586 -0.5789409
## 69  0.3612124 -1.3926697
## 71  1.0267316  0.2663208
## 72  0.6968196 -0.6503183
## 73  0.1568586 -0.5789409
## 79  0.1568586 -0.5789409
## 80  0.1568586 -0.5789409
## 81  0.5673364 -1.0609277
## 82  0.3612124 -1.3926697
## 83  0.3844617 -0.9719057
## 84  1.0267316  0.2663208
## 86  0.3844617 -0.9719057
## 87  0.3844617 -0.9719057
## 88  0.1568586 -0.5789409
## 92  0.6213820 -0.8826450
## 93  0.6213820 -0.8826450
## 95  0.6817199 -0.9457080
## 96  0.5673364 -1.0609277
## 97  0.3612124 -1.3926697
## 99  0.6277196 -1.1566257
## 100 0.6065230 -0.9305953
## 101 1.0267316  0.2663208
## 109 0.3844617 -0.9719057
## 111 0.6968196 -0.6503183
## 112 1.0267316  0.2663208
## 113 0.6213820 -0.8826450
## 114 0.7619586 -0.6519725
## 117 0.1568586 -0.5789409
## 118 1.0267316  0.2663208
## 120 0.3844617 -0.9719057
## 121 0.3612124 -1.3926697
## 122 0.6968196 -0.6503183
## 124 0.7230823 -0.7915723
## 127 0.6213820 -0.8826450
## 128 0.5789023 -1.5004777
## 129 0.3612124 -1.3926697
## 130 0.6428436 -1.0963720
## 131 0.1568586 -0.5789409
## 132 1.0267316  0.2663208
## 133 0.3612124 -1.3926697
## 135 1.0267316  0.2663208
## 137 1.0267316  0.2663208
## 138 0.1568586 -0.5789409
## 139 0.3844617 -0.9719057
## 141 1.0267316  0.2663208
## 144 0.1568586 -0.5789409
## 146 0.3844617 -0.9719057
## 147 0.1568586 -0.5789409
## 149 0.3844617 -0.9719057
## 152 0.6065230 -0.9305953
## 154 0.1568586 -0.5789409
## 156 0.3844617 -0.9719057
## 157 0.3612124 -1.3926697
## 161 0.3612124 -1.3926697
## 163 0.3844617 -0.9719057
## 164 0.1568586 -0.5789409
## 165 0.3612124 -1.3926697
## 166 0.1568586 -0.5789409
## 167 0.3844617 -0.9719057
## 169 0.1568586 -0.5789409
## 170 0.6065230 -0.9305953
## 171 0.3612124 -1.3926697
## 173 0.3612124 -1.3926697
## 174 0.3844617 -0.9719057
## 175 0.3612124 -1.3926697
## 176 0.3844617 -0.9719057
## 178 0.3844617 -0.9719057
## 181 0.3844617 -0.9719057
## 183 0.3844617 -0.9719057
## 184 1.0267316  0.2663208
## 185 0.7230823 -0.7915723
## 186 0.6428436 -1.0963720
## 187 0.1568586 -0.5789409
## 188 0.1568586 -0.5789409
## 189 0.6065230 -0.9305953
## 190 0.1568586 -0.5789409
## 191 0.1568586 -0.5789409
## 192 0.3612124 -1.3926697
## 193 0.3844617 -0.9719057
## 194 0.1568586 -0.5789409
## 195 0.3612124 -1.3926697
## 197 0.1568586 -0.5789409
## 199 0.1568586 -0.5789409
## 201 0.3612124 -1.3926697
## 202 0.1568586 -0.5789409
## 203 0.3612124 -1.3926697
## 204 0.1568586 -0.5789409
## 205 0.3844617 -0.9719057
## 206 0.7619586 -0.6519725
## 213 0.3612124 -1.3926697
## 214 0.1568586 -0.5789409
## 215 0.3844617 -0.9719057
## 216 0.6968196 -0.6503183
## 219 0.3844617 -0.9719057
## 220 0.3844617 -0.9719057
## 221 0.3844617 -0.9719057
## 223 0.3844617 -0.9719057
## 224 0.1568586 -0.5789409
## 227 0.3612124 -1.3926697
## 229 0.3612124 -1.3926697
## 230 0.3844617 -0.9719057
## 232 0.1568586 -0.5789409
## 233 0.1568586 -0.5789409
## 234 0.6065230 -0.9305953
## 235 0.7230823 -0.7915723
## 236 0.6065230 -0.9305953
## 237 0.3844617 -0.9719057
## 238 0.3844617 -0.9719057
## 239 0.3844617 -0.9719057
## 240 0.3844617 -0.9719057
## 241 0.6065230 -0.9305953
## 243 0.3844617 -0.9719057
## 244 0.3844617 -0.9719057
## 246 0.5789023 -1.5004777
## 248 0.3612124 -1.3926697
## 249 0.6065230 -0.9305953
## 250 0.6213820 -0.8826450
## 251 0.1568586 -0.5789409
## 252 0.5673364 -1.0609277
## 254 0.1568586 -0.5789409
## 256 0.6428436 -1.0963720
## 259 0.6213820 -0.8826450
## 260 0.6428436 -1.0963720
## 261 0.6968196 -0.6503183
## 262 0.3612124 -1.3926697
## 265 0.6065230 -0.9305953
## 266 0.1568586 -0.5789409
## 267 0.3612124 -1.3926697
## 268 0.3612124 -1.3926697
## 270 0.3844617 -0.9719057
## 272 0.3612124 -1.3926697
## 273 0.3844617 -0.9719057
## 277 0.1568586 -0.5789409
## 278 0.3844617 -0.9719057
## 279 0.3844617 -0.9719057
## 281 0.3612124 -1.3926697
## 282 0.1568586 -0.5789409
## 283 0.3844617 -0.9719057
## 284 0.6213820 -0.8826450
## 286 0.3612124 -1.3926697
## 287 0.3844617 -0.9719057
## 289 0.3612124 -1.3926697
## 290 0.3844617 -0.9719057
## 292 0.1568586 -0.5789409
## 294 0.3844617 -0.9719057
## 295 0.3844617 -0.9719057
## 296 0.3844617 -0.9719057
## 298 0.4766450 -1.3270601
## 300 0.3844617 -0.9719057
## 304 0.5673364 -1.0609277
## 305 0.3844617 -0.9719057
## 307 0.5673364 -1.0609277
## 308 0.1568586 -0.5789409
## 309 0.3612124 -1.3926697
## 310 0.6213820 -0.8826450
## 312 0.7619586 -0.6519725
## 314 0.6428436 -1.0963720
## 316 0.6718195 -1.0921402
## 317 0.1568586 -0.5789409
## 318 0.3844617 -0.9719057
## 319 0.5789023 -1.5004777
## 321 0.3612124 -1.3926697
## 322 0.3844617 -0.9719057
## 324 0.6213820 -0.8826450
## 325 1.0267316  0.2663208
## 327 0.6213820 -0.8826450
## 328 0.1568586 -0.5789409
## 329 0.3612124 -1.3926697
## 330 0.3612124 -1.3926697
## 331 1.0267316  0.2663208
## 334 0.6428436 -1.0963720
## 335 0.3612124 -1.3926697
## 336 0.3844617 -0.9719057
## 337 0.3612124 -1.3926697
## 344 1.0267316  0.2663208
## 346 0.3612124 -1.3926697
## 349 0.3844617 -0.9719057
## 352 0.7619586 -0.6519725
## 358 0.1568586 -0.5789409
## 363 0.3612124 -1.3926697
## 366 0.3612124 -1.3926697
## 368 0.3844617 -0.9719057
## 369 0.6576242 -1.1519759
## 371 0.6065230 -0.9305953
## 373 0.3612124 -1.3926697
## 374 0.6968196 -0.6503183
## 375 0.3612124 -1.3926697
## 376 0.3612124 -1.3926697
## 378 0.3844617 -0.9719057
## 380 0.1568586 -0.5789409
## 382 0.3612124 -1.3926697
## 386 0.3844617 -0.9719057
## 388 0.3612124 -1.3926697
## 394 0.6968196 -0.6503183
## 396 0.3612124 -1.3926697
## 398 0.1568586 -0.5789409
## 400 0.3844617 -0.9719057
## 401 1.0267316  0.2663208
## 402 0.1568586 -0.5789409
## 403 0.3844617 -0.9719057
## 404 0.3612124 -1.3926697
## 405 0.1568586 -0.5789409
## 406 0.3844617 -0.9719057
## 407 0.1568586 -0.5789409
## 408 0.3844617 -0.9719057
## 409 0.3612124 -1.3926697
## 414 0.1568586 -0.5789409
## 415 0.1568586 -0.5789409
## 416 0.3612124 -1.3926697
## 419 0.1568586 -0.5789409
## 420 0.1568586 -0.5789409
## 421 0.3844617 -0.9719057
## 422 0.1568586 -0.5789409
## 424 0.3844617 -0.9719057
## 425 0.3612124 -1.3926697
subset(p_table, p_table$Infit>1.4)
##     TestTakerID P_PropCorrect      Theta        SE   Outfit  Outfit_t    Infit
## 3             3        40.00% -2.5351672 0.7587624 4.215192 2.8424540 2.081836
## 12           12        90.00%  0.7916991 1.1106587 1.202165 0.7175924 1.524509
## 20           20        90.00%  0.7916991 1.1106587 1.345403 0.7837426 1.549879
## 21           21        40.00% -2.5351672 0.7587624 1.471466 0.8180884 1.696670
## 43           43        80.00% -0.1632616 0.9172265 1.340105 0.6469852 1.871783
## 46           46        60.00% -1.4663564 0.7688974 2.339554 1.8161267 1.892995
## 60           60        90.00%  0.7916991 1.1106587 1.406800 0.8106603 1.559081
## 63           63        80.00% -0.1632616 0.9172265 1.340105 0.6469852 1.871783
## 68           68        90.00%  0.7916991 1.1106587 1.202165 0.7175924 1.524509
## 74           74        90.00%  0.7916991 1.1106587 1.406800 0.8106603 1.559081
## 76           76        90.00%  0.7916991 1.1106587 1.202165 0.7175924 1.524509
## 77           77        90.00%  0.7916991 1.1106587 1.202165 0.7175924 1.524509
## 78           78        80.00% -0.1632616 0.9172265 1.121249 0.4749542 1.409198
## 89           89        80.00% -0.1632616 0.9172265 1.849681 0.9850767 2.037078
## 90           90        80.00% -0.1632616 0.9172265 1.849681 0.9850767 2.037078
## 94           94        80.00% -0.1632616 0.9172265 3.149713 1.6295306 2.200562
## 102         102        60.00% -1.4663564 0.7688974 1.640166 1.0861630 1.718998
## 103         103        90.00%  0.7916991 1.1106587 1.406800 0.8106603 1.559081
## 107         107        70.00% -0.8772971 0.8190927 2.067709 1.3305471 1.647437
## 116         116        90.00%  0.7916991 1.1106587 1.802020 0.9675062 1.602602
## 119         119        80.00% -0.1632616 0.9172265 1.340105 0.6469852 1.871783
## 123         123        90.00%  0.7916991 1.1106587 1.202165 0.7175924 1.524509
## 140         140        90.00%  0.7916991 1.1106587 1.202165 0.7175924 1.524509
## 142         142        80.00% -0.1632616 0.9172265 1.340105 0.6469852 1.871783
## 143         143        90.00%  0.7916991 1.1106587 1.202165 0.7175924 1.524509
## 150         150        90.00%  0.7916991 1.1106587 1.345403 0.7837426 1.549879
## 155         155        80.00% -0.1632616 0.9172265 1.340105 0.6469852 1.871783
## 158         158        90.00%  0.7916991 1.1106587 1.202165 0.7175924 1.524509
## 198         198        40.00% -2.5351672 0.7587624 1.778577 1.1322964 1.891745
## 208         208        90.00%  0.7916991 1.1106587 1.202165 0.7175924 1.524509
## 209         209        60.00% -1.4663564 0.7688974 1.886952 1.3639660 1.482815
## 211         211        80.00% -0.1632616 0.9172265 1.121249 0.4749542 1.409198
## 217         217        90.00%  0.7916991 1.1106587 1.345403 0.7837426 1.549879
## 222         222        90.00%  0.7916991 1.1106587 1.345403 0.7837426 1.549879
## 228         228        80.00% -0.1632616 0.9172265 1.315506 0.6286307 1.858899
## 257         257        80.00% -0.1632616 0.9172265 1.340105 0.6469852 1.871783
## 264         264        90.00%  0.7916991 1.1106587 1.406800 0.8106603 1.559081
## 280         280        70.00% -0.8772971 0.8190927 1.852449 1.1505426 1.581965
## 291         291        90.00%  0.7916991 1.1106587 1.202165 0.7175924 1.524509
## 299         299        70.00% -0.8772971 0.8190927 1.583239 0.9045869 1.819347
## 306         306        90.00%  0.7916991 1.1106587 1.202165 0.7175924 1.524509
## 333         333        80.00% -0.1632616 0.9172265 1.340105 0.6469852 1.871783
## 343         343        80.00% -0.1632616 0.9172265 1.121249 0.4749542 1.409198
## 347         347        90.00%  0.7916991 1.1106587 1.202165 0.7175924 1.524509
## 354         354        90.00%  0.7916991 1.1106587 1.406800 0.8106603 1.559081
## 356         356        80.00% -0.1632616 0.9172265 1.397948 0.6892760 1.906609
## 360         360        30.00% -3.0995710 0.7930736 1.422658 0.7114111 1.533438
## 361         361        50.00% -2.0031302 0.7508743 2.589188 2.0763806 1.973656
## 372         372        70.00% -0.8772971 0.8190927 1.834491 1.1349078 1.996782
## 381         381        70.00% -0.8772971 0.8190927 1.357836 0.6761808 1.436849
## 384         384        90.00%  0.7916991 1.1106587 2.290376 1.1322744 1.647064
## 385         385        30.00% -3.0995710 0.7930736 1.980269 1.1303443 2.138197
## 387         387        80.00% -0.1632616 0.9172265 1.340105 0.6469852 1.871783
## 392         392        40.00% -2.5351672 0.7587624 1.471466 0.8180884 1.696670
## 397         397        90.00%  0.7916991 1.1106587 1.202165 0.7175924 1.524509
## 399         399        90.00%  0.7916991 1.1106587 1.406800 0.8106603 1.559081
## 417         417        90.00%  0.7916991 1.1106587 2.292715 1.1330042 1.701384
## 418         418        80.00% -0.1632616 0.9172265 1.397948 0.6892760 1.906609
## 423         423        20.00% -3.7363473 0.8659962 2.048229 1.0534841 1.808065
##       Infit_t
## 3   2.5767465
## 12  0.8908693
## 20  0.9187783
## 21  1.8275475
## 43  1.4547206
## 46  2.2068066
## 60  0.9288260
## 63  1.4547206
## 68  0.8908693
## 74  0.9288260
## 76  0.8908693
## 77  0.8908693
## 78  0.8457137
## 89  1.6477059
## 90  1.6477059
## 94  1.8285632
## 102 1.8612377
## 103 0.9288260
## 107 1.4091239
## 116 0.9758182
## 119 1.4547206
## 123 0.8908693
## 140 0.8908693
## 142 1.4547206
## 143 0.8908693
## 150 0.9187783
## 155 1.4547206
## 158 0.8908693
## 198 2.2197350
## 208 0.8908693
## 209 1.3526161
## 211 0.8457137
## 217 0.9187783
## 222 0.9187783
## 228 1.4392082
## 257 1.4547206
## 264 0.9288260
## 280 1.2982300
## 291 0.8908693
## 299 1.6869571
## 306 0.8908693
## 333 1.4547206
## 343 0.8457137
## 347 0.8908693
## 354 0.9288260
## 356 1.4962982
## 360 1.3263844
## 361 2.5537001
## 372 1.9559238
## 381 1.0410444
## 384 1.0229552
## 385 2.3839739
## 387 1.4547206
## 392 1.8275475
## 397 0.8908693
## 399 0.9288260
## 417 1.0794071
## 418 1.4962982
## 423 1.6196842
subset(p_table, p_table$Infit<0.6)
##     TestTakerID P_PropCorrect      Theta        SE     Outfit   Outfit_t
## 1             1        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 4             4       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 6             6        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 7             7       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 9             9        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 10           10        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 11           11        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 13           13       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 14           14       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 15           15        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 16           16        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 22           22        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 23           23        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 24           24        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 25           25        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 26           26        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 30           30        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 33           33        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 34           34        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 37           37        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 41           41        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 50           50        50.00% -2.0031302 0.7508743 0.45714814 -0.9568200
## 56           56        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 57           57        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 59           59        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 61           61        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 66           66        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 67           67       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 69           69        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 73           73       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 79           79       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 80           80       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 81           81        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 82           82        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 83           83        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 86           86        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 87           87        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 88           88       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 96           96        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 97           97        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 109         109        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 117         117       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 120         120        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 121         121        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 128         128        50.00% -2.0031302 0.7508743 0.45714814 -0.9568200
## 129         129        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 131         131       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 133         133        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 138         138       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 139         139        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 144         144       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 146         146        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 147         147       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 149         149        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 154         154       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 156         156        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 157         157        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 161         161        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 163         163        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 164         164       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 165         165        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 166         166       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 167         167        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 169         169       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 171         171        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 173         173        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 174         174        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 175         175        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 176         176        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 178         178        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 181         181        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 183         183        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 187         187       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 188         188       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 190         190       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 191         191       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 192         192        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 193         193        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 194         194       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 195         195        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 197         197       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 199         199       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 201         201        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 202         202       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 203         203        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 204         204       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 205         205        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 213         213        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 214         214       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 215         215        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 219         219        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 220         220        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 221         221        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 223         223        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 224         224       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 227         227        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 229         229        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 230         230        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 232         232       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 233         233       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 237         237        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 238         238        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 239         239        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 240         240        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 243         243        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 244         244        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 246         246        50.00% -2.0031302 0.7508743 0.45714814 -0.9568200
## 248         248        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 251         251       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 252         252        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 254         254       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 262         262        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 266         266       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 267         267        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 268         268        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 270         270        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 272         272        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 273         273        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 277         277       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 278         278        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 279         279        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 281         281        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 282         282       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 283         283        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 286         286        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 287         287        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 289         289        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 290         290        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 292         292       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 294         294        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 295         295        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 296         296        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 298         298        20.00% -3.7363473 0.8659962 0.30371981 -0.3044809
## 300         300        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 304         304        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 305         305        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 307         307        70.00% -0.8772971 0.8190927 0.41582276 -0.7412154
## 308         308       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 309         309        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 317         317       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 318         318        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 319         319        50.00% -2.0031302 0.7508743 0.45714814 -0.9568200
## 321         321        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 322         322        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 328         328       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 329         329        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 330         330        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 335         335        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 336         336        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 337         337        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 346         346        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 349         349        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 358         358       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 363         363        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 366         366        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 368         368        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 373         373        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 375         375        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 376         376        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 378         378        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 380         380       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 382         382        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 386         386        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 388         388        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 396         396        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 398         398       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 400         400        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 402         402       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 403         403        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 404         404        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 405         405       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 406         406        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 407         407       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 408         408        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 409         409        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 414         414       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 415         415       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 416         416        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
## 419         419       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 420         420       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 421         421        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 422         422       100.00%  2.3471248 1.7628252 0.04344653  0.8893776
## 424         424        90.00%  0.7916991 1.1106587 0.16335767 -0.1230185
## 425         425        80.00% -0.1632616 0.9172265 0.23116561 -0.6747306
##         Infit    Infit_t
## 1   0.3612124 -1.3926697
## 4   0.1568586 -0.5789409
## 6   0.3844617 -0.9719057
## 7   0.1568586 -0.5789409
## 9   0.3844617 -0.9719057
## 10  0.5673364 -1.0609277
## 11  0.3844617 -0.9719057
## 13  0.1568586 -0.5789409
## 14  0.1568586 -0.5789409
## 15  0.3612124 -1.3926697
## 16  0.3612124 -1.3926697
## 22  0.3612124 -1.3926697
## 23  0.3612124 -1.3926697
## 24  0.3844617 -0.9719057
## 25  0.3844617 -0.9719057
## 26  0.3612124 -1.3926697
## 30  0.3844617 -0.9719057
## 33  0.3612124 -1.3926697
## 34  0.3612124 -1.3926697
## 37  0.3612124 -1.3926697
## 41  0.3844617 -0.9719057
## 50  0.5789023 -1.5004777
## 56  0.3612124 -1.3926697
## 57  0.5673364 -1.0609277
## 59  0.3612124 -1.3926697
## 61  0.5673364 -1.0609277
## 66  0.3612124 -1.3926697
## 67  0.1568586 -0.5789409
## 69  0.3612124 -1.3926697
## 73  0.1568586 -0.5789409
## 79  0.1568586 -0.5789409
## 80  0.1568586 -0.5789409
## 81  0.5673364 -1.0609277
## 82  0.3612124 -1.3926697
## 83  0.3844617 -0.9719057
## 86  0.3844617 -0.9719057
## 87  0.3844617 -0.9719057
## 88  0.1568586 -0.5789409
## 96  0.5673364 -1.0609277
## 97  0.3612124 -1.3926697
## 109 0.3844617 -0.9719057
## 117 0.1568586 -0.5789409
## 120 0.3844617 -0.9719057
## 121 0.3612124 -1.3926697
## 128 0.5789023 -1.5004777
## 129 0.3612124 -1.3926697
## 131 0.1568586 -0.5789409
## 133 0.3612124 -1.3926697
## 138 0.1568586 -0.5789409
## 139 0.3844617 -0.9719057
## 144 0.1568586 -0.5789409
## 146 0.3844617 -0.9719057
## 147 0.1568586 -0.5789409
## 149 0.3844617 -0.9719057
## 154 0.1568586 -0.5789409
## 156 0.3844617 -0.9719057
## 157 0.3612124 -1.3926697
## 161 0.3612124 -1.3926697
## 163 0.3844617 -0.9719057
## 164 0.1568586 -0.5789409
## 165 0.3612124 -1.3926697
## 166 0.1568586 -0.5789409
## 167 0.3844617 -0.9719057
## 169 0.1568586 -0.5789409
## 171 0.3612124 -1.3926697
## 173 0.3612124 -1.3926697
## 174 0.3844617 -0.9719057
## 175 0.3612124 -1.3926697
## 176 0.3844617 -0.9719057
## 178 0.3844617 -0.9719057
## 181 0.3844617 -0.9719057
## 183 0.3844617 -0.9719057
## 187 0.1568586 -0.5789409
## 188 0.1568586 -0.5789409
## 190 0.1568586 -0.5789409
## 191 0.1568586 -0.5789409
## 192 0.3612124 -1.3926697
## 193 0.3844617 -0.9719057
## 194 0.1568586 -0.5789409
## 195 0.3612124 -1.3926697
## 197 0.1568586 -0.5789409
## 199 0.1568586 -0.5789409
## 201 0.3612124 -1.3926697
## 202 0.1568586 -0.5789409
## 203 0.3612124 -1.3926697
## 204 0.1568586 -0.5789409
## 205 0.3844617 -0.9719057
## 213 0.3612124 -1.3926697
## 214 0.1568586 -0.5789409
## 215 0.3844617 -0.9719057
## 219 0.3844617 -0.9719057
## 220 0.3844617 -0.9719057
## 221 0.3844617 -0.9719057
## 223 0.3844617 -0.9719057
## 224 0.1568586 -0.5789409
## 227 0.3612124 -1.3926697
## 229 0.3612124 -1.3926697
## 230 0.3844617 -0.9719057
## 232 0.1568586 -0.5789409
## 233 0.1568586 -0.5789409
## 237 0.3844617 -0.9719057
## 238 0.3844617 -0.9719057
## 239 0.3844617 -0.9719057
## 240 0.3844617 -0.9719057
## 243 0.3844617 -0.9719057
## 244 0.3844617 -0.9719057
## 246 0.5789023 -1.5004777
## 248 0.3612124 -1.3926697
## 251 0.1568586 -0.5789409
## 252 0.5673364 -1.0609277
## 254 0.1568586 -0.5789409
## 262 0.3612124 -1.3926697
## 266 0.1568586 -0.5789409
## 267 0.3612124 -1.3926697
## 268 0.3612124 -1.3926697
## 270 0.3844617 -0.9719057
## 272 0.3612124 -1.3926697
## 273 0.3844617 -0.9719057
## 277 0.1568586 -0.5789409
## 278 0.3844617 -0.9719057
## 279 0.3844617 -0.9719057
## 281 0.3612124 -1.3926697
## 282 0.1568586 -0.5789409
## 283 0.3844617 -0.9719057
## 286 0.3612124 -1.3926697
## 287 0.3844617 -0.9719057
## 289 0.3612124 -1.3926697
## 290 0.3844617 -0.9719057
## 292 0.1568586 -0.5789409
## 294 0.3844617 -0.9719057
## 295 0.3844617 -0.9719057
## 296 0.3844617 -0.9719057
## 298 0.4766450 -1.3270601
## 300 0.3844617 -0.9719057
## 304 0.5673364 -1.0609277
## 305 0.3844617 -0.9719057
## 307 0.5673364 -1.0609277
## 308 0.1568586 -0.5789409
## 309 0.3612124 -1.3926697
## 317 0.1568586 -0.5789409
## 318 0.3844617 -0.9719057
## 319 0.5789023 -1.5004777
## 321 0.3612124 -1.3926697
## 322 0.3844617 -0.9719057
## 328 0.1568586 -0.5789409
## 329 0.3612124 -1.3926697
## 330 0.3612124 -1.3926697
## 335 0.3612124 -1.3926697
## 336 0.3844617 -0.9719057
## 337 0.3612124 -1.3926697
## 346 0.3612124 -1.3926697
## 349 0.3844617 -0.9719057
## 358 0.1568586 -0.5789409
## 363 0.3612124 -1.3926697
## 366 0.3612124 -1.3926697
## 368 0.3844617 -0.9719057
## 373 0.3612124 -1.3926697
## 375 0.3612124 -1.3926697
## 376 0.3612124 -1.3926697
## 378 0.3844617 -0.9719057
## 380 0.1568586 -0.5789409
## 382 0.3612124 -1.3926697
## 386 0.3844617 -0.9719057
## 388 0.3612124 -1.3926697
## 396 0.3612124 -1.3926697
## 398 0.1568586 -0.5789409
## 400 0.3844617 -0.9719057
## 402 0.1568586 -0.5789409
## 403 0.3844617 -0.9719057
## 404 0.3612124 -1.3926697
## 405 0.1568586 -0.5789409
## 406 0.3844617 -0.9719057
## 407 0.1568586 -0.5789409
## 408 0.3844617 -0.9719057
## 409 0.3612124 -1.3926697
## 414 0.1568586 -0.5789409
## 415 0.1568586 -0.5789409
## 416 0.3612124 -1.3926697
## 419 0.1568586 -0.5789409
## 420 0.1568586 -0.5789409
## 421 0.3844617 -0.9719057
## 422 0.1568586 -0.5789409
## 424 0.3844617 -0.9719057
## 425 0.3612124 -1.3926697