Make data vectors, calculate lambda, and put together dataframe with all necessary data.
The census period; an index from 1 to 39 of how many years of data have been collected.
census <- 1:39
The year: 1959 to 1997 (Dennis et al use 1959-1987)
year.t <- 1959:1997
Population size is recorded as the number of females with …
females.N <- c(44,47,46,44,46,
45,46,40,39,39,
42,39,41,40,33,
36,34,39,35,34,
38,36,37,41,39,
51,47,57,48,60,
65,74,69,65,57,
70,81,99,99)
Population growth rate is a ratio of population sizes.
Enter the population size for each year
females.N.1959 <- 44
females.N.1960 <- 47
(47-44)/44
#> [1] 0.06818182
Calculate the ratio of the 2 population sizes
lambda.59_60 <- females.N.1960/females.N.1959
44*1.068182
#> [1] 47.00001
Access the population sizes by using bracket notation rather than hard coding
# Access the data
females.N[2] #1960 (44)
#> [1] 47
females.N[1] #1959 (47)
#> [1] 44
# store in objects
females.N.1959 <- females.N[1]
females.N.1960 <- females.N[2]
# confirm the output
females.N.1960/females.N.1959
#> [1] 1.068182
Calculate lambda using bracket notation
lambda.59_60 <- females.N[ ]/females.N[ ]
The first year of data is 1959. What is lambda for 1958 to 1959?
females.N[1]
#> [1] 44
lambda.58_59 <- females.N[1]/females.N[ ]
Printing out indices 2,3, printing out indices 1,2 of females.N, and giving the two lambda values in one line of code.
females.N[2:3]
#> [1] 47 46
females.N[1:2]
#> [1] 44 47
females.N[2:3]/females.N[1:2]
#> [1] 1.0681818 0.9787234
This is similar t the previous code chunk, just using all of the data (no need to describe)
length(females.N)
#> [1] 39
females.N[2:39]/females.N[1:38]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
TASK What does this do? Briefly describe in 1 to 2 sentences why I am using length().
Calculating all lambdas in the data set using vectorized math. length() is being used so that this code could be used on any other data set to calculate all its lambdas with any arbitrary data size. This avoids any further hard coding to those using the code.
len <- length(females.N)
females.N[2:len]/females.N[1:len-1]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
TASK What does this do? Briefly describe in 1 to 2 sentences what is different about this code chunk from the previous one.
In the previous code, the size of the females.N vector is stored in a variable to be used to find the lambdas of the dataset using length(). In this code, the size is not being stored in a variable, but rather length() is being used twice so that the lambdas of the females.N can be calculated with only one line of code.
females.N[2:length(females.N)]/females.N[1:length(females.N)-1]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
Make a short vector to play with; first 10 years
females.N[1:10]
#> [1] 44 47 46 44 46 45 46 40 39 39
females.Ntemp <- females.N[1:10]
Check - are there 10 numbers
females.Ntemp
#> [1] 44 47 46 44 46 45 46 40 39 39
TASK
What does this do? Briefly describe what the [-1] is doing.
The -1 drops the first element. Using an index -i will drop index i from its data structure.
females.Ntemp[-1]
#> [1] 47 46 44 46 45 46 40 39 39
TASK How many lambdas can I calculate using the first 10 years of data?
You can calculate the 10 lambdas with a data of 10 years.
females.Ntemp[2:10]/females.Ntemp[1:9]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000
“Negative indexing” allows you to drop a specific element from a vector.
TASK Drop the the first element
females.Ntemp[-1]
#> [1] 47 46 44 46 45 46 40 39 39
TASK Drop the second element
females.Ntemp[-2]
#> [1] 44 46 44 46 45 46 40 39 39
TASK
How do you drop the 10th element? Type in the code below.
females.Ntemp[-10]
#> [1] 44 47 46 44 46 45 46 40 39
TASK How do you access the last element? Do this in a general way without hard-coding.
The length() function gives the last index number of a given data structure. This avoids hard-coding.
females.Ntemp[length(females.Ntemp)]
#> [1] 39
TASK How do DROP the last element? Do this in a general way without hard-coding. By general, I mean in a way that if the length of the vector females.Ntemp changed the code would still drop the correct element.
The length() function returns the last index of a given data structure. By negating the length() function with females.Ntemp as its arguments, we remove the last element of the vector.
females.Ntemp[-length(females.Ntemp)]
#> [1] 44 47 46 44 46 45 46 40 39
TASK Calculate the first 9 lambdas.
lambda.i <- females.Ntemp[2:10]/females.Ntemp[1:9]
Converting between these 2 code chunks would be a good test question : )
lambda.i <- females.Ntemp[-1]/females.Ntemp[-length(females.Ntemp)]
TASK
Below each bulleted line describe what the parts of the code do. Run the code to test it.
What does females.N[-1] do? Outputs each element of females.N except its first element
What does females.N[-length(females.N)? Outputs each element of females.N except its first element.
TASK Calculate lambdas for all of the data
females.N[-1]
#> [1] 47 46 44 46 45 46 40 39 39 42 39 41 40 33 36 34 39 35 34 38 36 37 41 39 51
#> [26] 47 57 48 60 65 74 69 65 57 70 81 99 99
females.N[-length(females.N)]
#> [1] 44 47 46 44 46 45 46 40 39 39 42 39 41 40 33 36 34 39 35 34 38 36 37 41 39
#> [26] 51 47 57 48 60 65 74 69 65 57 70 81 99
lambda.i <- females.N[-1]/females.N[-length(females.N)]
TASK
What does this code do? Why do I include NA in the code? (I didn’t cover this in lecture, so just type 1 line - your best guess. “I don’t know” is fine.)
NA refers to unknown values in the data structures and acts as place-holders.
lambda.i <- c(lambda.i,NA)
TASK
Check the help file; what type of log does log() calculate (I forgot to put this question on the test!)
Log in R by defaults calculates the natural logarithm of its argument.
lambda_log <- log(lambda.i)
bear_N <- data.frame(census,
year.t,
females.N,
lambda.i,
lambda_log)
TASK
List 3 functions that allow you to examine this dataframe.
TASK
plot(females.N ~ year.t, data=bear_N, type="b",xlab="Year",ylab="Population index (females + cubs)")
Bears love to eat trash. Yellowstone closed the last garbage dump in 1970 https://www.yellowstonepark.com/things-to-do/yellowstone-bears-no-longer-get-garbage-treats
plot(females.N ~ year.t, data = bear_N,
type = "b",
ylab = "Population index (females + cubs)",
xlab = "Year")
abline(v = 1970)
To determine is a population is likely to go instinct, we simulate population dynamics by randomly taking population growth rates out from a hat.
hat_of_lambdas <- bear_N$lambda.i
is.na(hat_of_lambdas)
#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [37] FALSE FALSE TRUE
any(is.na(hat_of_lambdas) == TRUE)
#> [1] TRUE
Drop the NA
length(hat_of_lambdas)
#> [1] 39
hat_of_lambdas[39]
#> [1] NA
hat_of_lambdas[-39]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
hat_of_lambdas[-length(hat_of_lambdas)]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
na.omit(hat_of_lambdas)
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
#> attr(,"na.action")
#> [1] 39
#> attr(,"class")
#> [1] "omit"
hat_of_lambdas <- hat_of_lambdas[-length(hat_of_lambdas)]
hist(hat_of_lambdas)
The following uses the sample() function to take a lambda from a data structure to use as a growth rate.
#taking a single lambda from hat_of_lambdas
sample(x = hat_of_lambdas, size = 1,replace = TRUE)
#> [1] 0.8421053
#replace cycles throughout DS
#saving a sampling of hat to object
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
Using the head() and tail() function to find the initial population size to work with.
head(bear_N) #shows top of FD
#> census year.t females.N lambda.i lambda_log
#> 1 1 1959 44 1.0681818 0.06595797
#> 2 2 1960 47 0.9787234 -0.02150621
#> 3 3 1961 46 0.9565217 -0.04445176
#> 4 4 1962 44 1.0454545 0.04445176
#> 5 5 1963 46 0.9782609 -0.02197891
#> 6 6 1964 45 1.0222222 0.02197891
tail(bear_N) #shows bottom rows of data
#> census year.t females.N lambda.i lambda_log
#> 34 34 1992 65 0.8769231 -0.1313360
#> 35 35 1993 57 1.2280702 0.2054440
#> 36 36 1994 70 1.1571429 0.1459539
#> 37 37 1995 81 1.2222222 0.2006707
#> 38 38 1996 99 1.0000000 0.0000000
#> 39 39 1997 99 NA NA
N.1997 <- 99
Given a certain (random) lambda and initial population size, predicts possible population in the next year.
1.22807*99
#> [1] 121.5789
lambda_rand.t*N.1997
#> [1] 93.78947
N.1998 <- lambda_rand.t*N.1997
Runs a simulation of future population of bears an ‘arbitrary’ years into the future. Caveat on arbitrary as the simulation’s implementation hard codes each year’s prediction by having to insert each lambda and population’s year.
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.1998 <- lambda_rand.t*N.1997
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.1999 <- lambda_rand.t*N.1998
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2000 <- lambda_rand.t*N.1999
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2001 <- lambda_rand.t*N.2000
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2002 <- lambda_rand.t*N.2001
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2003 <- lambda_rand.t*N.2002
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2004 <- lambda_rand.t*N.2003
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2005 <- lambda_rand.t*N.2004
The following shows the change in population per year.
year <- seq(1997, 2004)
N.rand <- c(N.1998,N.1999,N.2000,N.2001,N.2002,N.2003,N.2004,N.2005)
df.rand <- data.frame(N.rand, year)
plot(N.rand ~ year, data = df.rand, type = "b")
The following code simulates population growth for an arbitrary amount of years into the future by using a pseudo for loop: the code takes a variable t to represent a year, takes a random lambda, and simulates the population growth from the two. The variable t is updates to represent the next year for the next round of simulation.
# Setting up initial condition
N.1997 <- 99
N.initial <- 99
# Explore xlim = argument
plot(N.1997 ~ c(1997))
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50))
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50), ylim = c(0, 550))
# pseudo for loop in R
#
N.current <- N.initial
# 'for loop'
t <- 1
# Assigning a random lambda to an object from hat
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
# Determining new population size from lambda and current size
N.t <- N.current*lambda_rand.t
# Getting predicted year
year.t <- 1997+t
# Plotting obtained year
points(N.t ~ year.t)
# Setting predicted year to current year (reassigning t )
N.current <- N.t
The following code is simulated population growth using a for loop in R where t represents the n number of years after the set initial year.
# make a new plot with a starting population size
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50), ylim = c(0, 550))
#uses 1997 as initial population size
N.current <- N.1997
# beginning of for loop(its header)
for(t in 1:50){ #t representing each year for 50 years from '97
# Taking a random lambda from hat to predict population size
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
# Getting predicted population size
N.t <- N.current*lambda_rand.t
# Obtianing year to predict for plotting point
year.t <- 1997+t
# Plots prediction
points(N.t ~ year.t)
# Setting up N.current for next iteration of loop
N.current <- N.t
}
Goody R plotting code to declares parameters for R’s plotting
par(mfrow = c(3,3), mar = c(1,1,1,1))
Following code uses a for loop to print out a plot of projected population growth.
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50), ylim = c(0, 550))
N.current <- N.1997
for(t in 1:50){
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
N.t <- N.current*lambda_rand.t
year.t <- 1997+t
points(N.t ~ year.t)
N.current <- N.t
}