library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2 ✓ purrr 0.3.4
## ✓ tibble 3.0.3 ✓ dplyr 1.0.0
## ✓ tidyr 1.1.0 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0
## ── Conflicts ───────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
setwd("~/Desktop/DATA 110")
# load data of pfizer payments to doctors and warning letters sent by food and drug administration
pfizer <- read_csv("pfizer.csv")
## Parsed with column specification:
## cols(
## org_indiv = col_character(),
## first_plus = col_character(),
## first_name = col_character(),
## last_name = col_character(),
## city = col_character(),
## state = col_character(),
## category = col_character(),
## cash = col_double(),
## other = col_double(),
## total = col_double()
## )
fda <- read_csv("fda.csv")
## Parsed with column specification:
## cols(
## name_last = col_character(),
## name_first = col_character(),
## name_middle = col_character(),
## issued = col_character(),
## office = col_character()
## )
# view structure of data
str(pfizer)
## tibble [10,087 × 10] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ org_indiv : chr [1:10087] "3-D MEDICAL SERVICES LLC" "AA DOCTORS, INC." "ABBO, LILIAN MARGARITA" "ABBO, LILIAN MARGARITA" ...
## $ first_plus: chr [1:10087] "STEVEN BRUCE" "AAKASH MOHAN" "LILIAN MARGARITA" "LILIAN MARGARITA" ...
## $ first_name: chr [1:10087] "STEVEN" "AAKASH" "LILIAN" "LILIAN" ...
## $ last_name : chr [1:10087] "DEITELZWEIG" "AHUJA" "ABBO" "ABBO" ...
## $ city : chr [1:10087] "NEW ORLEANS" "PASO ROBLES" "MIAMI" "MIAMI" ...
## $ state : chr [1:10087] "LA" "CA" "FL" "FL" ...
## $ category : chr [1:10087] "Professional Advising" "Expert-Led Forums" "Business Related Travel" "Meals" ...
## $ cash : num [1:10087] 2625 1000 0 0 1800 ...
## $ other : num [1:10087] 0 0 448 119 0 0 47 0 0 396 ...
## $ total : num [1:10087] 2625 1000 448 119 1800 ...
## - attr(*, "spec")=
## .. cols(
## .. org_indiv = col_character(),
## .. first_plus = col_character(),
## .. first_name = col_character(),
## .. last_name = col_character(),
## .. city = col_character(),
## .. state = col_character(),
## .. category = col_character(),
## .. cash = col_double(),
## .. other = col_double(),
## .. total = col_double()
## .. )
str(fda)
## tibble [272 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ name_last : chr [1:272] "ADELGLASS" "ADKINSON" "ALLEN" "AMSTERDAM" ...
## $ name_first : chr [1:272] "JEFFREY" "N." "MARK" "DANIEL" ...
## $ name_middle: chr [1:272] "M." "FRANKLIN" "S." NA ...
## $ issued : chr [1:272] "5/25/1999" "4/19/2000" "1/28/2002" "11/17/2004" ...
## $ office : chr [1:272] "Center for Drug Evaluation and Research" "Center for Biologics Evaluation and Research" "Center for Devices and Radiological Health" "Center for Biologics Evaluation and Research" ...
## - attr(*, "spec")=
## .. cols(
## .. name_last = col_character(),
## .. name_first = col_character(),
## .. name_middle = col_character(),
## .. issued = col_character(),
## .. office = col_character()
## .. )
***Notice that issued has been recognized as a Date variable. Other common data types include num, for numbers that may contain decimals and POSIXct for full date and time.
***In my case above, issues is a “chr”, not a “Date” variable.
# print values for total in pfizer data
pfizer$total
## [1] 2625 1000 448 119 1800 750 47 825 3000
## [10] 396 1750 58 88 2000 189 2500 38 4400
## [19] 2074 218 1750 154 1000 4000 1250 93 750
## [28] 59 1250 1000 3000 41 2400 12840 39 750
## [37] 109 1062 390 71 30 850 120 2000 99
## [46] 1000 28 1500 1750 2300 27 1000 66 1500
## [55] 1000 174 1000 33 2500 3000 611 300 669
## [64] 2150 1160 42 2000 1250 131 1250 117 780
## [73] 231 12300 100 750 381 950 663 4007 1500
## [82] 384 9000 395 7500 115 33 1000 50 1000
## [91] 32 85 1750 66 1375 48 1172 190 4814
## [100] 1144 2363 66 2500 1000 10948 132 6500 6150
## [109] 669 2000 234 1000 99 1000 29 314 1750
## [118] 1000 563 47 384 316 7500 204 6750 7545
## [127] 4485 1250 1800 750 58 6702 3750 135 82
## [136] 256 6750 1500 270 79 2375 41 2500 2000
## [145] 1000 4000 1500 314 1500 60 1250 87 3000
## [154] 1000 5000 1000 97 462 19250 5299 937 3829
## [163] 3000 525 1000 478 296 7107 1000 1250 49
## [172] 593 7500 1750 186 1375 25 60 1500 4500
## [181] 236 500 175 3000 318 110 3250 100 875
## [190] 158 3000 1500 61 244 669 7878 63 1500
## [199] 253 974 85 9250 169 40 1000 476 1500
## [208] 25 2206 1028 285 432 560 1250 34 32
## [217] 1000 3500 90 6000 401 2200 428 2600 1000
## [226] 2500 161 75 3500 2500 33 1250 963 309
## [235] 3000 750 262 481 213 36 5000 124 1800
## [244] 2000 167 2000 2000 44 1200 79 267 3000
## [253] 732 20500 1250 1849 22250 240 2000 1000 8081
## [262] 37750 9500 71 4500 95 894 1375 128 1250
## [271] 35 27 85 1000 210 750 413 1374 29
## [280] 1500 167 123 1250 1000 80 1035 671 15520
## [289] 341 8500 6572 353 4500 32 1000 153 2000
## [298] 1000 1000 6000 2585 1765 2000 7000 201 1250
## [307] 804 4500 208 815 669 1000 90 583 3175
## [316] 221 1065 2000 27 2000 49 2500 73 628
## [325] 669 1500 396 617 1250 74 168 2000 78
## [334] 5500 1250 202 875 528 291 4500 162 3000
## [343] 1000 750 42 1500 104 8777 709 2375 580
## [352] 7000 1038 2250 5813 1750 472 74 3000 461
## [361] 103 2500 656 387 110 2375 625 496 1000
## [370] 49 123 3000 4688 70000 1500 71 6250 800
## [379] 400 320 365 11250 411 2000 1000 79 1250
## [388] 138 292 252 1750 374 7250 3300 2000 159
## [397] 2000 124 885 2000 208 2000 1000 122 4000
## [406] 1752 1000 687 2773 30500 3000 1144 500 2750
## [415] 1153 376 2000 834 916 2500 753 185 7400
## [424] 6250 1937 24750 1250 5872 15250 1035 25750 2500
## [433] 327 2589 722 16000 2170 52 500 587 1000
## [442] 88 71 3750 1043 792 2039 4000 467 337
## [451] 1000 3375 6500 239 347 2000 237 2341 468
## [460] 2329 1100 105000 756 1000 97 1250 53 619
## [469] 1050 316 300 669 1000 151 1000 5250 295
## [478] 3250 87 126 262 1750 4108 2000 1986 11000
## [487] 750 270 33 1000 140 3750 283 1024 21000
## [496] 273 668 273 2000 500 63 1250 47 116
## [505] 85 382 2000 2500 3000 243 927 669 66
## [514] 111 2500 4000 172 1000 124 51 2400 78
## [523] 1000 371 76710 80621 3500 976 343 3000 750
## [532] 750 199 235 8000 184 177 690 1000 134
## [541] 1000 79 271 1000 1560 174 2750 56 1250
## [550] 85 186 67 384 47 2000 4702 26400 484
## [559] 2000 199 1500 40 1000 80 230 3300 51
## [568] 475 2000 260 1000 758 27000 1250 1057 625
## [577] 9750 2206 44 2000 277 4614 3750 287 182
## [586] 2500 636 384 317 3000 56 173 1750 136
## [595] 3750 1250 149 1600 314 750 27 750 216
## [604] 251 5000 25 2000 37 6600 127 1100 504
## [613] 750 85 116693 105811 19093 1172 1000 750 109
## [622] 1250 39 1200 87 173 10500 326 85 800
## [631] 114 67 2000 196 75 59 700 243 573
## [640] 1805 296 562 1413 11250 435 2000 149 1125
## [649] 2000 2000 168 875 1250 137 1368 6400 5600
## [658] 1000 149 725 623 136 736 1153 493 2750
## [667] 1750 779 625 625 52 822 445 2150 241
## [676] 3200 541 160 5000 129 2000 1250 163 635
## [685] 252 1115 459 520 1000 275 3000 260 1750
## [694] 1500 1250 25 521 2000 251 905 669 63
## [703] 3750 437 583 13250 422 27 1250 86 532
## [712] 384 73 3250 80 2200 1000 114 1000 120
## [721] 423 7500 222 1000 195 1000 5748 375 1250
## [730] 121 929 804 1000 130 90 1750 281 4250
## [739] 570 261 4375 471 341 3500 39 1750 750
## [748] 1250 28 1000 1500 352 1000 298 47 1650
## [757] 537 7543 29725 500 86 102 3000 109 6000
## [766] 50000 1500 81 397 533 625 355 1000 200
## [775] 5500 600 369 2250 1000 1250 194 55 1500
## [784] 2250 289 145 5000 283 258 13500 264 505
## [793] 3500 555 2500 1000 465 387 610 384 1189
## [802] 290 25000 68 3000 277 3000 27 2500 313
## [811] 1250 139 37 1000 84 252 8250 33 18063
## [820] 281 8500 68 3000 91 3000 44 85 1500
## [829] 67 1750 2500 155 800 25 2500 1000 107
## [838] 67 500 95 2500 131 2000 220 2000 485
## [847] 3085 1218 777 231 4000 1500 750 183 5057
## [856] 15682 2464 4291 90 2000 88 2000 110 27
## [865] 4000 263 2000 1748 690 9600 63 1000 374
## [874] 4500 192 1000 58 1000 221 1250 59 500
## [883] 427 85 375 113 50 568 1000 2000 1000
## [892] 86 1000 289 82 28 2750 625 77 625
## [901] 1400 301 578 330 1750 1000 84 2000 886
## [910] 16000 218 1500 54 1000 286 1074 549 115
## [919] 2000 395 6500 264 304 3600 236 4500 370
## [928] 30 2500 89 865 669 1000 1000 91 248
## [937] 500 215 4750 31 516 1000 1000 195 1000
## [946] 252 500 6375 318 1000 226 115 7225 289
## [955] 650 629 247 800 346 3300 47 750 327
## [964] 285 549 625 75 500 104 747 384 750
## [973] 32 750 71 56 4500 164 2000 353 1000
## [982] 88 19500 45 1000 111 1050 1327 669 1428
## [991] 975 164 910 1000 1207 17000 85 31 8835
## [1000] 601 669 3500 2000 1750 750 84 47 1500
## [1009] 52 89 650 1250 723 560 426 387 120
## [1018] 1500 313 877 384 666 415 171 907 31000
## [1027] 1875 216 8500 0 1500 4000 1250 8575 2002
## [1036] 26250 644 46 1600 94 1000 1000 69 500
## [1045] 72 539 384 97 500 1310 19750 245 1000
## [1054] 750 203 492 455 945 638 258 51 5500
## [1063] 622 55 2200 190 4000 38 925 144 8000
## [1072] 639 1500 1167 669 299 500 290 358 2400
## [1081] 470 4250 5750 537 487 728 669 290 358
## [1090] 2400 853 1375 193 4125 684 390 1000 28
## [1099] 3150 856 3750 1465 104 2750 1000 2000 1925
## [1108] 2400 142 1250 37 669 1000 126 1250 84
## [1117] 2500 172 275 70 438 1000 625 269 6062
## [1126] 64 1500 101 1375 131 102 3500 134 500
## [1135] 264 11500 674 5000 25 625 96 4189 1000
## [1144] 254 1000 1000 26 1551 7950 22500 41975 8957
## [1153] 684 245 9500 218 66 675 64 3000 87
## [1162] 1172 5579 3000 594 320 3000 26 252 1750
## [1171] 185 3500 73 192 5000 532 1500 1000 186
## [1180] 1435 166 1000 61 465 3500 838 4500 11289
## [1189] 3500 44 2000 205 2000 85 1500 100 1000
## [1198] 528 1250 306 1250 1000 65278 1000 82 2250
## [1207] 366 3000 1619 8000 651 2000 10144 650 387
## [1216] 102 380 47 12000 221 2000 393 481 17000
## [1225] 559 2000 698 5500 464 63 6250 186 330
## [1234] 2200 138 1000 3000 1250 25 3000 208 2000
## [1243] 216 1250 37 47 178 2000 1522 669 1216
## [1252] 692 53 575 1012 669 456 350 500 374
## [1261] 1059 105 26500 50 1000 36 1000 2000 407
## [1270] 990 187 1750 1800 26 1000 750 750 124
## [1279] 44 1000 450 2000 1144 2500 1000 2000 58
## [1288] 314 6750 572 2500 250 1000 5000 1750 1500
## [1297] 2400 67 63 1500 178 1750 992 7250 6416
## [1306] 33 5000 1056 2850 174 1000 559 71 1750
## [1315] 1000 750 107 1500 533 30 625 2500 2000
## [1324] 189 1000 621 669 66 2400 790 144 3731
## [1333] 1000 522 500 229 875 777 264 103 1000
## [1342] 33 1000 237 112 1000 127 2000 28 2000
## [1351] 1500 367 800 25 33 3000 84 5500 147
## [1360] 984 62 1059 677 1000 427 10000 176 1000
## [1369] 148 500 165 750 167 2500 125 706 1500
## [1378] 68 1000 79 29 2250 81 2250 155 1750
## [1387] 1018 1500 336 230 11500 167 9500 416 2500
## [1396] 132 1650 308 10888 2000 126 1000 1750 165
## [1405] 50000 285 245 1750 1000 12500 960 6000 2619
## [1414] 9750 967 29000 1250 3000 1750 4000 81911 949
## [1423] 638 69 513 1000 116 235 5250 157 592
## [1432] 2050 78 99 1500 158 927 6500 1062 123
## [1441] 67 3500 120 1250 200 1000 91 954 643
## [1450] 236 625 100 3381 470 9750 31 5400 653
## [1459] 3000 1500 62 32 1000 230 1250 1000 75
## [1468] 66 550 94 394 376 2000 30 1000 67
## [1477] 220 315 1000 1825 235 47 3500 379 1750
## [1486] 4000 362 33 2500 105 33 1000 156 1000
## [1495] 1690 9200 776 387 3000 601 669 162 1200
## [1504] 50 625 137 176 2000 566 103 2500 502
## [1513] 813 2000 269 38 1300 196 1253 67 19000
## [1522] 344 3649 9500 709 13000 1000 26 4447 690
## [1531] 19050 2722 18500 951 20000 577 102 1000 27
## [1540] 1000 117 1131 282 2500 47 1750 2942 53
## [1549] 111 2500 772 560 557 110 2000 54 449
## [1558] 42 1750 52 3000 3000 41 3000 146 50
## [1567] 350 109 31977 37732 21294 12400 10123 8600 3800
## [1576] 5500 2500 1750 35 231 4000 632 560 1500
## [1585] 57 53 1000 102 838 144 106 657 296
## [1594] 4950 1250 64 1000 104 1250 2138 17250 416
## [1603] 26 750 1500 2000 6393 1307 2250 187 622
## [1612] 1000 500 243 819 9000 195 143 1500 163
## [1621] 4500 3750 365 47 14000 210 1250 33 668
## [1630] 799 26 1000 2187 625 382 129 1405 807
## [1639] 669 726 2250 274 37190 875 88 475 912
## [1648] 4000 387 2400 282 384 999 750 551 2500
## [1657] 44 1250 2000 552 384 89 3500 316 1044
## [1666] 264 7388 1000 728 437 2800 289 4900 13734
## [1675] 7350 281 3000 101 1500 625 121 2500 1348
## [1684] 269 2250 6500 47220 1000 31500 11000 3250 2000
## [1693] 655 581 1000 295 65 1750 551 7250 1600
## [1702] 82 445 213 500 48 1000 8155 3416 30500
## [1711] 800 1250 88 413 234 1457 80 2000 1071
## [1720] 9499 5705 99 44500 1716 7000 119 1800 1000
## [1729] 36 242 2500 416 2500 49 1250 264 73
## [1738] 12000 590 90 725 155 2625 148 500 1000
## [1747] 149 69 3500 219 439 7500 272 932 7000
## [1756] 431 159 750 453 5500 1000 44 1000 30
## [1765] 1000 224 750 65 11250 700 55 3500 113
## [1774] 1500 73 1500 31 2300 3000 292 6750 60
## [1783] 1750 88 2750 7500 277 11000 1000 25 63
## [1792] 2100 281 194 384 4500 6500 113 1020 669
## [1801] 1074 506 1000 1000 1500 99 750 284 5000
## [1810] 176 1167 376 2000 409 6750 543 2000 63
## [1819] 66 5000 171 409 7000 706 13500 1000 85
## [1828] 875 518 196 5500 1000 165 363 294 505
## [1837] 25 7470 446 3500 1118 860 4000 95 625
## [1846] 2000 101 62 850 93 62 1700 720 549
## [1855] 538 330 1750 38 3750 283 29 1375 1750
## [1864] 60 3500 7000 7783 25500 2219 12000 42 2000
## [1873] 143 1000 48 460 273 2000 25278 50449 2500
## [1882] 221 750 107 1250 194 80 1000 728 47
## [1891] 5750 264 223 2300 1000 212 750 42 85
## [1900] 1352 6037 769 148 3400 738 290 903 384
## [1909] 2041 945 13726 1134 120 13500 554 60480 1000
## [1918] 96 197 10000 378 2813 4750 210 1000 90
## [1927] 798 10250 101 8000 3548 53500 5000 5750 129
## [1936] 503 1000 349 4000 78 234 742 1000 123
## [1945] 33 1500 2000 141 1250 84 795 358 2400
## [1954] 70 47 1000 134 4000 58 750 410 800
## [1963] 307 1875 2000 5438 617548 58 1500 500 2252
## [1972] 9000 8000 1250 143 6450 1750 670 560 31
## [1981] 206 5000 179 750 725 3959 374 2329 139
## [1990] 63 3500 43 317 1500 902 669 2000 1000
## [1999] 517 666 153 1700 1563 1000 28 600 125
## [2008] 506 706 878 4750 725 6750 1000 134 659
## [2017] 669 1092 86 4816 173 2500 1000 110 1500
## [2026] 1000 49 3000 130 3000 2000 2000 780 575
## [2035] 81 27 275 567 750 296 3500 33 1000
## [2044] 364 2000 79 7000 625 3000 1198 47 10500
## [2053] 75 38 1000 235 2000 32 498 509 973
## [2062] 669 2000 256 377 384 103104 522 719 549
## [2071] 128 2800 65 734 1500 97 72 3000 76
## [2080] 2250 360 799 278 1200 98 120 2500 3000
## [2089] 341 3500 172 738 1000 1000 3000 72 1500
## [2098] 50 1250 259 41 1500 85 1500 89 46
## [2107] 750 106 88 365 750 552 669 84 1000
## [2116] 1000 104 385 4500 555 4000 45 3000 4500
## [2125] 950 446 1000 3500 1295 7500 3000 617 1000
## [2134] 54 170 3500 399 1000 198 1800 132 2500
## [2143] 265 2500 2500 346 4500 210 500 97 38
## [2152] 750 164 157 387 90 1000 267 1020 560
## [2161] 55 1500 83 30 2000 345 2375 90 88
## [2170] 1500 665 79 669 602 62 2578 750 345
## [2179] 750 202 5750 284 74 750 428 292 1750
## [2188] 1000 48 242 2500 31 2400 2250 93 1000
## [2197] 54 3500 82 107 1250 1000 189 5000 335
## [2206] 694 549 591 10000 221 47 3500 216 2333
## [2215] 525 387 3875 2000 233 3000 165 1500 175
## [2224] 111 343 1750 940 26 1500 1054 8000 257
## [2233] 1500 137 2000 42 592 10500 472 325 280
## [2242] 3500 671 384 1000 109 1000 82 5500 1186
## [2251] 437 118 2800 1507 622 5000 684 58 5625
## [2260] 551 1000 2000 1000 337 1500 46 1000 556
## [2269] 6086 298 6500 1000 88 49 2000 223 1625
## [2278] 110 649 1500 1305 5000 500 99 1454 402
## [2287] 2000 1000 117 249 901 1000 348 2000 3750
## [2296] 1500 2250 90 3250 977 11700 139 3750 804
## [2305] 669 29 4500 1067 62 2094 9772 1000 33
## [2314] 74 2750 1000 84 85 3500 127 1250 189
## [2323] 1197 15150 611 1750 1625 80 3250 312 57460
## [2332] 857698 156000 10900 0 139 750 114 797 846
## [2341] 309 3000 1108 1250 403 3500 26 55 7500
## [2350] 3000 5000 616 2300 500 62 500 210 267
## [2359] 415 111 15104 394 560 177 1750 750 431
## [2368] 64 435 7000 35529 22000 26010 1500 174 750
## [2377] 95 30 99 2000 154 955 96 52000 393
## [2386] 2350 578 3750 669 1650 669 1000 5000 80
## [2395] 60 2500 49 1000 750 346 42 387 53
## [2404] 3500 750 800 625 37500 149 12000 729 2000
## [2413] 69 1000 2000 486 1080 33 2500 144 1250
## [2422] 2375 190 145 67 15000 1000 2500 659 1012
## [2431] 6200 1600 28 1000 28 88 2000 98 1076
## [2440] 12000 563 309 60 8700 536 564 2500 5750
## [2449] 830 638 6000 165 800 107 2075 1028 656
## [2458] 5375 10052 491 18813 2500 295 3000 2500 750
## [2467] 176 500 139 224 11094 834 3000 121 2750
## [2476] 101734 40 6000 322 2000 227 4000 4875 722
## [2485] 1500 3000 90 725 2000 1200 75 3553 1000
## [2494] 4500 3000 1400 197 5000 27 1000 599 669
## [2503] 2000 49 476 669 1250 98 1000 1000 89
## [2512] 529 5125 46 807 384 1636 1208 3000 110
## [2521] 694 2750 271 4000 222 15250 168 5222 3999
## [2530] 2000 199 2000 354 3000 44 12000 13600 7000
## [2539] 600 25 1000 129 750 25 1000 31 176
## [2548] 1500 525 7000 229 625 108 2000 1504 389
## [2557] 9300 50 2000 155 572 48 800 750 1250
## [2566] 258 2600 247 1000 53 1500 533 6000 9750
## [2575] 1750 44 770 638 6000 103 514 655 688
## [2584] 2500 81 180 2750 221 1000 184 1505 10500
## [2593] 141 956 669 5000 317 589 4500 1424 6500
## [2602] 1875 926 50 332 531 7500 638 1665 1218
## [2611] 1000 297 1000 203 2500 114 1500 110 1500
## [2620] 85 500 121 1250 92 260 3500 1000 425
## [2629] 487 1246 150 2400 1000 1317 14000 804 7750
## [2638] 893 11750 381 2183 8750 189 1000 669 36
## [2647] 79 1250 1000 1096 13000 1135 633 1000 84
## [2656] 1500 2250 1250 222 647 387 500 40 2340
## [2665] 561 273 2000 875 1500 140 68 1000 95
## [2674] 332 550 58 2000 739 3000 50 293 1000
## [2683] 25 1250 173 1000 73 2000 38 25 1250
## [2692] 27 1250 32 3049 660 7454 143 9833 174
## [2701] 750 3325 236 6250 114 119 1500 1000 42
## [2710] 2000 8325 500 1250 221 45 5250 130 6100
## [2719] 446 3500 383 2750 58 728 1250 761 3750
## [2728] 161 1500 83 2000 325 2000 204 1250 432
## [2737] 320 1200 532 384 130 14000 355 1931 15000
## [2746] 436 15750 2000 172 4000 708 1750 2250 454
## [2755] 1750 288 4000 284 5000 1000 2000 101 950
## [2764] 700 137 27 1000 116 3750 607 322 1000
## [2773] 200 790 202 5000 4800 25 500 1250 92
## [2782] 500 624 3000 346 700 122 764 7000 190
## [2791] 275 376 2000 750 93 2000 372 1500 73
## [2800] 159 700 367 318 1750 60 3000 629 625
## [2809] 61 1000 108 925 1750 860 1250 96 3593
## [2818] 282 8500 100 875 26 1000 2500 2500 413
## [2827] 79 1250 91 1500 3600 303 6750 26 309
## [2836] 2750 56 1200 126 4000 44 2000 170 3000
## [2845] 64 2500 165 2000 77 2000 315 458 10000
## [2854] 643 2000 350 5500 114 1500 86 4816 2000
## [2863] 251 276 2325 89 3000 489 1250 1250 93
## [2872] 47 1500 67 2000 245 5000 350 60 750
## [2881] 750 2389 388 2400 298 1700 205 126 3750
## [2890] 2300 1750 77 1500 71 1000 96 1000 3500
## [2899] 1500 82 750 1048 3000 169 3000 4093 188
## [2908] 3750 633 309 3000 800 304 875 669 4450
## [2917] 406 306 1750 1500 802 429 11250 81 530
## [2926] 2000 472 70 800 90 6250 84 7500 65
## [2935] 84 2000 340 1250 279 1723 5250 684 22000
## [2944] 2000 181 62 1000 235 6750 479 1000 33
## [2953] 103 4000 1000 117 1000 243 1500 2078 1500
## [2962] 786 1750 146 2000 46 1250 113 1902 1218
## [2971] 708 390 72 66 1000 464 15000 42 1750
## [2980] 2000 159 562 562 1000 166 2750 103 2500
## [2989] 31 500 159 692 11700 679 1684 267 3500
## [2998] 95 47 1500 500 88 2000 975 669 2750
## [3007] 1000 42 8041 1385 35000 1750 98 1209 97
## [3016] 4250 176 824 5500 151 750 148 126 1500
## [3025] 28 190 2750 1250 249 1687 750 220 1050
## [3034] 99 2000 625 268 4750 3750 21534 233 7500
## [3043] 118 2500 41 3500 625 13071 9300 390 560
## [3052] 34 67 1000 86 1000 500 4500 1664 929
## [3061] 7000 246 594 236 1000 96 444 350 709
## [3070] 459 71 2500 122 199 1750 88 2500 215
## [3079] 3000 158 3000 302 3750 169 3000 276 430
## [3088] 2000 492 5213 464 417 2500 129 160 4000
## [3097] 1000 133 223 424 490 390 84 285 4000
## [3106] 2466 45750 2253 3500 746 91 2614 2813 826
## [3115] 25 2500 156 55 1250 1000 145 316 12250
## [3124] 3500 4750 111 531 54 9500 155 38 4375
## [3133] 100 75 3000 527 1500 91 445 213 196
## [3142] 390 14000 3500 9444 5333 3500 4750 1250 525
## [3151] 625 64 320 3000 1500 299 600 486 523
## [3160] 3500 500 4521 3000 232 27450 1250 235 102
## [3169] 1000 1000 1828 3000 1584 690 9600 3000 199
## [3178] 87 650 4682 446 3500 3000 255 1074 487
## [3187] 1050 2500 51 1000 97 5000 199 7000 181
## [3196] 580 3250 49 480 223 26129 237 1375 1000
## [3205] 669 560 93 596 500 93 3500 603 560
## [3214] 29 2400 848 280 3500 5000 1200 1325 786
## [3223] 9625 584 560 5202 143 13395 500 1250 348
## [3232] 2000 750 77 945 1108 669 2000 265 1000
## [3241] 196 192 1500 4000 432 78 486 1067 236
## [3250] 83 74 2000 1750 767 669 1566 805 650
## [3259] 871 3000 391 2500 75108 1000 271 700 1000
## [3268] 99 908 2000 293 590 1750 576 157 529
## [3277] 150 140 1250 28 4000 350 501 3150 338
## [3286] 1163 2000 336 2500 1000 373 413 459 1000
## [3295] 245 457 1800 5250 338 74 1250 146 1500
## [3304] 69 2750 1000 31 27 5500 65 831 560
## [3313] 1000 497 3500 1420 3000 76 2500 625 82
## [3322] 875 932 459 29 61 3000 379 1250 1000
## [3331] 96 1005 384 212 625 589 7425 2000 620
## [3340] 330 1750 609 384 3500 67 1000 40952 1000
## [3349] 371 560 312 8250 452 972 167 3900 1000
## [3358] 241 550 276 2000 2250 1100 128 68 85
## [3367] 3500 97 750 77 554 78 384 3905 750
## [3376] 402 384 118 10027 54250 1382 120 1227 300
## [3385] 669 44 5750 72 8800 113 307 2250 995
## [3394] 85 12750 229 1700 61 4000 65 48 4000
## [3403] 226 1000 1250 77 1000 28 1250 26 6000
## [3412] 144 43 500 95 3000 388 48 47 2000
## [3421] 386 2000 1109 669 3644 687 42 1250 192
## [3430] 1471 1250 487 2072 38 1000 87 930 427
## [3439] 33705 137 625 790 459 169 79 2500 1323
## [3448] 6750 72 4000 51 591 1050 1069 638 440
## [3457] 7500 354 27 2500 123 1000 128 806 318
## [3466] 647 5250 102 2000 167 702 750 66 534
## [3475] 2200 7000 163 78 8500 325 750 52 1500
## [3484] 1250 106 3000 60 476 7250 61 1320 669
## [3493] 47 1250 255 833 560 2000 96 50000 63
## [3502] 1250 25 1750 102 249 1750 47067 47 2400
## [3511] 500 1250 42 1000 107 625 100 29 1400
## [3520] 170 3000 1000 625 132 1000 37 1000 6280
## [3529] 1273 813 49 2000 104 782 10000 451 1200
## [3538] 800 466 7750 81 812 273 922 1173 10000
## [3547] 807 669 2550 1000 173 140 4500 243 769
## [3556] 10875 776 619 184 56 2750 435 384 750
## [3565] 750 46 37500 1500 74 2750 155 1000 514
## [3574] 1211 511 5500 625 117 7800 121 5750 243
## [3583] 839 1748 13500 602 2625 1290 650 795 1000
## [3592] 742 1850 10000 252 3250 851 384 509 509
## [3601] 6650 2000 47 1000 94 106 1000 143 2375
## [3610] 148 32 2000 545 384 1266 85 242 2750
## [3619] 9312 901 7250 210 102 1000 154 550 586
## [3628] 560 42 464 264 351 439 3000 750 90000
## [3637] 102 600 2000 56 63 1250 1588 455 3908
## [3646] 2000 73 750 76 309 25 2500 1250 650
## [3655] 59 2000 74 1875 192 5500 133 2330 7500
## [3664] 3071 28725 572 24000 485 63 663 750 560
## [3673] 1074 70 66 750 63 1000 2000 317 1000
## [3682] 26 6000 484 252 2625 1000 3500 25 37
## [3691] 2000 131 500 29 1183 290 25151 1000 1500
## [3700] 104 5250 2000 1000 2000 165 2000 58 1000
## [3709] 55 2500 1000 1000 5250 121 1250 47 51
## [3718] 4375 750 424 9250 213 492 65 1384 1000
## [3727] 49 3000 281 276 384 1000 137 2000 1500
## [3736] 403 5500 266 38 233 2500 166 2000 471
## [3745] 2750 2779 1070 2000 1750 37 3750 194 2714
## [3754] 33250 373 32500 1250 3000 1000 339 682 950
## [3763] 390 65 1250 120 1655 13250 1500 175 625
## [3772] 62 2000 156 83 78 4500 200 1000 750
## [3781] 822 560 419 390 648 384 1000 785 560
## [3790] 6057 822 612 1900 529 500 500 13334 47
## [3799] 79000 2609 87 1500 55 750 99 47 1000
## [3808] 1000 650 113 1000 483 2000 5500 2000 203
## [3817] 3750 212 1000 710 273 2000 1000 62 859
## [3826] 15000 679 39 600 177 185 2150 185 655
## [3835] 47 209 2500 602 213 522 542 549 472
## [3844] 402 25464 1000 154 625 126 500 160 518
## [3853] 384 1750 2000 92 875 132 1500 500 750
## [3862] 74 233 206 2500 1250 47 1000 57 6500
## [3871] 349 47 1000 230 53 1750 250 3500 1750
## [3880] 47 750 194 3750 514 1000 724 290 96
## [3889] 1533 94 1475 179 814 14250 108 1000 25
## [3898] 1000 1000 154 750 30 1100 249 1100 1000
## [3907] 81 25000 2000 625 552 669 1000 68 4000
## [3916] 146 392 459 1250 116 3375 1000 127 910
## [3925] 671 6000 34 750 1250 1250 450 50 1000
## [3934] 108 1000 166 1000 513 413 669 242 4500
## [3943] 31 133 3000 267 336 345 6406 4000 1866
## [3952] 22500 750 99 91 2500 500 57 898 390
## [3961] 105 140 2000 182 1000 183 1093 487 141
## [3970] 858 669 745 1000 319 29 1600 1018 16000
## [3979] 164 784 202 11153 52 625 29 750 251
## [3988] 614 85 866 74 4500 318 500 1005 1071
## [3997] 15000 625 56 397 7425 244 89 2000 1500
## [4006] 185 2500 73 2250 272 750 1000 31 1250
## [4015] 1780 671 2000 88 2000 100 864 264 56
## [4024] 6000 762 1120 498 2594 609 460 1750 55
## [4033] 1875 115 542 500 277 385 750 129 1630
## [4042] 64 2800 7500 199 2500 209 176 925 30
## [4051] 205 126 3000 132 3250 177 7126 168 925
## [4060] 40 669 38 625 1500 1500 3000 213 234
## [4069] 1500 529 7000 5876 3250 39 2500 2000 63
## [4078] 1000 3000 3000 3885 4440 1500 1750 81 1000
## [4087] 54 75 1000 99 1500 149 2500 3300 1834
## [4096] 9261 40000 7500 2500 1000 85 1500 105 300
## [4105] 1075 718 1000 228 2000 59 38 1000 117
## [4114] 6000 357 2000 102 352 78 6000 927 1250
## [4123] 638 29 163 75 1750 308 4000 143 135
## [4132] 3750 127 2572 7000 405 1500 92 900 314
## [4141] 1000 1338 31 4000 434 99 3000 625 262
## [4150] 60 4250 27 1250 2000 1000 1000 1261 1500
## [4159] 1000 63 577 610 297 3500 94 2000 27
## [4168] 1000 213 1018 223 3250 500 96 1000 109
## [4177] 1000 112 712 387 542 44 2000 3695 88
## [4186] 2000 444 1000 60 1000 1198 646 1000 64
## [4195] 60 1750 37 2000 425 487 210 750 148
## [4204] 1000 49 190 3000 1009 4000 67 4250 55
## [4213] 1250 1000 128 75 111 2500 1000 47 5500
## [4222] 108 1000 152466 2000 37500 385 188 1000 3593
## [4231] 1500 668 384 27 1750 1250 59 2000 841
## [4240] 11500 315 12000 2000 79 1500 260 1500 919
## [4249] 669 3000 149 531 384 606 384 1000 46
## [4258] 4750 254 1368 7975 429 6000 69 1500 57
## [4267] 179 550 3850 66 2000 671 638 63 2000
## [4276] 115 1843 3000 187 4000 875 2000 262 2250
## [4285] 275 519 609 589 3000 332 2500 2970 1000
## [4294] 2500 142 1250 750 750 947 9000 3500 76
## [4303] 2000 1000 400 5500 971 9000 106622 8750 750
## [4312] 41 708 273 2750 500 96 12000 880 794
## [4321] 858 262 132 3250 94 477 384 1750 59
## [4330] 29 2000 37 77 1750 254 233 2500 66
## [4339] 625 1700 5318 37500 6013 30 2000 724 560
## [4348] 82 500 27 1500 63 6000 158 2250 151
## [4357] 6500 2000 146 1000 2000 1000 82 69 750
## [4366] 1466 280 3500 5000 26250 203 18496 1000 133
## [4375] 1000 1000 1800 267 5500 170 45 3000 73
## [4384] 2500 500 8000 1000 292 11563 1867 71875 176
## [4393] 7750 612 1750 100 2625 132 1000 418 1750
## [4402] 625 167 625 2500 1000 47 750 116 195
## [4411] 590 2478 1000 1250 56 3000 546 4500 42
## [4420] 2000 938 236 2750 88 55 1000 28 2813
## [4429] 1000 363 6000 112 168 17250 530 38 1000
## [4438] 76 2000 160 44 1250 61 5000 415 1000
## [4447] 854 376 1142 9000 560 900 384 2250 169
## [4456] 750 1250 500 695 343 36 2000 254 306
## [4465] 1750 1000 216 648 3000 705 510 77 78
## [4474] 2000 2300 71 2500 115 2000 1250 232 3500
## [4483] 101 916 292 1750 335 290 373 1000 130
## [4492] 850 3300 101 85 2000 27 1000 109 5200
## [4501] 1252 6000 26250 27 3750 40 1250 875 2000
## [4510] 337 2500 1500 83 6250 335 228 1572 33
## [4519] 63 1000 29 12000 1000 1500 46 155 4500
## [4528] 750 1250 102 726 769 750 127 1000 1000
## [4537] 423 10750 271 1000 114 675 182 6000 91
## [4546] 2500 2300 43 2000 78 33 1000 1000 95
## [4555] 1000 1866 29500 521 1522 470 4000 350 180
## [4564] 1250 14183 360 6975 1000 750 142 53 3000
## [4573] 286 1298 18000 896 523 1800 269 85 411
## [4582] 4000 1209 797 628 415 163 625 50 4500
## [4591] 267 2563 1218 47 3000 197 2000 125 132
## [4600] 3500 3200 1202 19750 589 48 5250 403 3750
## [4609] 235 631 85 7000 819 183 1000 120 181
## [4618] 4000 524 3500 2000 71 1017 770 1571 264
## [4627] 2813 301 2000 275 584 4500 4750 317 3000
## [4636] 1000 793 4125 5500 777 79 794 49 2500
## [4645] 60 66 1500 31 750 99 2250 26 1000
## [4654] 328 12528 227 6000 2813 334 7500 82 63
## [4663] 2375 159 1000 107 45 750 157 387 71
## [4672] 233 2500 2000 28 1000 48 500 2000 57
## [4681] 1500 40 3300 953 669 761 1250 30 2750
## [4690] 45 1500 60 2000 1000 114 160 2000 157
## [4699] 387 66 2625 926 1000 251 1000 510 3000
## [4708] 520 621 384 87 5000 1264 355 288 14000
## [4717] 1943 2500 545 1000 390 560 1250 2300 261
## [4726] 2500 438 1216 127 6000 150 1200 118 1250
## [4735] 41 1250 55 121 1000 193 298 8000 333
## [4744] 1478 5850 172 631 63 12000 323 1355 607
## [4753] 1875 55 7250 381 750 187 175 500 10000
## [4762] 917 638 2250 492 560 10391 1010 669 1661
## [4771] 3500 148 1500 844 669 262 1750 1088 35500
## [4780] 781 157 387 500 750 1937 7000 225 5250
## [4789] 1250 188 3500 131 4000 1250 127 9974 2500
## [4798] 1264 72750 750 88 42 88 1000 36 600
## [4807] 63 3500 314 750 245 12500 838 150 2400
## [4816] 45 1000 66 89 925 83 354 11500 522
## [4825] 2750 793 2531 999 14144 2500 1000 8500 749
## [4834] 1750 2500 228 803 465 1750 3148 38250 773
## [4843] 14444 549 114 235 3500 3500 137 1250 170
## [4852] 621 5641 67 1341 1200 67 569 925 81
## [4861] 2163 15500 463 2500 186 78 518 1250 2000
## [4870] 26 82 2000 51 1000 611 1375 386 150
## [4879] 2400 6677 251 7900 1152 487 67 25000 2375
## [4888] 63 1500 2000 39 102 1000 687 669 500
## [4897] 266 765 351 1750 762 429 4732 2000 193
## [4906] 137 5750 405 143 47 2500 212 53 750
## [4915] 430 219 4500 544 4000 331 536 29 1000
## [4924] 160 2000 2000 569 390 5030 101 1000 129
## [4933] 1405 532 9000 192 102 1000 750 80 1250
## [4942] 44 251 2500 47 2000 34 47 3000 65
## [4951] 126 18500 265 1000 103 66 1250 189 6500
## [4960] 66 27 39 4000 1029 669 500 86 1200
## [4969] 195 381 1500 72 1000 114 1500 118 30
## [4978] 750 2625 57 4000 544 7000 138 825 5025
## [4987] 28000 1051 18500 575 1000 173 31 7949 126
## [4996] 299 2500 2000 84 3750 153 2500 211 140
## [5005] 1000 31 2750 128 1500 117 200 1500 191
## [5014] 1233 2000 93 8500 3000 173 456 8000 150
## [5023] 171 800 3300 33 900 8000 1000 750 850
## [5032] 55 890 309 12000 355 22750 740 1000 169
## [5041] 1500 102 1800 79 2000 237 1000 27 1250
## [5050] 600 262 1750 275 150 2400 2000 47 1600
## [5059] 74 1500 1000 176 7500 750 1500 2550 154
## [5068] 3250 110 2000 116 27 306 1750 1000 1250
## [5077] 1500 603 813 542 459 2000 1000 316 329
## [5086] 78 3500 125 1000 69 1250 144 1416 1250
## [5095] 126 1000 99 1000 65 2750 4750 25 1000
## [5104] 575 18500 232 900 143 1350 85 2000 96
## [5113] 25000 50 1000 101 160 1750 600 2250 537
## [5122] 168 5500 291 602 1361 150 2400 1500 220
## [5131] 625 653 847 747 1560 7000 1750 121 1000
## [5140] 636 560 71 2500 233 2500 163 581 1500
## [5149] 292 461 12000 836 112 2500 149 1812 3750
## [5158] 336 875 92 2500 3000 121 1000 94 42
## [5167] 2750 520 1308 1750 900 3500 119 1600 3600
## [5176] 1107 2500 695 1000 415 568 2800 980 669
## [5185] 26 5000 1000 52 1500 644 278 4712 516
## [5194] 27681 254 750 2300 957 692 292 1750 64
## [5203] 3000 2059 47 1500 121 558 1000 128 492
## [5212] 560 5705 150 4500 1250 49 1200 165 2000
## [5221] 53 26 67 1000 214 500 191 138 85
## [5230] 320 3000 1750 1817 39 15250 984 3300 390
## [5239] 779 739 639 10976 494 2000 52 55 1000
## [5248] 386 1500 875 666 1193 2500 12500 680 1600
## [5257] 500 625 121 841 560 111 1100 145 3850
## [5266] 188 529 13625 1539 87 4500 199 66 1594
## [5275] 552 4500 164 1824 374 4579 1127 487 96
## [5284] 1610 12875 3000 36 1000 4460 585 33 3750
## [5293] 703 390 272 1750 186 93 4000 356 115
## [5302] 650 325 390 2116 1053 355 336 88 258
## [5311] 1750 1250 83 132 3200 2050 2000 1800 750
## [5320] 77 2000 3024 41250 1646 390 6000 13411 4000
## [5329] 66 12000 7000 500 750 58 2000 313 2074
## [5338] 3500 1187 15250 73288 1750 108 750 3760 1000
## [5347] 87 65 2375 151 3000 490 190 5250 29
## [5356] 4454 1143 816 5750 361 625 102 2000 58
## [5365] 28 1250 28 893 549 43 1000 750 84
## [5374] 1020 318 1750 1000 107 126 1750 153 510
## [5383] 500 28 286 2300 1000 1500 1750 85 1344
## [5392] 343 3000 927 579 3000 2000 82 3000 38
## [5401] 66 1500 4181 35750 1370 2500 8500 628 800
## [5410] 303 1000 354 542 1875 307 138 320 3000
## [5419] 21757 2000 1750 264 9250 118 72 1000 88
## [5428] 2500 49 1850 45 598 60 5500 390 3000
## [5437] 111 648 1000 1250 1750 84 2000 96 1250
## [5446] 144 2000 549 157 387 315 750 32 3000
## [5455] 52 75566 2800 1000 232 1000 432 679 12500
## [5464] 482 85 1000 84 669 773 1550 1000 55
## [5473] 1000 133 1000 38 2500 661 384 500 501
## [5482] 3500 2250 380 2200 98 4000 83 4000 787
## [5491] 831 213 500 38 1000 910 343 3000 185
## [5500] 50 3500 124 114 3500 234 87610 1250 144
## [5509] 696 9900 207 91 900 400 116 750 875
## [5518] 1500 274 10250 546 502 30 3750 1212 343
## [5527] 7884 2500 241 1000 1000 47 750 100 2000
## [5536] 105 370 142 82 925 83 744 669 545
## [5545] 669 1500 1000 625 85 2750 38 2000 106
## [5554] 139 80 2345 104 761 3250 1250 255 2500
## [5563] 750 150 641 236 2218 23250 725 19375 33
## [5572] 1000 800 247 3000 515 560 5000 500 7330
## [5581] 37500 1538 1653 1000 116 7000 243 2000 1000
## [5590] 62 60 2500 1033 1218 1000 123 48 3125
## [5599] 1000 2000 9000 3060 24000 31500 660 290 349
## [5608] 1250 188 5750 486 174 2000 573 6250 90
## [5617] 26 5000 249 2000 206 1000 133 2300 2000
## [5626] 1000 1100 69 2500 260 33 3000 296 2250
## [5635] 540 25702 151642 61175 10000 0 0 1000 179
## [5644] 750 81 48 625 128 750 754 750 1000
## [5653] 216 1500 97 1500 84 6500 308 1500 600
## [5662] 93 2795 400 500 348 384 1250 148 1000
## [5671] 2000 987 1000 90 2250 588 7500 146 756
## [5680] 487 98 1000 134 575 649 456 384 669
## [5689] 779 560 100 376 669 66 875 805 669
## [5698] 38 5250 53 875 439 7300 278 624 86
## [5707] 1000 1750 1000 1000 70 300 669 4531 6000
## [5716] 149 209 2750 25 3500 116 96 500 2047
## [5725] 3000 40 10500 989 547 15619 35 1250 38
## [5734] 300 79 669 78 1500 2000 148 22556 869
## [5743] 20750 594 47 1500 83 2300 750 3750 500
## [5752] 182 3250 24552 1250 744 7500 8500 3371 30000
## [5761] 70041 117225 2000 33 1000 37 500 4500 20000
## [5770] 3200 1500 750 189 2500 61 3000 478 6500
## [5779] 381 1000 761 8500 408 54 750 152 568
## [5788] 503 1250 25 348 1750 50 864 437 1000
## [5797] 75 605 290 1500 1886 2108 20175 699 374
## [5806] 3000 875 1000 82 435 4750 313 2300 165
## [5815] 3000 1468 5250 722 12500 20913 540 3750 230
## [5824] 1000 500 94 717 468 1500 102 1500 140
## [5833] 385 1000 118 60 3000 294 750 1000 120
## [5842] 740 459 142 1233 150 2107 26250 2844 2097
## [5851] 44 2000 4625 43446 525 236 3000 500 87
## [5860] 171 1000 1125 669 1000 85 1000 132 1015
## [5869] 669 1000 36 1000 221 2000 893 358 2400
## [5878] 50 2000 286 4000 108 1000 77 5650 3650
## [5887] 77 1000 250 1250 135 3000 3400 231 7875
## [5896] 27 2500 2000 1000 625 31 4000 500 1000
## [5905] 3750 266 500 66516 18750 369 5200 330 482
## [5914] 330 1750 1250 81 1000 37 2000 52 1142
## [5923] 4000 2000 293 500 235 666 78 4500 122
## [5932] 26911 47 151 3500 1006 2000 669 4816 900
## [5941] 1500 1400 6749 78000 1992 3000 500 72 148
## [5950] 3400 1000 950 1000 99 1500 30 500 275
## [5959] 180 1000 499 2500 750 100 1000 267 298
## [5968] 8500 269 26 2250 87 1250 3300 102 560
## [5977] 2000 339 242 2500 880 415 750 106 1700
## [5986] 1000 130 156 1750 383 2750 750 265 757
## [5995] 8000 63 3000 103 1000 778 1000 5000 185
## [6004] 200 262 1750 54 5500 310 625 283 99
## [6013] 1875 1000 377 846 137 2500 223 1500 3750
## [6022] 131 2000 69 480 3000 414 1000 1800 96
## [6031] 4500 70 500 1000 1000 83 99 2375 48
## [6040] 750 77 466 3750 53 394 437 750 127
## [6049] 768 1103 2134 3000 177 500 421 498 3000
## [6058] 1000 2000 83 8528 1000 78 2500 842 280
## [6067] 4750 553 937 384 191 6250 82 503 64
## [6076] 1000 89 875 1200 93 1500 130 27 2000
## [6085] 25 1000 94 2000 104 750 59 144 1000
## [6094] 399 11500 346 750 32 63 1000 74 1028
## [6103] 56 625 91 2000 2300 500 90 65 206
## [6112] 1000 1000 80 750 103 1000 145 136 392
## [6121] 3000 731 459 2500 70 365 85 7250 62
## [6130] 2500 200 1500 875 2000 3000 55 3250 115
## [6139] 343 15500 741 2500 1000 335 1250 249 7630
## [6148] 262 44 1000 94 13686 1000 806 318 1750
## [6157] 41 1000 1000 92 1185466 55 2000 180 3000
## [6166] 286 3000 445 47 6300 284 625 37 6250
## [6175] 77 750 64 853 75 3400 1400 1100 121
## [6184] 900 25 35 1000 103 329 5000 30 800
## [6193] 80 1000 344 6250 243 1000 1000 97 45
## [6202] 3000 204 99 1000 3500 3000 94 77 3000
## [6211] 246 44 4500 182 6000 435 48 3600 215
## [6220] 486 1250 794 1000 500 652 343 3000 723
## [6229] 273 2000 87 5000 76 5500 79 1000 760
## [6238] 669 515 431 2100 2500 1250 2000 689 5000
## [6247] 2000 33 1250 904 794 920 560 102 106
## [6256] 27 2500 117 500 59 750 141 55 1375
## [6265] 35 1000 98 784 560 9500 929 73 625
## [6274] 70 1750 5194 919 2500 18573 14250 1994 58750
## [6283] 110 2000 1383 750 9409 2000 73 2500 131
## [6292] 39 46 533 640 6000 297 755 2250 200
## [6301] 1000 226 750 2000 800 1295 19750 1750 46
## [6310] 1000 35 5000 241 85 2250 394 154 1900
## [6319] 81 1750 95 1250 153 519 132 1000 622
## [6328] 2250 59 3000 160 625 261 1800 1800 875
## [6337] 623 1738 1218 39 750 2000 1000 1000 2091
## [6346] 39200 8750 304 19000 1300 325 2500 3000 3000
## [6355] 27 12750 9049 1750 2250 23946 29202 1750 49
## [6364] 1250 43 792 549 1101 42 875 1250 165
## [6373] 1000 803 343 3000 1000 53 1082 536 222
## [6382] 1750 2000 368 49 3750 32 25500 39 1000
## [6391] 322 1219 389 3588 1000 116 3557 70500 3100
## [6400] 126 285 12150 715 5750 467 190 1000 750
## [6409] 33 750 60 60 1500 170 3000 1250 105
## [6418] 66 4000 445 601 782 2500 92 1750 76
## [6427] 280 3500 3555 22500 591 13063 1000 142 2000
## [6436] 1000 98 2000 153 2000 8333 384 1000 2000
## [6445] 6813 1250 12000 500 160 2500 12710 35 1000
## [6454] 27 1000 90000 160984 79 3000 182 3500 8753
## [6463] 919 669 1150 100 2000 1313 669 1000 72
## [6472] 409 1244 7250 2000 500 307 1650 104 935
## [6481] 669 2000 1000 711 8125 310 107292 17930 2000
## [6490] 143 1000 90 1750 54 1000 2000 78 363
## [6499] 14500 570 52 2000 136 27746 160 103 2500
## [6508] 823 27 1750 52 750 171 800 3500 70
## [6517] 2500 1000 93 36 819 1000 383 7250 180
## [6526] 3000 2500 232 1750 1500 110 186490 1000 855
## [6535] 384 2000 219 750 132 2000 3000 387 1000
## [6544] 93 822 459 135 2000 55 3000 153 80
## [6553] 625 33 1500 4500 1250 2000 445 2000 523
## [6562] 390 108 1324 723 155 2500 28 70 14245
## [6571] 1250 135 2226 1218 557 459 49 233 2000
## [6580] 1000 347 2000 2500 31 3750 87 3793 1278
## [6589] 1000 125 3500 1774 33 1500 9575 1000 1000
## [6598] 562 2750 117 38 2250 417 308 86 5316
## [6607] 27 2000 105 2000 800 71 3000 62 1500
## [6616] 1000 625 632 1500 76 7952 246 1686 1000
## [6625] 28 140 5750 598 287 2188 1046 56 2500
## [6634] 728 560 1094 384 55 2000 27 2000 57
## [6643] 1000 114 2050 2000 140 96 50162 2000 61
## [6652] 74 5000 186 1294 2070 500 62 1250 327
## [6661] 13728 565 42 1750 1000 85 1000 1000 2000
## [6670] 206 754 18000 465 3500 248 5750 242 94
## [6679] 2750 42 1000 125 3500 29 5750 280 8568
## [6688] 221 2850 374 1600 2250 264 1500 1250 80
## [6697] 1000 2000 641 1000 978 7250 155 10500 426
## [6706] 750 75 2750 66 4500 59 750 55 750
## [6715] 3000 86 1000 82 1000 277 899 318 1500
## [6724] 118 121 1000 1000 78 5500 106 49 2625
## [6733] 1670 1250 241 3500 80 939 23500 589 1000
## [6742] 1250 1250 520 4500 800 168 3000 57 827
## [6751] 9750 217 9000 32 2500 75 830 777 519
## [6760] 384 750 81 248 7500 1986 11500 2000 700
## [6769] 137 1250 625 28 1000 759 13750 137 3750
## [6778] 165 47 1250 166 1000 105 550 275 750
## [6787] 42 406 384 625 28 130 63 3500 1405
## [6796] 688 2000 1000 39 1500 92 4000 255 77
## [6805] 1750 247 797 549 2500 82 26 500 83
## [6814] 584 560 27 2500 58 1000 69 117 7500
## [6823] 347 223 1875 625 180 48349 443 1000 1750
## [6832] 136 1250 71 399 5000 397 3250 119 976
## [6841] 8500 291 25000 2000 112 972 4750 298 3350
## [6850] 11000 973 15000 1000 172 277 2400 750 96
## [6859] 2150 25 191 79 2500 156 1250 1250 638
## [6868] 3500 1750 3946 1250 49 878 376 2000 1000
## [6877] 3000 144 2625 3500 64 1750 26 500 49
## [6886] 5000 426 49 2000 5000 1250 44 1600 193
## [6895] 37 800 750 1088 290 62 1000 26 2500
## [6904] 39 2000 151 47 1000 177 1250 16000 5000
## [6913] 39 1000 131 66 1750 3000 2000 2000 117
## [6922] 158 1500 1000 96 134 6750 168 750 136
## [6931] 1000 81 1043 2750 1750 566 442 258 3000
## [6940] 168 601 669 4000 398 500 100 1000 1650
## [6949] 225 1500 239 893 669 652 14034 28900 884
## [6958] 669 114 5500 25 1750 680 423 29 79
## [6967] 2300 508 10500 235 31 79 2500 40 750
## [6976] 21100 269 13000 750 54 1000 601 273 2000
## [6985] 1756 1500 1199 13500 1090 384 77 1250 1085
## [6994] 4800 3165 331 1141 4500 991 290 25039 44
## [7003] 800 6111 155 16662 933 669 3000 745 1750
## [7012] 367 2750 625 50 1000 1500 314 497 384
## [7021] 1000 766 292 1750 318 4175 3040 2435 48350
## [7030] 1476 7000 178 1600 248 5125 29 247 4500
## [7039] 232 1000 90 508 387 366 9500 525 1000
## [7048] 354 683 669 1500 79922 335 3000 192 800
## [7057] 83 2400 1000 89 532 3500 61407 229 3000
## [7066] 451 1000 1845 472 500 39 3000 114 1000
## [7075] 93 925 47 517 5400 307 3000 249 1000
## [7084] 380 2000 53 6000 488 2000 221 2500 1000
## [7093] 3000 244 24250 28500 1000 159 6500 1051 56
## [7102] 37588 43 2000 560 1000 91 2500 113 2500
## [7111] 239 767 1000 562 1000 643 1468 22750 891
## [7120] 3500 536 1000 833 6500 25 302 625 549
## [7129] 1000 5250 50 3774 22500 6850 1750 3198 402
## [7138] 6000 45 275 216 127 1500 47 1000 54
## [7147] 4790 938 7500 163 1250 101 187 2000 514
## [7156] 536 236 3000 237 4284 22500 793 10500 818
## [7165] 107 380 15000 80 750 57 768 280 3500
## [7174] 242 78 3500 89 839 139 4500 1500 1500
## [7183] 247 38 2000 456 387 99 2000 37 69
## [7192] 2500 412 459 151 500 150 1000 1000 3500
## [7201] 978 750 55 4250 271 1000 460 500 68
## [7210] 500 57 1000 80 1715 1375 27410 1044 3250
## [7219] 500 2000 155 44 88 1000 45 51 3000
## [7228] 750 185 3000 360 1000 1500 42 7200 1303
## [7237] 536 866 139 17000 800 207 750 575 306
## [7246] 1750 4000 2000 147 750 1175 17500 2500 442
## [7255] 13250 750 750 45 2250 426 753 1500 415
## [7264] 6250 686 384 500 1750 221 88 2549 1000
## [7273] 76 1535 663 10000 545 262 500 1750 385
## [7282] 1000 104 594 243 5000 203 671 85 3500
## [7291] 1078 6250 1000 1250 1000 625 2000 109 198
## [7300] 2250 43 170 1750 121 1250 102 159 4500
## [7309] 136 1000 119 2500 133 2000 8625 1000 4000
## [7318] 178 77 4125 55 33 2000 267 3750 160
## [7327] 1500 944 124 1000 10156 2294 40500 47 3000
## [7336] 458 11250 53153 56710 174631 323122 2000 20188 38500
## [7345] 2188 37500 1053 146623 5449 1000 2500 47 2000
## [7354] 30 4750 535 449 1000 114 7250 554 669
## [7363] 648 236 3695 640 456 3000 69176 2000 1000
## [7372] 268 1000 27 3750 219 41 1500 44 2000
## [7381] 722 489 1750 75 2500 750 62951 968 454
## [7390] 813 2586 14000 297 28750 27 625 136 301
## [7399] 669 668 318 1750 226 4500 18229 1500 35
## [7408] 3000 2000 3000 240 4500 297 3039 518 8125
## [7417] 1886 1218 147 2134 732 139 500 34 2500
## [7426] 270 13000 327 1750 1000 555 2625 2000 1000
## [7435] 71 2000 2000 80 407 459 589 262 1750
## [7444] 1250 85 2500 459 560 121 5250 47 111
## [7453] 2500 219 1750 26 1109 671 2000 677 1500
## [7462] 669 1000 93 1076 88 9560 1500 184 6754
## [7471] 10500 3796 36000 194 88 2625 703 318 750
## [7480] 30 1000 121 12735 129 2500 1500 32 652
## [7489] 236 8250 839 1000 406 1000 167 330 6000
## [7498] 386 142 56 5055 2500 43 104 7750 994
## [7507] 560 2000 2750 43 1000 2134 60750 61 1375
## [7516] 95 6750 1500 61 741 5500 44 2000 90
## [7525] 1750 1000 92 3375 59 2000 37 10250 116
## [7534] 2000 194 1000 359 3000 660 242 3000 624
## [7543] 958 273 2000 750 209 2000 504 2000 83
## [7552] 1150 707 261 1250 1000 77 800 78 875
## [7561] 1000 100 99 1500 40 1000 87 590 2250
## [7570] 83 593 63 1250 99 1924 87 3000 2000
## [7579] 275 129 3100 306 8630 2500 1250 1657 32
## [7588] 1250 439 1250 3000 72 2500 1200 89 278
## [7597] 159 700 41 1000 119 750 65 412 85
## [7606] 4250 686 8250 221 1250 1000 26 875 3000
## [7615] 4750 1000 1000 76 548 500 66 800 202
## [7624] 1000 64 1050 669 67 3000 52 818 2250
## [7633] 650 3250 1600 79 1250 108 1135 1500 712
## [7642] 15000 1346 655 1000 183 1250 112 2801 790
## [7651] 1000 124 3500 2000 144 2618 9000 3000 887
## [7660] 669 1000 61 2250 33 501 384 316 213
## [7669] 80 723 914 1000 185 1087 292 1750 839
## [7678] 459 4438 392 6000 306 302 750 550 7500
## [7687] 328 3000 353 2500 80 1197 286 11000 40
## [7696] 1000 1810 300 10000 659 292 1750 4000 195
## [7705] 367 2250 1250 28 1250 336 1000 2000 875
## [7714] 30 79 2500 90 3500 69 1000 117 3000
## [7723] 2500 2000 71 1375 69 83 257 2600 43046
## [7732] 5000 50 1000 44 2000 10039 100 3000 1000
## [7741] 74 114 1000 82 2000 225 97 3000 337
## [7750] 589 17750 188 350 47 594 76 3000 243
## [7759] 5717 964 1531 1000 373 3500 111 1000 66
## [7768] 90 79 2500 5500 1250 146500 4001 12962 1000
## [7777] 125 792 726 128 89 1000 25 3637 362
## [7786] 669 1750 1000 229 1250 1250 96 5423 4250
## [7795] 1189 8825 921 103 809 335 9000 2153 11880
## [7804] 508 1000 111 164 79 2500 827 30 2000
## [7813] 281 500 104 15830 1000 105 1000 91 3000
## [7822] 122 519 1000 82 1000 1000 84 442 11500
## [7831] 290 500 252745 1021 120 2500 313 8750 408
## [7840] 875 3000 219 2325 178 60 2500 174 2000
## [7849] 156 2250 1750 93 1250 555 1000 88 3750
## [7858] 93 717 242 2500 3750 15000 607 719 669
## [7867] 1000 55 1000 199 954 1750 280 2500 1250
## [7876] 8075 8000 1794 33000 111 3000 1000 625 622
## [7885] 750 1000 1000 92 86 1075 34 99 607
## [7894] 839 6000 1134 12000 1000 50 3000 82 2000
## [7903] 32 1000 145 6500 741 507 1750 1200 1000
## [7912] 121 575 191 500 124 4500 171 162 1000
## [7921] 2000 54 203 3000 66 750 243 1000 445
## [7930] 7125 1000 33 2000 265 747 210 1250 44
## [7939] 2000 204 875 3750 14200 1000 1000 212 692
## [7948] 343 3000 551 12500 47 1000 92 96 100000
## [7957] 95 3000 297 3000 1000 79 625 77 598
## [7966] 33250 768 1750 640 775 1599 236 4500 2000
## [7975] 2500 95 4459 36500 490 2500 1916 82 47
## [7984] 1500 27 1000 50 1477 786 7000 12000 12000
## [7993] 1029 358 3375 1250 74 2500 65 506 236
## [8002] 683 335 2813 750 80 2500 346 2000 44
## [8011] 1000 42 678 25 8400 51 4500 106 140
## [8020] 4000 213 792 337 1750 2000 107 40 3500
## [8029] 7250 523 2250 5206 21500 718 11000 1000 1250
## [8038] 146 3500 86 1250 4500 466 43 1750 31
## [8047] 1250 62 2000 286 1000 806 27 1500 1500
## [8056] 29 814 560 1500 266 1000 578 261 371
## [8065] 669 1031 290 25080 2000 52 55 500 132
## [8074] 1000 28 740 332 1750 1250 100 44202 1250
## [8083] 1500 1000 63 1000 2813 2000 232 1145 290
## [8092] 162901 750 875 1617 5500 733 14500 10370 1000
## [8101] 102 1125 25 1000 104 227 4000 742 4000
## [8110] 923 638 90 2500 57 99 1000 110 2148
## [8119] 13000 1048 4125 500 67 2122 25564 1728 30
## [8128] 15963 877 342 1750 578 669 2000 173 1500
## [8137] 1000 29 65 500 3000 113 5402 1873 19650
## [8146] 2100 1638 42000 899 44 4500 150 38 1000
## [8155] 30 654 6250 340 159 5000 31 625 56
## [8164] 2000 224 66 2000 418 10000 86 750 225
## [8173] 1000 101 77 3375 35 8500 3000 100 1000
## [8182] 44 47 2500 127 365 1500 124 79 1000
## [8191] 111 1000 93 3500 198 31 2000 324 301
## [8200] 182 2500 503 3300 316 1000 33 1000 86
## [8209] 2000 281 1000 1000 1136 5000 89 1250 100
## [8218] 94 1875 713 252 2625 2000 249 554 2000
## [8227] 44 1000 28 1000 88 6000 183 1250 257
## [8236] 2000 190 1000 512 79 2500 6000 482 199
## [8245] 5750 750 7159 53500 8265 2237 3000 56 506
## [8254] 506 153 37500 1500 292 1000 93 859 564
## [8263] 459 1431 4350 130 1000 26 1500 466 427
## [8272] 50 578 1500 88 1250 1000 122 2625 307
## [8281] 1075 63 83 1700 145 3500 486 540 2500
## [8290] 267 66 220 750 6457 251 3500 625 100
## [8299] 161 4375 1423 333 3140 1000 1000 103 1800
## [8308] 705 47 2000 793 1750 2813 8878 29250 1700
## [8317] 62000 1000 297 3447 290 25431 1000 60 7250
## [8326] 324 1000 91 128 6000 353 2625 80 111
## [8335] 2500 1000 118 1000 176 343 4000 2000 35
## [8344] 2000 142 31 1000 513 409 519 78 1250
## [8353] 48 193 3000 85 422 300 669 7878 1000
## [8362] 2000 165 1414 68 2000 38 380 79 669
## [8371] 111 500 1250 4502 39 25262 118 4500 135
## [8380] 3000 63 5500 246 26 126 5700 431 390
## [8389] 3000 593 3250 272 136 2500 73 2000 5500
## [8398] 305 1000 1983 1000 84 1088 613 1750 880
## [8407] 560 10179 601 669 500 1274 7500 346 70
## [8416] 1000 1750 105 1000 60 573 223 1000 332
## [8425] 800 1750 2200 48 806 384 728 590 625
## [8434] 49 1750 114 1000 90 725 172 4500 142
## [8443] 57 2000 500 2000 918 669 193 2375 436
## [8452] 1500 199 31138 66 84 2600 368 3000 172
## [8461] 60 625 720 390 581 50 1250 123 33
## [8470] 7000 105 102 4000 29 2172 419 3750 659
## [8479] 381 9625 414 2500 28 714 861 669 819
## [8488] 384 4000 45 49 6000 3000 712 100 2750
## [8497] 55 1250 2000 426 384 384 5200 193 1200
## [8506] 54 3000 408 387 1056 352 3000 51 1375
## [8515] 60 1500 2940 37 1000 111 1893 31500 738
## [8524] 60 2500 114 3750 123 299 2500 1153 4000
## [8533] 486 6000 750 3175 354 5549 56500 7000 276
## [8542] 237 6375 40 2500 206 6313 5000 1375 66
## [8551] 3250 114 35 63 79 2500 74 2750 113
## [8560] 500 5000 196 484 390 27 1000 145 32
## [8569] 3000 125 750 103 1000 26 179 914 46494
## [8578] 37500 1750 49 350 2500 1000 2750 6188 3143
## [8587] 750 144 625 82 567 128 5875 2000 750
## [8596] 92 1000 107 2750 1750 78 2500 329 7000
## [8605] 1164 669 139 80 5392 47 7000 1000 49
## [8614] 299 85 2500 683 4000 27 1250 90 671
## [8623] 387 750 347 18000 214 1000 2000 1068 95
## [8632] 2938 4000 26 2000 70 47 625 6025 153
## [8641] 4000 1250 2000 1053 183 111 3500 899 384
## [8650] 20000 1100 129 527 416 625 1200 170 2400
## [8659] 1050 62 11272 29902 59638 934 1000 67 1500
## [8668] 198 2500 75 3376 2422 17750 486 7000 2730
## [8677] 574 1000 52 55 2500 145 2000 89 2250
## [8686] 200 1750 83 5000 116 90 1400 500 502
## [8695] 3000 291 3000 1500 96 1250 44 5750 82
## [8704] 2500 1750 1250 4564 4600 103 125 1000 88
## [8713] 449 2000 315 669 1000 4800 40 500 62
## [8722] 67 1000 185 555 1000 3600 653 262 1750
## [8731] 2100 750 279 164 27 2300 295 168 2500
## [8740] 12000 473 35 2609 3750 40 6187 750 354
## [8749] 37 8500 201 223 390 473 121 2000 137
## [8758] 67 1000 1746 3100 11500 15413 1250 159 4000
## [8767] 119 7090 50500 1799 185 9000 387 1750 1000
## [8776] 91 4000 44 1563 38 1200 70 4500 1000
## [8785] 112 750 875 1596 19500 938 5225 251 7000
## [8794] 854 549 4419 165 1250 2000 1500 1000 1000
## [8803] 263 15000 868 7000 1000 72 1750 2391 916
## [8812] 11600 5455 42500 1831 3900 1500 27 1500 203
## [8821] 134 4000 77 3500 549 140 7000 320 384
## [8830] 1627 35 2000 27 1750 217 724 56 2528
## [8839] 785 7700 445 425 487 869 4000 172 9500
## [8848] 769 318 1750 1000 3000 82 1000 115 11977
## [8857] 99 11875 1919 26625 1750 83 33 3375 1017
## [8866] 252 1750 2000 56 1000 35 845 290 1000
## [8875] 85 150 4000 243 691 167 44 1250 56
## [8884] 97 2375 106 754 290 4500 38 2000 373
## [8893] 1312 721 4147 576 387 255 8000 103 4000
## [8902] 601 669 500 82 3500 80 132 5500 228
## [8911] 151 2188 306 415 357 638 487 415 800
## [8920] 215 4419 38750 1301 7189 63 2000 154 2300
## [8929] 144 2000 1000 1000 2000 2750 169 43984 4975
## [8938] 1222 1375 380 1375 331 7000 363 2750 273
## [8947] 1000 115 1000 97 2200 60 4000 104 47
## [8956] 6500 1000 2000 288 79 2500 1000 63 1000
## [8965] 110 3000 205 52 2000 266 1000 750 49
## [8974] 1600 2600 34514 21540 2000 208 2000 282565 28593
## [8983] 24440 4862 14800 57970 54288 171986 5067 231 6000
## [8992] 3000 3500 2504 72416 12000 75609 123 3750 15494
## [9001] 13000 47945 2000 91933 1000 3153 16623 22157 110
## [9010] 6500 6000 90 3375 739 390 52 2000 1938
## [9019] 551 236 1000 127 251 1000 8750 81390 5067
## [9028] 1000 1250 2500 233 141 2500 138 1750 1000
## [9037] 35 25 825 193 625 1000 100 1250 75
## [9046] 655 1000 121 500 750 1038 2800 947 487
## [9055] 1219 79 1218 1037 453 1250 32 1750 232
## [9064] 1250 107 39 4000 87 550 4647 1750 694
## [9073] 10000 4000 394 2500 691 6000 313 1250 389
## [9082] 500 7470 274 1561 459 33 3250 756 273
## [9091] 2000 4090 7750 1109 11600 2750 198 257 9000
## [9100] 122 1250 173 1250 33 47 1000 32 400
## [9109] 1750 1100 40 500 104 177786 90 1250 187
## [9118] 1375 43 727 236 5000 202 3000 158 1000
## [9127] 1000 330 387 2000 101 159 495 110 2500
## [9136] 1250 213 1000 27 2000 1000 52 182 42
## [9145] 8125 437 1377 669 625 92 111 1000 3500
## [9154] 11256 127 10000 1250 52 1750 938 223 1600
## [9163] 3000 64 29206 1111 669 5235 21546 11551 43273
## [9172] 20000 238232 16336 7384 45010 31 2000 93 676
## [9181] 669 35 47 1000 88 5000 505 553 1000
## [9190] 156 535 42 2000 750 50 561 6750 78
## [9199] 2500 500 335 92000 42895 1500 43 2000 295
## [9208] 787 1000 638 1500 115 221 625 580 425
## [9217] 487 140 519 415 47 1000 530 500 84
## [9226] 800 725 560 1000 158 4000 1000 1021 341
## [9235] 1750 80 2813 750 238 278 3000 700 600
## [9244] 600 81 3000 136 15446 7800 1365 1035 23500
## [9253] 2500 3500 1000 55937 232991 66096 31137 50400 73973
## [9262] 77670 50000 24759 8898 9426 70420 224617 33062 3687
## [9271] 51580 39632 6247 32207 123375 2710 29255 44488 4530
## [9280] 137642 16000 24214 18808 28994 8737 88087 185687 6800
## [9289] 17808 33515 18750 5000 117819 7802 7084 3600 150778
## [9298] 287095 13334 672263 6500 2500 14820 780 15891 3600
## [9307] 49018 5944 140656 21841 16237 162900 94800 23100 479314
## [9316] 1250 64385 11000 224997 46660 131863 2000 750 1173
## [9325] 12500 2802 33 1000 55 1144 540 1750 34
## [9334] 1000 2000 220 7750 1000 99 1750 677 459
## [9343] 6024 750 1250 1000 319 10000 417 694 27
## [9352] 1500 46 750 151 317 5075 493 2500 49
## [9361] 714 213 750 36 3750 120 119 1800 31
## [9370] 1250 2500 761 12677 117780 67473 80 9500 358
## [9379] 2000 875 902 669 750 77 1750 45 27
## [9388] 6000 688 5000 934 669 1750 1078 280 101
## [9397] 3500 750 51 1000 26 648 1153 17500 548
## [9406] 11500 669 4800 352 62 3250 85 2000 198
## [9415] 1250 313 1000 104 2000 148 350 7000 167
## [9424] 1500 76 1850 27 1000 235 1500 572 94
## [9433] 85 3000 106 3375 2000 81 180 1750 344
## [9442] 711 233 2500 842 726 1000 975 263 245
## [9451] 102 1000 38102 3300 3000 509 11250 393 3375
## [9460] 132 2750 237 457 242 3500 510 327 3750
## [9469] 322 1000 232 85 502 2000 110 123 7500
## [9478] 647 1500 1100 115 1250 25 1500 97 245
## [9487] 3250 108 1250 343 6500 215 1000 41 247
## [9496] 1000 72133 1500 3250 475 65 60 1000 105
## [9505] 655 387 175 31 2000 163 3000 747 4500
## [9514] 113 5500 82 750 67 1100 86 500 65
## [9523] 3200 267 381 290 187 13500 876 135 5125
## [9532] 287 5000 33 1000 800 980 560 97 1000
## [9541] 104 2000 205 2000 240 99 485 3376 195
## [9550] 750 1469 794 301 1500 220 875 875 800
## [9559] 78 2000 55 1304 318 5428 353 4500 500
## [9568] 270 669 39 1000 88302 18112 1250 163 7497
## [9577] 420 7000 391 2975 115 3000 326 2000 515
## [9586] 1000 2250 3000 143 246 560 55 71 2750
## [9595] 3000 750 30001 208 5500 9871 75400 3679 10600
## [9604] 162 604 5000 252 505 384 170 1000 111
## [9613] 4500 1000 102 1000 2070 26000 1086 9500 23215
## [9622] 594 323 321 54000 28 2000 394 2000 8356
## [9631] 5161 1250 107 74 2000 489 1500 140 143
## [9640] 7500 220 43 4000 104 1500 84 638 96
## [9649] 2000 7000 201 1000 1914 1250 138 589 264
## [9658] 4200 1000 224 66 2000 67 210 500 750
## [9667] 128 94 42 1500 8750 1075 34 1000 594
## [9676] 182 425 487 315 724 638 128 3000 1000
## [9685] 124 8500 9749 648 459 160 800 176 750
## [9694] 101 1000 35 1200 582 669 1750 81 1048
## [9703] 395 489 3600 2489 29750 468 4165 409 474
## [9712] 1500 221 15000 543 292 1750 140 2500 40
## [9721] 3800 580 96 27216 37097 63 1750 39 702
## [9730] 1500 129 66 1750 8750 153 3000 192 577
## [9739] 2000 509 2000 750 10000 79 1500 37 3333
## [9748] 1000 196 1500 800 85621 18000 10000 26 1000
## [9757] 1142 27 2000 350 181 2905 959 3225 1337
## [9766] 188 4000 1000 800 76 1250 125 159 1000
## [9775] 2000 106 41 3000 4000 296 1000 8000 1250
## [9784] 26 2699 3700 750 27 2661 38750 711 1250
## [9793] 134 548 78 486 254 2000 195 2000 450
## [9802] 132 3500 35442 2000 1000 71 143 134 1375
## [9811] 1000 126 1000 87 86 3000 756 487 1173
## [9820] 924 2500 669 974 259 13793 458 309 3000
## [9829] 743 487 234 3000 198 4000 187 1500 625
## [9838] 70 1358 3500 775 2000 1000 90 476 2006
## [9847] 900 67 8091 251 708 312 2250 50 1000
## [9856] 2000 79 1750 44 138 320 3000 600 2000
## [9865] 47 1000 114 1020 151 10000 748 669 78
## [9874] 500 847 11250 213 88 1775 148 242 485
## [9883] 390 306 1750 2625 5250 33 996 318 2625
## [9892] 143 1150 79 1075 94 1100 760 1000 259
## [9901] 93 2000 42 66 99 950 91 625 313
## [9910] 137 621 228 3500 3000 131 1250 108 55
## [9919] 2500 33 4000 224 688 12750 872 3433 1000
## [9928] 750 797 2940 2000 81 132853 486 10000 1000
## [9937] 180 1625 96 589 290 165 102 1000 111
## [9946] 5750 40 100 78 1000 28 891 33 122
## [9955] 1250 1000 50 55 1000 33 2000 41 3500
## [9964] 5000 31 600 1000 628 3000 348 381 1800
## [9973] 750 99 625 181 2000 108 1250 51 1000
## [9982] 256 1190 264 750 184 205 2500 2813 1000
## [9991] 126 2000 83 347 750 66 63 4000 356
## [10000] 4750 313 1750 116 1576 148 1140 750 234
## [10009] 2500 93 2500 1500 33 1000 102 750 333
## [10018] 1500 871 1500 216 7500 2000 195 250 9000
## [10027] 306 1250 700 802 66 4750 100 946 11500
## [10036] 585 2000 207 1066 3500 441 3000 500 64
## [10045] 1000 93 418 119 1800 2000 72 2000 326
## [10054] 1250 58 1625 26 1500 516 560 60 1750
## [10063] 1254 697 2000 100 2000 189 12500 1000 100
## [10072] 2000 72 750 66 821 415 47 348 2100
## [10081] 214 500 1750 65 61 2000 28
fda$issued <- as.Date(fda$issued, "%m/%d/%Y")
str(fda)
## tibble [272 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ name_last : chr [1:272] "ADELGLASS" "ADKINSON" "ALLEN" "AMSTERDAM" ...
## $ name_first : chr [1:272] "JEFFREY" "N." "MARK" "DANIEL" ...
## $ name_middle: chr [1:272] "M." "FRANKLIN" "S." NA ...
## $ issued : Date[1:272], format: "1999-05-25" "2000-04-19" ...
## $ office : chr [1:272] "Center for Drug Evaluation and Research" "Center for Biologics Evaluation and Research" "Center for Devices and Radiological Health" "Center for Biologics Evaluation and Research" ...
## - attr(*, "spec")=
## .. cols(
## .. name_last = col_character(),
## .. name_first = col_character(),
## .. name_middle = col_character(),
## .. issued = col_character(),
## .. office = col_character()
## .. )
# convert total to numeric variable
pfizer$total <- as.numeric(pfizer$total)
str(pfizer)
## tibble [10,087 × 10] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ org_indiv : chr [1:10087] "3-D MEDICAL SERVICES LLC" "AA DOCTORS, INC." "ABBO, LILIAN MARGARITA" "ABBO, LILIAN MARGARITA" ...
## $ first_plus: chr [1:10087] "STEVEN BRUCE" "AAKASH MOHAN" "LILIAN MARGARITA" "LILIAN MARGARITA" ...
## $ first_name: chr [1:10087] "STEVEN" "AAKASH" "LILIAN" "LILIAN" ...
## $ last_name : chr [1:10087] "DEITELZWEIG" "AHUJA" "ABBO" "ABBO" ...
## $ city : chr [1:10087] "NEW ORLEANS" "PASO ROBLES" "MIAMI" "MIAMI" ...
## $ state : chr [1:10087] "LA" "CA" "FL" "FL" ...
## $ category : chr [1:10087] "Professional Advising" "Expert-Led Forums" "Business Related Travel" "Meals" ...
## $ cash : num [1:10087] 2625 1000 0 0 1800 ...
## $ other : num [1:10087] 0 0 448 119 0 0 47 0 0 396 ...
## $ total : num [1:10087] 2625 1000 448 119 1800 ...
## - attr(*, "spec")=
## .. cols(
## .. org_indiv = col_character(),
## .. first_plus = col_character(),
## .. first_name = col_character(),
## .. last_name = col_character(),
## .. city = col_character(),
## .. state = col_character(),
## .. category = col_character(),
## .. cash = col_double(),
## .. other = col_double(),
## .. total = col_double()
## .. )
# summary of pfizer data
summary(pfizer)
## org_indiv first_plus first_name last_name
## Length:10087 Length:10087 Length:10087 Length:10087
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## city state category cash
## Length:10087 Length:10087 Length:10087 Min. : 0
## Class :character Class :character Class :character 1st Qu.: 0
## Mode :character Mode :character Mode :character Median : 0
## Mean : 3241
## 3rd Qu.: 2000
## Max. :1185466
## NA's :1
## other total
## Min. : 0.0 Min. : 0
## 1st Qu.: 0.0 1st Qu.: 191
## Median : 41.0 Median : 750
## Mean : 266.5 Mean : 3507
## 3rd Qu.: 262.0 3rd Qu.: 2000
## Max. :27681.0 Max. :1185466
## NA's :3
# doctors in California who were paid $10,000 or more by Pfizer to run "Expert-Led Forums."
ca_expert_10000 <- pfizer %>%
filter(state == "CA" & total >= 10000 & category == "Expert-Led Forums")
# doctors in California who were paid $10,000 or more by Pfizer to run "Expert-Led Forums."
ca_expert_10000 <- pfizer %>%
filter(state == "CA" & total >= 10000 & category == "Expert-Led Forums") %>%
arrange(desc(total))
# Find doctors in California or New York who were paid $10,000 or more by Pfizer to run "Expert-Led Forums."
ca_ny_expert_10000 <- pfizer %>%
filter((state == "CA" | state == "NY") & total >= 10000 & category == "Expert-Led Forums") %>%
arrange(desc(total))
# Find doctors in states other than California who were paid $10,000 or more by Pfizer to run "Expert-Led Forums."
not_ca_expert_10000 <- pfizer %>%
filter(state != "CA" & total >= 10000 & category=="Expert-Led Forums") %>%
arrange(desc(total))
# Find the 20 doctors across the four largest states (CA, TX, FL, NY) who were paid the most for professional advice.
ca_ny_tx_fl_prof_top20 <- pfizer %>%
filter((state=="CA" | state == "NY" | state == "TX" | state == "FL") & category == "Professional Advising") %>%
arrange(desc(total)) %>%
head(20)
# Filter the data for all payments for running Expert-Led Forums or for Professional Advising, and arrange alphabetically by doctor (last name, then first name)
expert_advice <- pfizer %>%
filter(category == "Expert-Led Forums" | category == "Professional Advising") %>%
arrange(last_name, first_name)
# use pattern matching with grepl to filter text
expert_advice <- pfizer %>%
filter(grepl("Expert|Professional", category)) %>%
arrange(last_name, first_name)
not_expert_advice <- pfizer %>%
filter(!grepl("Expert|Professional", category)) %>%
arrange(last_name, first_name)
# merge/append data frames
pfizer2 <- bind_rows(expert_advice, not_expert_advice)
# write expert_advice data to a csv file
write_csv(expert_advice, "expert_advice.csv", na="")
# calculate total payments by state
state_sum <- pfizer %>%
group_by(state) %>%
summarize(sum = sum(total)) %>%
arrange(desc(sum))
## `summarise()` ungrouping output (override with `.groups` argument)
# As above, but for each state also calculate the median payment, and the number of payments
state_summary <- pfizer %>%
group_by(state) %>%
summarize(sum = sum(total), median = median(total), count = n()) %>%
arrange(desc(sum))
## `summarise()` ungrouping output (override with `.groups` argument)
# as above, but group by state and category
state_category_summary <- pfizer %>%
group_by(state, category) %>%
summarize(sum = sum(total), median = median(total), count = n()) %>%
arrange(state, category)
## `summarise()` regrouping output by 'state' (override with `.groups` argument)
#install.packages("lubridate")
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
fda$issued <- ymd(fda$issued)
str(fda)
## tibble [272 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ name_last : chr [1:272] "ADELGLASS" "ADKINSON" "ALLEN" "AMSTERDAM" ...
## $ name_first : chr [1:272] "JEFFREY" "N." "MARK" "DANIEL" ...
## $ name_middle: chr [1:272] "M." "FRANKLIN" "S." NA ...
## $ issued : Date[1:272], format: "1999-05-25" "2000-04-19" ...
## $ office : chr [1:272] "Center for Drug Evaluation and Research" "Center for Biologics Evaluation and Research" "Center for Devices and Radiological Health" "Center for Biologics Evaluation and Research" ...
## - attr(*, "spec")=
## .. cols(
## .. name_last = col_character(),
## .. name_first = col_character(),
## .. name_middle = col_character(),
## .. issued = col_character(),
## .. office = col_character()
## .. )
post2005 <- fda %>%
filter(issued >= "2005-01-01") %>%
arrange(issued)
# count the letters by year
letters_year <- fda %>%
mutate(year = format(issued, "%Y")) %>%
group_by(year) %>%
summarize(letters=n())
## `summarise()` ungrouping output (override with `.groups` argument)
# add new columns showing many days and weeks elapsed since each letter was sent
fda <- fda %>%
mutate(days_elapsed = Sys.Date() - issued,
weeks_elapsed = difftime(Sys.Date(), issued, units = "weeks"))
# join to identify doctors paid to run Expert-led forums who also received a warning letter
expert_warned_inner <- inner_join(pfizer, fda, by=c("first_name" = "name_first", "last_name" = "name_last")) %>%
filter(category=="Expert-Led Forums")
expert_warned_semi <- semi_join(pfizer, fda, by=c("first_name" = "name_first", "last_name" = "name_last")) %>%
filter(category=="Expert-Led Forums")
expert_warned <- inner_join(pfizer, fda, by=c("first_name" = "name_first", "last_name" = "name_last")) %>%
filter(category=="Expert-Led Forums") %>%
select(first_plus, last_name, city, state, total, issued)
expert_warned <- inner_join(pfizer, fda, by=c("first_name" = "name_first", "last_name" = "name_last")) %>%
filter(category=="Expert-Led Forums") %>%
select(2:5,10,12)
expert_warned
## # A tibble: 4 x 6
## first_plus first_name last_name city total issued
## <chr> <chr> <chr> <chr> <dbl> <date>
## 1 RONALD MATHEW RONALD BUKOWSKI CLEVELAND 22500 2009-03-30
## 2 JEFFREY RONALD JEFFREY LEVENSON SAINT PETERSBURG 1500 2000-09-27
## 3 THOMAS DAVID THOMAS GAZDA SCOTTSDALE 1000 2009-11-24
## 4 DOUGLAS JAMES DOUGLAS WARD WASHINGTON 1500 1997-11-20
str(expert_warned)
## tibble [4 × 6] (S3: tbl_df/tbl/data.frame)
## $ first_plus: chr [1:4] "RONALD MATHEW" "JEFFREY RONALD" "THOMAS DAVID" "DOUGLAS JAMES"
## $ first_name: chr [1:4] "RONALD" "JEFFREY" "THOMAS" "DOUGLAS"
## $ last_name : chr [1:4] "BUKOWSKI" "LEVENSON" "GAZDA" "WARD"
## $ city : chr [1:4] "CLEVELAND" "SAINT PETERSBURG" "SCOTTSDALE" "WASHINGTON"
## $ total : num [1:4] 22500 1500 1000 1500
## $ issued : Date[1:4], format: "2009-03-30" "2000-09-27" ...