Load Data

bat_pas<- read_excel("D:/BoxFiles/Box Sync/CodigoR/Murcielagos/data/Conteos_fases_xFabian.xls")

bat_pas_2 <- read_excel("D:/BoxFiles/Box Sync/CodigoR/Murcielagos/data/Conteos_fases_xFabian.xls", 
    sheet = "Sheet2")

bat_pas_3 <- read_excel("D:/BoxFiles/Box Sync/CodigoR/Murcielagos/data/Conteos_fases_xFabian.xls", 
    sheet = "Sheet3")

See data

kable(bat_pas) %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = T,
                font_size = 9)# %>%
Cobertura Meses Precipitación FB_Eptesicus FT_Eptesicus FB_Molossus_rufus FT_Molossus_rufus FB_Myotis_nigricans FT_Myotis_nigricans FB_Saccopteryx_leptura FT_Saccopteryx_leptura FB_Peropteryx_macrotis FT_Peropteryx_macrotis FB_Cormura_brevirostris FT_Cormura_brevirostris
Bosque Febrero 41 0 0 0 0 1 0 1 0 0 0 0 0
Bosque Febrero 100 33 0 6 0 0 0 7 0 0 0 1 0
Bosque Febrero 10 51 1 1 0 0 0 26 0 2 0 5 0
Bosque Junio 0 406 94 9 0 8 0 24 3 0 0 1 0
Bosque Junio 5 2 0 0 0 0 0 4 0 30 0 3 1
Bosque Junio 2 3 0 10 0 0 0 9 2 0 0 3 0
Bosque Junio 27 0 0 5 0 0 0 5 1 0 0 2 0
Bosque Octubre 0 228 42 24 1 95 3 8 2 19 3 6 0
SSP Febrero 0 25 1 11 0 1 1 22 4 0 0 1 0
SSP Febrero 5 42 0 90 12 0 0 7 0 2 0 3 0
SSP Febrero 4 17 0 31 2 0 0 9 0 1 0 1 0
SSP Junio 0 217 64 61 13 33 2 40 16 19 3 16 1
SSP Junio 14 239 30 106 14 0 0 25 4 9 1 32 4
SSP Junio 25 62 20 40 4 2 0 47 28 23 4 10 1
SSP Octubre 0 128 8 37 3 32 1 32 0 10 0 3 0
SSP Noviembre 11 131 9 11 2 119 4 116 35 0 0 7 0
SC Febrero 35 239 16 59 4 51 3 1 0 36 4 3 0
SC Febrero 3 347 26 108 29 62 2 11 0 21 5 2 0
SC Febrero 9 263 5 71 11 114 5 8 2 24 0 0 0
SC Junio 0 127 21 107 56 97 3 12 3 39 22 4 0
SC Junio 44 328 16 84 15 84 6 37 6 62 18 7 0
SC Junio 8 65 6 66 16 10 0 8 0 12 1 6 0
SC Octubre 1 46 1 26 5 6 0 9 2 26 6 63 0
SC Octubre 0 128 7 0 0 7 0 1 0 63 18 0 0
   # scroll_box(height = "350px")

GLMs

GLM conteo todas las especies

Busqueda

# GLM_full <- glm(Busqueda~ Cobertura + Meses + Especie, family="poisson", data=bat_pas_2)
# anova(GLM_full_t, test = "Chi")
# 
# dat <- ggpredict(GLM_full, terms = c("Meses", "Cobertura"))
# plot(dat)

GLM_full2 <- glm(Busqueda~ Cobertura + Meses, family="poisson", data=bat_pas_3)
anova(GLM_full2, test = "Chi")
dat <- ggpredict(GLM_full2, terms = c("Meses", "Cobertura"))
plot(dat, show.y.title = FALSE) + ylab("No. Fases de Busqueda")

Terminal

GLM_full3 <- glm(Terminal~ Cobertura + Meses, family="poisson", data=bat_pas_3)
anova(GLM_full3, test = "Chi")
dat <- ggpredict(GLM_full3, terms = c("Meses", "Cobertura"))
plot(dat, show.y.title = FALSE) + ylab("No. Fases Terminales")

Eptesicus

Fase Busqueda

GLM_E_FB <- glm(FB_Eptesicus~ Cobertura-1 + Meses-1, family="poisson", data=bat_pas)

# opar <- par(no.readonly=TRUE)
# par(mfrow=c(1,2))
# attach(bat_pas)
# hist(FB_Eptesicus, breaks=20, xlab="Conteo Fases Busqueda",
#      main="Distribución de fases")
# boxplot(FB_Eptesicus ~ Cobertura, xlab="Treatment", main="Group Comparisons")
# par(opar)
anova(GLM_E_FB, test = "Chisq")
summary(GLM_E_FB)
## 
## Call:
## glm(formula = FB_Eptesicus ~ Cobertura - 1 + Meses - 1, family = "poisson", 
##     data = bat_pas)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -14.320  -10.102   -4.804    6.422   22.595  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## CoberturaBosque  4.34951    0.04564  95.305  < 2e-16 ***
## CoberturaSC      5.13843    0.03636 141.338  < 2e-16 ***
## CoberturaSSP     4.51208    0.04424 101.993  < 2e-16 ***
## MesesJunio       0.28063    0.04097   6.849 7.44e-12 ***
## MesesNoviembre   0.36312    0.09793   3.708 0.000209 ***
## MesesOctubre     0.03955    0.05393   0.733 0.463329    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 27119.0  on 24  degrees of freedom
## Residual deviance:  2458.2  on 18  degrees of freedom
## AIC: 2606.4
## 
## Number of Fisher Scoring iterations: 6
# summary(glht(GLM_E_FB, mcp(tension = "Tukey")))

ggpredict(GLM_E_FB)  %>% plot(connect.lines = FALSE) # + 
## $Cobertura

## 
## $Meses

  # labs(x = "x") 

Fase Terminal

GLM_E_FT <- glm(FT_Eptesicus~ Cobertura-1 + Meses-1, family="poisson", data=bat_pas)
anova(GLM_E_FT, test = "Chisq")
summary(GLM_E_FT)
## 
## Call:
## glm(formula = FT_Eptesicus ~ Cobertura - 1 + Meses - 1, family = "poisson", 
##     data = bat_pas)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -7.2152  -3.5451  -2.0838   0.2318  10.2696  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## CoberturaBosque   1.7351     0.1597  10.863  < 2e-16 ***
## CoberturaSC       1.4771     0.1677   8.808  < 2e-16 ***
## CoberturaSSP      1.8380     0.1585  11.599  < 2e-16 ***
## MesesJunio        1.5241     0.1564   9.748  < 2e-16 ***
## MesesNoviembre    0.3592     0.3691   0.973     0.33    
## MesesOctubre      1.0297     0.1949   5.282 1.27e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 1950.74  on 24  degrees of freedom
## Residual deviance:  495.56  on 18  degrees of freedom
## AIC: 579.78
## 
## Number of Fisher Scoring iterations: 7
ggpredict(GLM_E_FT)  %>% plot(connect.lines = FALSE)# + 
## $Cobertura

## 
## $Meses

Molossus rufus

Fase Busqueda

GLM_Mr_FB <- glm(FB_Molossus_rufus~ Cobertura-1 + Meses-1, family="poisson", data=bat_pas)
anova(GLM_Mr_FB, test = "Chisq")
summary(GLM_Mr_FB)
## 
## Call:
## glm(formula = FB_Molossus_rufus ~ Cobertura - 1 + Meses - 1, 
##     family = "poisson", data = bat_pas)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -7.7975  -2.7852  -0.4048   1.0047   7.6965  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## CoberturaBosque  1.86244    0.14162  13.151  < 2e-16 ***
## CoberturaSC      4.21208    0.05976  70.488  < 2e-16 ***
## CoberturaSSP     3.94604    0.06469  60.995  < 2e-16 ***
## MesesJunio       0.24113    0.06860   3.515  0.00044 ***
## MesesNoviembre  -1.54815    0.30837  -5.020 5.16e-07 ***
## MesesOctubre    -0.79763    0.11941  -6.680 2.39e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 6143.23  on 24  degrees of freedom
## Residual deviance:  310.63  on 18  degrees of freedom
## AIC: 431.02
## 
## Number of Fisher Scoring iterations: 5
ggpredict(GLM_Mr_FB)  %>% plot(connect.lines = FALSE)# + 
## $Cobertura

## 
## $Meses

Fase Terminal

GLM_Mr_FT <- glm(FT_Molossus_rufus~ Cobertura-1 + Meses-1, family="poisson", data=bat_pas)
anova(GLM_Mr_FT, test = "Chisq")
summary(GLM_Mr_FT)
## 
## Call:
## glm(formula = FT_Molossus_rufus ~ Cobertura - 1 + Meses - 1, 
##     family = "poisson", data = bat_pas)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.2020  -1.7516  -0.5080   0.8422   4.5057  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## CoberturaBosque  -2.4331     1.0067  -2.417 0.015651 *  
## CoberturaSC       2.6475     0.1388  19.073  < 2e-16 ***
## CoberturaSSP      1.6344     0.1802   9.069  < 2e-16 ***
## MesesJunio        0.7087     0.1604   4.419  9.9e-06 ***
## MesesNoviembre   -0.9413     0.7297  -1.290 0.197083    
## MesesOctubre     -1.3129     0.3588  -3.659 0.000253 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 793.49  on 24  degrees of freedom
## Residual deviance: 100.93  on 18  degrees of freedom
## AIC: 170.9
## 
## Number of Fisher Scoring iterations: 6
ggpredict(GLM_Mr_FT)  %>% plot(connect.lines = FALSE)# + 
## $Cobertura

## 
## $Meses

Myotis nigricans

Fase Busqueda

GLM_Mn_FB <- glm(FB_Myotis_nigricans~ Cobertura-1 + Meses-1, family="poisson", data=bat_pas)
anova(GLM_Mn_FB, test = "Chisq")
summary(GLM_Mn_FB)
## 
## Call:
## glm(formula = FB_Myotis_nigricans ~ Cobertura - 1 + Meses - 1, 
##     family = "poisson", data = bat_pas)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -8.730  -5.030  -3.969   1.879  14.159  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## CoberturaBosque  2.57189    0.11160  23.046   <2e-16 ***
## CoberturaSC      3.97964    0.07149  55.667   <2e-16 ***
## CoberturaSSP     2.27674    0.13052  17.443   <2e-16 ***
## MesesJunio      -0.03399    0.09308  -0.365    0.715    
## MesesNoviembre   2.50239    0.15950  15.689   <2e-16 ***
## MesesOctubre     0.07541    0.10787   0.699    0.485    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 4814.62  on 24  degrees of freedom
## Residual deviance:  792.94  on 18  degrees of freedom
## AIC: 881.77
## 
## Number of Fisher Scoring iterations: 7
ggpredict(GLM_Mn_FB)  %>% plot(connect.lines = FALSE)# + 
## $Cobertura

## 
## $Meses

Fase Terminal

GLM_Mn_FT <- glm(FT_Myotis_nigricans~ Cobertura-1 + Meses-1, family="poisson", data=bat_pas)
anova(GLM_Mn_FT, test = "Chisq")
summary(GLM_Mn_FT)
## 
## Call:
## glm(formula = FT_Myotis_nigricans ~ Cobertura - 1 + Meses - 1, 
##     family = "poisson", data = bat_pas)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2629  -1.0874  -0.8790   0.3138   3.0553  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)   
## CoberturaBosque -0.91528    0.62609  -1.462  0.14377   
## CoberturaSC      0.97587    0.32567   2.997  0.00273 **
## CoberturaSSP    -0.48973    0.54482  -0.899  0.36871   
## MesesJunio      -0.03575    0.42684  -0.084  0.93324   
## MesesNoviembre   1.87603    0.73948   2.537  0.01118 * 
## MesesOctubre    -0.45745    0.58616  -0.780  0.43514   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 62.006  on 24  degrees of freedom
## Residual deviance: 39.688  on 18  degrees of freedom
## AIC: 80.295
## 
## Number of Fisher Scoring iterations: 7
ggpredict(GLM_Mn_FT)  %>% plot(connect.lines = FALSE)# + 
## $Cobertura

## 
## $Meses

Saccopteryx leptura

Fase Busqueda

GLM_Sl_FB <- glm(FB_Saccopteryx_leptura~ Cobertura-1 + Meses-1, family="poisson", data=bat_pas)
anova(GLM_Sl_FB, test = "Chisq")
summary(GLM_Sl_FB)
## 
## Call:
## glm(formula = FB_Saccopteryx_leptura ~ Cobertura - 1 + Meses - 
##     1, family = "poisson", data = bat_pas)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.5399  -2.2647  -0.1891   1.2087   5.7427  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## CoberturaBosque   1.8746     0.1436  13.053  < 2e-16 ***
## CoberturaSC       1.9756     0.1413  13.986  < 2e-16 ***
## CoberturaSSP      2.8295     0.1147  24.671  < 2e-16 ***
## MesesJunio        0.7616     0.1251   6.088 1.15e-09 ***
## MesesNoviembre    1.9240     0.1476  13.039  < 2e-16 ***
## MesesOctubre      0.2777     0.1766   1.572    0.116    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 2390.31  on 24  degrees of freedom
## Residual deviance:  139.68  on 18  degrees of freedom
## AIC: 253.3
## 
## Number of Fisher Scoring iterations: 5
ggpredict(GLM_Sl_FB)  %>% plot(connect.lines = FALSE)# + 
## $Cobertura

## 
## $Meses

Fase Terminal

GLM_Sl_FT <- glm(FT_Saccopteryx_leptura~ Cobertura-1 + Meses-1, family="poisson", data=bat_pas)
anova(GLM_Sl_FT, test = "Chisq")
summary(GLM_Sl_FT)
## 
## Call:
## glm(formula = FT_Saccopteryx_leptura ~ Cobertura - 1 + Meses - 
##     1, family = "poisson", data = bat_pas)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.3857  -1.2490  -0.5930   0.9063   2.9848  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## CoberturaBosque  -1.7384     0.5325  -3.264   0.0011 ** 
## CoberturaSC      -1.0461     0.4803  -2.178   0.0294 *  
## CoberturaSSP      0.3872     0.4139   0.935   0.3496    
## MesesJunio        2.3225     0.4274   5.435 5.49e-08 ***
## MesesNoviembre    3.1681     0.4471   7.085 1.39e-12 ***
## MesesOctubre      0.5313     0.6466   0.822   0.4112    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 424.156  on 24  degrees of freedom
## Residual deviance:  61.138  on 18  degrees of freedom
## AIC: 116.96
## 
## Number of Fisher Scoring iterations: 6
ggpredict(GLM_Sl_FT)  %>% plot(connect.lines = FALSE)# + 
## $Cobertura

## 
## $Meses

Peropteryx macrotis

Fase Busqueda

GLM_Pm_FB <- glm(FB_Peropteryx_macrotis~ Cobertura-1 + Meses-1, family="poisson", data=bat_pas)
anova(GLM_Pm_FB, test = "Chisq")
summary(GLM_Pm_FB)
## 
## Call:
## glm(formula = FB_Peropteryx_macrotis ~ Cobertura - 1 + Meses - 
##     1, family = "poisson", data = bat_pas)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -5.551  -2.836  -0.844   2.003   6.021  
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)    
## CoberturaBosque    1.2857     0.1704   7.547 4.45e-14 ***
## CoberturaSC        2.9800     0.1134  26.277  < 2e-16 ***
## CoberturaSSP       1.6794     0.1550  10.834  < 2e-16 ***
## MesesJunio         0.7723     0.1297   5.957 2.58e-09 ***
## MesesNoviembre   -16.9820  1275.7539  -0.013    0.989    
## MesesOctubre       0.8921     0.1425   6.261 3.84e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 2002.27  on 24  degrees of freedom
## Residual deviance:  207.31  on 18  degrees of freedom
## AIC: 296.79
## 
## Number of Fisher Scoring iterations: 13
ggpredict(GLM_Pm_FB)  %>% plot(connect.lines = FALSE)# + 
## $Cobertura

## 
## $Meses

Fase Terminal

GLM_Pm_FT <- glm(FT_Peropteryx_macrotis~ Cobertura-1 + Meses-1, family="poisson", data=bat_pas)
anova(GLM_Pm_FT, test = "Chisq")
summary(GLM_Pm_FT)
## 
## Call:
## glm(formula = FT_Peropteryx_macrotis ~ Cobertura - 1 + Meses - 
##     1, family = "poisson", data = bat_pas)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -4.5125  -1.0484  -0.5497   0.8902   2.4078  
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)    
## CoberturaBosque   -2.2819     0.6595  -3.460  0.00054 ***
## CoberturaSC        0.9418     0.3367   2.797  0.00515 ** 
## CoberturaSSP      -1.0987     0.4699  -2.338  0.01939 *  
## MesesJunio         1.6833     0.3627   4.641 3.47e-06 ***
## MesesNoviembre   -15.2039  2103.3626  -0.007  0.99423    
## MesesOctubre       1.5794     0.3855   4.097 4.19e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 295.072  on 24  degrees of freedom
## Residual deviance:  58.703  on 18  degrees of freedom
## AIC: 108.77
## 
## Number of Fisher Scoring iterations: 14
ggpredict(GLM_Pm_FT)  %>% plot(connect.lines = FALSE)# + 
## $Cobertura

## 
## $Meses

Cormura brevirostris

Fase Busqueda

GLM_Cb_FB <- glm(FB_Cormura_brevirostris~ Cobertura-1 + Meses-1, family="poisson", data=bat_pas)
anova(GLM_Cb_FB, test = "Chisq")
summary(GLM_Cb_FB)
## 
## Call:
## glm(formula = FB_Cormura_brevirostris ~ Cobertura - 1 + Meses - 
##     1, family = "poisson", data = bat_pas)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -6.5834  -1.4580  -0.4083   0.3855   7.1976  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## CoberturaBosque  -0.4405     0.3239  -1.360  0.17384    
## CoberturaSC       0.8313     0.2652   3.135  0.00172 ** 
## CoberturaSSP      0.8726     0.2647   3.296  0.00098 ***
## MesesJunio        1.6188     0.2729   5.932 2.99e-09 ***
## MesesNoviembre    1.0733     0.4615   2.326  0.02003 *  
## MesesOctubre      2.2446     0.2777   8.084 6.27e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 731.79  on 24  degrees of freedom
## Residual deviance: 181.35  on 18  degrees of freedom
## AIC: 263.29
## 
## Number of Fisher Scoring iterations: 6
ggpredict(GLM_Cb_FB)  %>% plot(connect.lines = FALSE)# + 
## $Cobertura

## 
## $Meses

Fase Terminal

GLM_Cb_FT <- glm(FT_Cormura_brevirostris~ Cobertura-1 + Meses-1, family="poisson", data=bat_pas)
## Warning: glm.fit: fitted rates numerically 0 occurred
anova(GLM_Cb_FT, test = "Chisq")
summary(GLM_Cb_FT)
## 
## Call:
## glm(formula = FT_Cormura_brevirostris ~ Cobertura - 1 + Meses - 
##     1, family = "poisson", data = bat_pas)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.78339  -0.00005  -0.00003   0.00000   1.24305  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)
## CoberturaBosque   -22.8774 10837.6758  -0.002    0.998
## CoberturaSC       -41.9506 14548.2618  -0.003    0.998
## CoberturaSSP      -20.7980 10837.6757  -0.002    0.998
## MesesJunio         21.4911 10837.6757   0.002    0.998
## MesesNoviembre     -1.5046 43615.1146   0.000    1.000
## MesesOctubre        0.3733 18974.8369   0.000    1.000
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 45.0904  on 24  degrees of freedom
## Residual deviance:  5.5452  on 18  degrees of freedom
## AIC: 26.811
## 
## Number of Fisher Scoring iterations: 20
ggpredict(GLM_Cb_FT)  %>% plot(connect.lines = FALSE)# + 
## $Cobertura

## 
## $Meses

GLM Busqueda todas las especies

GLM_full_b <- glm(Busqueda~ Cobertura + Meses + Especie, family="poisson", data=bat_pas_2)

dat <- ggpredict(GLM_full_b, terms = c("Cobertura", "Especie"))
plot(dat, show.y.title = FALSE) + ylab("No. Fases de Busqueda")

plot(dat, 
      log.y = TRUE, 
      breaks = c(.1, 10, 100, 300, 600),
      # limits = c(0, 800),
     facet = TRUE, add.data = TRUE,
     show.y.title = FALSE) + ylab("No. Fases de Busqueda")
## Warning: Transformation introduced infinite values in continuous y-axis

GLM Terminal todas las especies

GLM_full_t <- glm(Terminal~ Cobertura + Meses + Especie, family="poisson", data=bat_pas_2)

dat <- ggpredict(GLM_full_t, terms = c("Cobertura", "Especie"))
plot(dat, , show.y.title = FALSE) + ylab("No. Fases Terminales")

plot(dat, 
      log.y = TRUE, 
      breaks = c(.01, 1, 5, 15, 45, 100),
      # limits = c(0, 800),
     facet = TRUE, add.data = TRUE,
     show.y.title = FALSE) + ylab("No. Fases de Terminales")
## Warning: Transformation introduced infinite values in continuous y-axis