Make data vectors, calculate lambda, and put together dataframe with all necessary data.
The census period; an index from 1 to 39 of how many years of data have been collected.
census <- 1:39
The year: 1959 to 1997 (Dennis et al use 1959-1987)
year.t <- 1959:1997
Population size is recorded as the number of reproductive mature females with cubs in the park
females.N <- c(44,47,46,44,46,
45,46,40,39,39,
42,39,41,40,33,
36,34,39,35,34,
38,36,37,41,39,
51,47,57,48,60,
65,74,69,65,57,
70,81,99,99)
Population growth rate is (or can be expressed as) a ration of population sizes.
Enter the population size for each year
females.N.1959 <- 44
females.N.1960 <- 47
#(1960-1959)/1959
#3bears/44 we started with
(47-44)/44
#> [1] 0.06818182
Calculate the ratio of the 2 population sizes
lambda.59_60 <- females.N.1960/females.N.1959
44*1.068182
#> [1] 47.00001
Access the population sizes by using bracket notation rather than hard coding
# Access the data
females.N[1] #females N.1959
#> [1] 44
females.N[2] #females.N.1960
#> [1] 47
# store in objects
females.N.1959 <- females.N[1]
females.N.1960 <- females.N[2]
# confirm the output
females.N.1960/females.N.1959
#> [1] 1.068182
Calculate lambda using bracket notation
lambda.59_60 <- females.N[2]/females.N[1]
The first year of data is 1959. What is lambda for 1958 to 1959?
females.N[1]
#> [1] 44
lambda.58_59 <- females.N[1]/females.N[ ]
# can't be done; there is no data for 1958
39 years of data but only 38 lambdas being calculated (lambda represents transition)
TASK
Briefly describe (1-2 sentence) what this code is doing.
females.N[2:3]
#> [1] 47 46
females.N[1:2]
#> [1] 44 47
females.N[2:3]/females.N[1:2]
#> [1] 1.0681818 0.9787234
The first lines of code will print the second and third year of data, and the first and second year of data, respectively. The second line of code gives value for lambda, and calculates population growth rate.
This is similar to the previous code chunk, just using all of the data (no need to describe) Calculating all lambdas
length(females.N)
#> [1] 39
females.N[2:39]/females.N[1:38]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
TASK What does this do? Briefly describe in 1 to 2 sentences why I am using length().
len <- length(females.N)
females.N[2:len]/females.N[1:len-1]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
By using length, you are allowing R to do the work for you, rendering the code without any human miscalculations. Generalization of the code above.
TASK What does this do? Briefly describe in 1 to 2 sentences what is different about this code chunk from the previous one.
females.N[2:length(females.N)]/females.N[1:length(females.N)-1]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
Generalizing even further, just calculating the length inside the function.
Make a short vector to play with; first 10 years
females.N[1:10]
#> [1] 44 47 46 44 46 45 46 40 39 39
females.Ntemp <- females.N[seq(1,10)]
Check - are there 10 numbers
length(females.Ntemp)
#> [1] 10
TASK
What does this do? Briefly describe what the [-1] is doing.
females.Ntemp[-1]
#> [1] 47 46 44 46 45 46 40 39 39
Drops the first element from the vector.
TASK How many lambdas can I calculate using the first 10 years of data?
females.Ntemp[2:10]/females.Ntemp[1:9]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000
You can calculate 9 lambdas
“Negative indexing” allows you to drop a specific element from a vector.
TASK Drop the the first element
females.Ntemp[-1]
#> [1] 47 46 44 46 45 46 40 39 39
TASK Drop the second element
females.Ntemp[-2]
#> [1] 44 46 44 46 45 46 40 39 39
TASK
How do you drop the 10th element? Type in the code below.
females.Ntemp[-10]
#> [1] 44 47 46 44 46 45 46 40 39
TASK How do you access the last element? Do this in a general way without hard-coding.
females.Ntemp[length(females.Ntemp)]
#> [1] 39
TASK How do DROP the last element? Do this in a general way without hard-coding. By general, I mean in a way that if the length of the vector females.Ntemp changed the code would still drop the correct element.
females.Ntemp[-length(females.Ntemp)]
#> [1] 44 47 46 44 46 45 46 40 39
TASK Calculate the first 9 lambdas.
lambda.i <- females.Ntemp[-1]/females.Ntemp[-10]
Converting between these 2 code chunks would be a good test question : )
lambda.i <- females.Ntemp[-1]/females.Ntemp[-length(females.Ntemp)]
TASK
Below each bulleted line describe what the parts of the code do. Run the code to test it.
females.N[-1]
#> [1] 47 46 44 46 45 46 40 39 39 42 39 41 40 33 36 34 39 35 34 38 36 37 41 39 51
#> [26] 47 57 48 60 65 74 69 65 57 70 81 99 99
females.N[-length(females.N)]
#> [1] 44 47 46 44 46 45 46 40 39 39 42 39 41 40 33 36 34 39 35 34 38 36 37 41 39
#> [26] 51 47 57 48 60 65 74 69 65 57 70 81 99
TASK Calculate lambdas for all of the data
females.N[-1]
#> [1] 47 46 44 46 45 46 40 39 39 42 39 41 40 33 36 34 39 35 34 38 36 37 41 39 51
#> [26] 47 57 48 60 65 74 69 65 57 70 81 99 99
females.N[-length(females.N)]
#> [1] 44 47 46 44 46 45 46 40 39 39 42 39 41 40 33 36 34 39 35 34 38 36 37 41 39
#> [26] 51 47 57 48 60 65 74 69 65 57 70 81 99
lambda.i <- females.N[-1]/females.N[-length(females.N)]
TASK
What does this code do? Why do I include NA in the code? (I didn’t cover this in lecture, so just type 1 line - your best guess. “I don’t know” is fine.)
lambda.i <- c(lambda.i,NA)
NA means not applicable or missing data.
TASK
Check the help file; what type of log does log() calculate (I forgot to put this question on the test!)
lambda_log <- log(lambda.i)
log10
bear_N <- data.frame(census,
year.t,
females.N,
lambda.i,
lambda_log)
TASK
List 3 functions that allow you to examine this dataframe.
TASK
plot(females.N ~ year.t, data=bear_N,
type = "b",
ylab = "Population index (females + cubs)",
xlab = "Year")
abline(v = 1970)
Essentially characterizing what could happen in the future. To model population dynamics we randomly pull population growth rates (lambda) out of a hat.
hist(bear_N$lambda.i)
hat_of_lambdas <- bear_N$lambda.i
is.na(hat_of_lambdas)
#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [37] FALSE FALSE TRUE
any(is.na(hat_of_lambdas) == TRUE)
#> [1] TRUE
Drop the NA
length(hat_of_lambdas)
#> [1] 39
hat_of_lambdas[39]
#> [1] NA
hat_of_lambdas[-39]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
hat_of_lambdas[-length(hat_of_lambdas)]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
na.omit() is a handy function
na.omit(hat_of_lambdas)
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
#> attr(,"na.action")
#> [1] 39
#> attr(,"class")
#> [1] "omit"
hat_of_lambdas <- hat_of_lambdas[-length(hat_of_lambdas)]
hist(hat_of_lambdas)
You can pull a lambda from the hat using the sample function. It is relatively inefficient because it’s one at a time.
# pulled a lambda from the hat
sample(x = hat_of_lambdas,
size = 1, #size = ...
replace = TRUE) #replace = TRUE aka recycle = TRUE
#> [1] 0.825
# pull lambda from hat and save to object
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
Different functions can give you different ways to view and analyze the data frame.
head(bear_N) # head() shows you top 6 rows in data frame
#> census year.t females.N lambda.i lambda_log
#> 1 1 1959 44 1.0681818 0.06595797
#> 2 2 1960 47 0.9787234 -0.02150621
#> 3 3 1961 46 0.9565217 -0.04445176
#> 4 4 1962 44 1.0454545 0.04445176
#> 5 5 1963 46 0.9782609 -0.02197891
#> 6 6 1964 45 1.0222222 0.02197891
tail(bear_N) # tail() shows you bottom 6 rows of data
#> census year.t females.N lambda.i lambda_log
#> 34 34 1992 65 0.8769231 -0.1313360
#> 35 35 1993 57 1.2280702 0.2054440
#> 36 36 1994 70 1.1571429 0.1459539
#> 37 37 1995 81 1.2222222 0.2006707
#> 38 38 1996 99 1.0000000 0.0000000
#> 39 39 1997 99 NA NA
dim(bear_N) # dim() shows you size of the data frame
#> [1] 39 5
summary(bear_N) # summary() shows you statistical summary like mean, median, etc.
#> census year.t females.N lambda.i
#> Min. : 1.0 Min. :1959 Min. :33.00 Min. :0.8250
#> 1st Qu.:10.5 1st Qu.:1968 1st Qu.:39.00 1st Qu.:0.9452
#> Median :20.0 Median :1978 Median :44.00 Median :1.0000
#> Mean :20.0 Mean :1978 Mean :49.79 Mean :1.0281
#> 3rd Qu.:29.5 3rd Qu.:1988 3rd Qu.:57.00 3rd Qu.:1.1038
#> Max. :39.0 Max. :1997 Max. :99.00 Max. :1.3077
#> NA's :1
#> lambda_log
#> Min. :-0.19237
#> 1st Qu.:-0.05639
#> Median : 0.00000
#> Mean : 0.02134
#> 3rd Qu.: 0.09874
#> Max. : 0.26826
#> NA's :1
N.1997 <- 99
Pulling a random value out of a hat, and simulating how many bears there are in the year
1.22807*99
#> [1] 121.5789
lambda_rand.t*N.1997
#> [1] 99
N.1998 <- lambda_rand.t*N.1997
How you would do it in Excel… but worse.
Modeling a trajectory with random variation showing how a population declines while ignoring carrying capacity. Class is performing a crowd sourced simulation of bears.
#1997 to 1998
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
N.1998 <- lambda_rand.t*N.1997
#1998 to 1999
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
N.1999 <- lambda_rand.t*N.1998
#1999 to 2000
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
N.2000 <- lambda_rand.t*N.1999
#2000 to 2001
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
N.2001 <- lambda_rand.t*N.2000
#2001 to 2002
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
N.2002 <- lambda_rand.t*N.2001
#2002 to 2003
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
N.2003 <- lambda_rand.t*N.2002
#2003 to 2004
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
N.2004 <- lambda_rand.t*N.2003
#2004 to 2005
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
N.2005 <- lambda_rand.t*N.2004
Plotting the same kind of population change simulation performed in the past code chunk on a graph.
year <- seq(1997, 2004)
N.rand <- c(N.1998,N.1999,N.2000,N.2001,N.2002,N.2003,N.2004,N.2005)
df.rand <- data.frame(N.rand, year)
plot(N.rand ~ year, data = df.rand, type = "b")
Step by step code outlining how to make a for() loop. First outlines the long and hard way of making one.
# Initial conditions
N.1997 <- 99
N.initial <- 99
# Explore xlim = argument
plot(N.1997 ~ c(1997))
plot(N.1997 ~ c(1997),
xlim = c(1997, 1997+50))
# xlim and ylim
plot(N.1997 ~ c(1997),
xlim = c(1997, 1997+50),
ylim = c(0, 550))
# The not a for() loop for loop
# For loop the hard way
#
N.current <- N.initial
# Where the for() loop would be
t <- 1
# grab a lambda...
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
# determine population size
N.t <- N.current*lambda_rand.t
# establish the year
year.t <- 1997+t
# plot the population
# points() adds a point to an existing plot / updates an existing graph
points(N.t ~ year.t)
# update N.current
N.current <- N.t
# run and repeat for each year you want to project population
Easier way of writing the loop, without having to repeat for every year
# make a new plot with starting population size
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50), ylim = c(0, 550), xlab = "year.t", ylab = "N.current")
N.current <- N.1997
# start at 1997s population size
for(t in 1:50){
# grab a lambda...
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
# determine population size
N.t <- N.current*lambda_rand.t
# establish the year
year.t <- 1997+t
# plot the population
points(N.t ~ year.t)
# update N. current
N.current <- N.t
}
Goofy R plotting code magic
par(mfrow = c(3,3), mar = c(1,1,1,1))
Can make multi-panel plot of random simulations by running code chunk over and over as many times as you need
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50), ylim = c(0, 550))
N.current <- N.1997
for(t in 1:50){
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
N.t <- N.current*lambda_rand.t
year.t <- 1997+t
points(N.t ~ year.t)
N.current <- N.t
}