This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

plot(cars)

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

summary(mtcars)
      mpg             cyl             disp      
 Min.   :10.40   Min.   :4.000   Min.   : 71.1  
 1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8  
 Median :19.20   Median :6.000   Median :196.3  
 Mean   :20.09   Mean   :6.188   Mean   :230.7  
 3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0  
 Max.   :33.90   Max.   :8.000   Max.   :472.0  
       hp             drat             wt       
 Min.   : 52.0   Min.   :2.760   Min.   :1.513  
 1st Qu.: 96.5   1st Qu.:3.080   1st Qu.:2.581  
 Median :123.0   Median :3.695   Median :3.325  
 Mean   :146.7   Mean   :3.597   Mean   :3.217  
 3rd Qu.:180.0   3rd Qu.:3.920   3rd Qu.:3.610  
 Max.   :335.0   Max.   :4.930   Max.   :5.424  
      qsec             vs        
 Min.   :14.50   Min.   :0.0000  
 1st Qu.:16.89   1st Qu.:0.0000  
 Median :17.71   Median :0.0000  
 Mean   :17.85   Mean   :0.4375  
 3rd Qu.:18.90   3rd Qu.:1.0000  
 Max.   :22.90   Max.   :1.0000  
       am              gear      
 Min.   :0.0000   Min.   :3.000  
 1st Qu.:0.0000   1st Qu.:3.000  
 Median :0.0000   Median :4.000  
 Mean   :0.4062   Mean   :3.688  
 3rd Qu.:1.0000   3rd Qu.:4.000  
 Max.   :1.0000   Max.   :5.000  
      carb      
 Min.   :1.000  
 1st Qu.:2.000  
 Median :2.000  
 Mean   :2.812  
 3rd Qu.:4.000  
 Max.   :8.000  
head(mtcars)
tail(mtcars)
str(mtcars)
'data.frame':   32 obs. of  11 variables:
 $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
 $ disp: num  160 160 108 258 360 ...
 $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
 $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
 $ qsec: num  16.5 17 18.6 19.4 17 ...
 $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
 $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
 $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
mtcars[1,]
mtcars[1:10,]
mtcars[3,4]
[1] 93
mtcars[1:2]
Car_data<-mtcars
View(Car_data)
dim(Car_data)
[1] 32 11
rownames(Car_data)
 [1] "Mazda RX4"           "Mazda RX4 Wag"      
 [3] "Datsun 710"          "Hornet 4 Drive"     
 [5] "Hornet Sportabout"   "Valiant"            
 [7] "Duster 360"          "Merc 240D"          
 [9] "Merc 230"            "Merc 280"           
[11] "Merc 280C"           "Merc 450SE"         
[13] "Merc 450SL"          "Merc 450SLC"        
[15] "Cadillac Fleetwood"  "Lincoln Continental"
[17] "Chrysler Imperial"   "Fiat 128"           
[19] "Honda Civic"         "Toyota Corolla"     
[21] "Toyota Corona"       "Dodge Challenger"   
[23] "AMC Javelin"         "Camaro Z28"         
[25] "Pontiac Firebird"    "Fiat X1-9"          
[27] "Porsche 914-2"       "Lotus Europa"       
[29] "Ford Pantera L"      "Ferrari Dino"       
[31] "Maserati Bora"       "Volvo 142E"         
colnames(Car_data)
 [1] "mpg"  "cyl"  "disp" "hp"   "drat" "wt"  
 [7] "qsec" "vs"   "am"   "gear" "carb"
length(rownames(Car_data))
[1] 32
length(colnames(Car_data))
[1] 11
table(colnames(Car_data))

  am carb  cyl disp drat gear   hp  mpg qsec 
   1    1    1    1    1    1    1    1    1 
  vs   wt 
   1    1 
col_name<-c('mpg','hp','vs')
Car_data[col_name]
table(car_data$vs)

 0 
32 
car_data[car_data$vs==0,]
table(rownames(car_data))

        AMC Javelin  Cadillac Fleetwood 
                  1                   1 
         Camaro Z28   Chrysler Imperial 
                  1                   1 
         Datsun 710    Dodge Challenger 
                  1                   1 
         Duster 360        Ferrari Dino 
                  1                   1 
           Fiat 128           Fiat X1-9 
                  1                   1 
     Ford Pantera L         Honda Civic 
                  1                   1 
     Hornet 4 Drive   Hornet Sportabout 
                  1                   1 
Lincoln Continental        Lotus Europa 
                  1                   1 
      Maserati Bora           Mazda RX4 
                  1                   1 
      Mazda RX4 Wag            Merc 230 
                  1                   1 
          Merc 240D            Merc 280 
                  1                   1 
          Merc 280C          Merc 450SE 
                  1                   1 
         Merc 450SL         Merc 450SLC 
                  1                   1 
   Pontiac Firebird       Porsche 914-2 
                  1                   1 
     Toyota Corolla       Toyota Corona 
                  1                   1 
            Valiant          Volvo 142E 
                  1                   1 
car_data[car_data$hp<90,]
car_data[car_data$mpg>23 && hp>90,]

Get the unique count of cars

length(rownames(car_data))
[1] 32

Get mean of weight by cylinder

df_wt<-car_data[c('wt','cyl')]
attach(car_data)
The following objects are masked from car_data (pos = 3):

    am, carb, cyl, disp, drat, gear, hp,
    mpg, qsec, vs, wt

The following objects are masked from car_data (pos = 4):

    am, carb, cyl, disp, drat, gear, hp,
    mpg, qsec, vs, wt

The following objects are masked from car_data (pos = 5):

    am, carb, cyl, disp, drat, gear, hp,
    mpg, qsec, vs, wt

The following objects are masked from car_data (pos = 6):

    am, carb, cyl, disp, drat, gear, hp,
    mpg, qsec, vs, wt
split_df<-split(df_wt,cyl)
lapply(split(df_mpg$wt,df_wt$cyl),mean)
$`4`
[1] 2.285727

$`6`
[1] 3.117143

$`8`
[1] 3.999214

Get the no. of cars by gear

table(car_data$gear)

 3  4  5 
15 12  5 

Get mean mpg by gear and carb and cylinder

library(dplyr)

Attaching package: 㤼㸱dplyr㤼㸲

The following objects are masked from 㤼㸱package:stats㤼㸲:

    filter, lag

The following objects are masked from 㤼㸱package:base㤼㸲:

    intersect, setdiff, setequal, union
car_data %>% group_by(gear,carb,cyl) %>%
  summarise(mean_mpg=mean(mpg))
`summarise()` regrouping output by 'gear', 'carb' (override with `.groups` argument)

Which car has the max hp?

car_data[car_data$hp==max(car_data$hp),]

which car has the minimum displacement ?

car_data[car_data$disp==min(car_data$disp),]

Get summary of the data

summary(car_data)
      mpg        cyl         disp      
 Min.   :10.40   4:11   Min.   : 71.1  
 1st Qu.:15.43   6: 7   1st Qu.:120.8  
 Median :19.20   8:14   Median :196.3  
 Mean   :20.09          Mean   :230.7  
 3rd Qu.:22.80          3rd Qu.:326.0  
 Max.   :33.90          Max.   :472.0  
       hp             drat      
 Min.   : 52.0   Min.   :2.760  
 1st Qu.: 96.5   1st Qu.:3.080  
 Median :123.0   Median :3.695  
 Mean   :146.7   Mean   :3.597  
 3rd Qu.:180.0   3rd Qu.:3.920  
 Max.   :335.0   Max.   :4.930  
       wt             qsec       vs    
 Min.   :1.513   Min.   :14.50   0:32  
 1st Qu.:2.581   1st Qu.:16.89         
 Median :3.325   Median :17.71         
 Mean   :3.217   Mean   :17.85         
 3rd Qu.:3.610   3rd Qu.:18.90         
 Max.   :5.424   Max.   :22.90         
       am         gear   carb  
 Min.   :0.0000   3:15   1: 7  
 1st Qu.:0.0000   4:12   2:10  
 Median :0.0000   5: 5   3: 3  
 Mean   :0.4062          4:10  
 3rd Qu.:1.0000          6: 1  
 Max.   :1.0000          8: 1  

Out of all the cars with 4 cyl which car has max displ and min hp?

car_data[car_data]
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCg0KVHJ5IGV4ZWN1dGluZyB0aGlzIGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqUnVuKiBidXR0b24gd2l0aGluIHRoZSBjaHVuayBvciBieSBwbGFjaW5nIHlvdXIgY3Vyc29yIGluc2lkZSBpdCBhbmQgcHJlc3NpbmcgKkN0cmwrU2hpZnQrRW50ZXIqLiANCg0KYGBge3J9DQpwbG90KGNhcnMpDQpgYGANCg0KQWRkIGEgbmV3IGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqSW5zZXJ0IENodW5rKiBidXR0b24gb24gdGhlIHRvb2xiYXIgb3IgYnkgcHJlc3NpbmcgKkN0cmwrQWx0K0kqLg0KDQpXaGVuIHlvdSBzYXZlIHRoZSBub3RlYm9vaywgYW4gSFRNTCBmaWxlIGNvbnRhaW5pbmcgdGhlIGNvZGUgYW5kIG91dHB1dCB3aWxsIGJlIHNhdmVkIGFsb25nc2lkZSBpdCAoY2xpY2sgdGhlICpQcmV2aWV3KiBidXR0b24gb3IgcHJlc3MgKkN0cmwrU2hpZnQrSyogdG8gcHJldmlldyB0aGUgSFRNTCBmaWxlKS4NCg0KVGhlIHByZXZpZXcgc2hvd3MgeW91IGEgcmVuZGVyZWQgSFRNTCBjb3B5IG9mIHRoZSBjb250ZW50cyBvZiB0aGUgZWRpdG9yLiBDb25zZXF1ZW50bHksIHVubGlrZSAqS25pdCosICpQcmV2aWV3KiBkb2VzIG5vdCBydW4gYW55IFIgY29kZSBjaHVua3MuIEluc3RlYWQsIHRoZSBvdXRwdXQgb2YgdGhlIGNodW5rIHdoZW4gaXQgd2FzIGxhc3QgcnVuIGluIHRoZSBlZGl0b3IgaXMgZGlzcGxheWVkLg0KDQoNCmBgYHtyfQ0Kc3VtbWFyeShtdGNhcnMpDQpgYGANCg0KYGBge3J9DQpoZWFkKG10Y2FycykNCmBgYA0KDQpgYGB7cn0NCnRhaWwobXRjYXJzKQ0KYGBgDQoNCmBgYHtyfQ0Kc3RyKG10Y2FycykNCmBgYA0KDQpgYGB7cn0NCm10Y2Fyc1sxLF0NCmBgYA0KDQpgYGB7cn0NCm10Y2Fyc1sxOjEwLF0NCmBgYA0KDQpgYGB7cn0NCm10Y2Fyc1szLDRdDQpgYGANCg0KYGBge3J9DQptdGNhcnNbMToyXQ0KYGBgDQoNCmBgYHtyfQ0KQ2FyX2RhdGE8LW10Y2Fycw0KVmlldyhDYXJfZGF0YSkNCmBgYA0KDQpgYGB7cn0NCmRpbShDYXJfZGF0YSkNCmBgYA0KDQpgYGB7cn0NCnJvd25hbWVzKENhcl9kYXRhKQ0KYGBgDQoNCmBgYHtyfQ0KY29sbmFtZXMoQ2FyX2RhdGEpDQpgYGANCg0KYGBge3J9DQpsZW5ndGgocm93bmFtZXMoQ2FyX2RhdGEpKQ0KYGBgDQoNCmBgYHtyfQ0KbGVuZ3RoKGNvbG5hbWVzKENhcl9kYXRhKSkNCmBgYA0KDQpgYGB7cn0NCnRhYmxlKGNvbG5hbWVzKENhcl9kYXRhKSkNCmBgYA0KDQpgYGB7cn0NCmNvbF9uYW1lPC1jKCdtcGcnLCdocCcsJ3ZzJykNCkNhcl9kYXRhW2NvbF9uYW1lXQ0KYGBgDQoNCmBgYHtyfQ0KdGFibGUoY2FyX2RhdGEkdnMpDQpgYGANCg0KYGBge3J9DQpjYXJfZGF0YVtjYXJfZGF0YSR2cz09MCxdDQpgYGANCg0KYGBge3J9DQp0YWJsZShyb3duYW1lcyhjYXJfZGF0YSkpDQpgYGANCg0KYGBge3J9DQpjYXJfZGF0YVtjYXJfZGF0YSRocDw5MCxdDQpgYGANCg0KYGBge3J9DQpjYXJfZGF0YVtjYXJfZGF0YSRtcGc+MjMgJiYgaHA+OTAsXQ0KYGBgDQoNCkdldCB0aGUgdW5pcXVlIGNvdW50IG9mIGNhcnMNCmBgYHtyfQ0KbGVuZ3RoKHJvd25hbWVzKGNhcl9kYXRhKSkNCmBgYA0KDQpHZXQgbWVhbiBvZiB3ZWlnaHQgYnkgY3lsaW5kZXINCmBgYHtyfQ0KZGZfd3Q8LWNhcl9kYXRhW2MoJ3d0JywnY3lsJyldDQphdHRhY2goY2FyX2RhdGEpDQpzcGxpdF9kZjwtc3BsaXQoZGZfd3QsY3lsKQ0KbGFwcGx5KHNwbGl0KGRmX21wZyR3dCxkZl93dCRjeWwpLG1lYW4pDQpgYGANCg0KR2V0IHRoZSBuby4gb2YgY2FycyBieSBnZWFyDQpgYGB7cn0NCnRhYmxlKGNhcl9kYXRhJGdlYXIpDQpgYGANCg0KR2V0IG1lYW4gbXBnIGJ5IGdlYXIgYW5kIGNhcmIgYW5kIGN5bGluZGVyDQpgYGB7cn0NCmxpYnJhcnkoZHBseXIpDQpjYXJfZGF0YSAlPiUgZ3JvdXBfYnkoZ2VhcixjYXJiLGN5bCkgJT4lDQogIHN1bW1hcmlzZShtZWFuX21wZz1tZWFuKG1wZykpDQpgYGANCg0KV2hpY2ggY2FyIGhhcyB0aGUgbWF4IGhwPw0KYGBge3J9DQpjYXJfZGF0YVtjYXJfZGF0YSRocD09bWF4KGNhcl9kYXRhJGhwKSxdDQpgYGANCg0Kd2hpY2ggY2FyIGhhcyB0aGUgbWluaW11bSBkaXNwbGFjZW1lbnQgPw0KYGBge3J9DQpjYXJfZGF0YVtjYXJfZGF0YSRkaXNwPT1taW4oY2FyX2RhdGEkZGlzcCksXQ0KYGBgDQoNCkdldCBzdW1tYXJ5IG9mIHRoZSBkYXRhDQpgYGB7cn0NCnN1bW1hcnkoY2FyX2RhdGEpDQpgYGANCg0KIE91dCBvZiBhbGwgdGhlIGNhcnMgd2l0aCA0IGN5bCB3aGljaCBjYXIgaGFzIG1heCBkaXNwbCBhbmQgbWluIGhwPw0KYGBge3J9DQpjYXJfZGF0YVtjYXJfZGF0YV0NCmBgYA0KIA0KIA==