Introduction to Probability Chapter 2 #5
Suppose you are watching a radioactive source that emits particles at a rate described by the exponential density \[f(t)=\lambda e^{-\lambda t}\] where \(\lambda= 1\), so that the probability \(P(0, T )\) that a particle will appear in the next \(T\) seconds is \(P ([0, T ]) = \int _{0}^{T} \lambda e ^{−\lambda t} dt\). Find the probability that a particle (not necessarily the first) will appear:
(a) within the next second
\[P([0,1]) = \int _{0}^{1} \lambda e ^{−\lambda t} dt = \int _{0}^{1} 1 e ^{−1 t} dt = -e^{-t|_{0}^{1}} = -e^{-1}-(-e^{0}) = 1-\frac{1}{e}\]
(b) within the next 3 seconds \[P([0,3]) = \int _{0}^{3} \lambda e ^{−\lambda t} dt = \int _{0}^{3} 1 e ^{−1 t} dt = -e^{-t|_{0}^{3}} = -e^{-3}-(-e^{0}) = 1-\frac{1}{e^3}\]
(c) between 3 and 4 seconds from now \[P([3,4]) = \int _{3}^{4} \lambda e ^{−\lambda t} dt = \int _{3}^{4} 1 e ^{−1 t} dt = -e^{-t|_{3}^{4}} = -e^{-4}-(-e^{-3}) = \frac{1}{e^3} - \frac{1}{e^4}\]
(d) after 4 seconds from now \[P([4,\infty ]) = 1 - \int _{0}^{4} \lambda e ^{−\lambda t} dt = 1 - \int _{0}^{4} 1 e ^{−1 t} dt = 1 -e^{-t|_{0}^{4}} \] \[= 1 - ( -e^{-4}-(-e^{0}) ) = 1 - ( 1-\frac{1}{e^4} ) = \frac{1}{e^4}\]
LS0tCnRpdGxlOiAiRGlzY3Vzc2lvbiBXZWVrIDQiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCiMgSW50cm9kdWN0aW9uIHRvIFByb2JhYmlsaXR5IENoYXB0ZXIgMiAjNQoKU3VwcG9zZSB5b3UgYXJlIHdhdGNoaW5nIGEgcmFkaW9hY3RpdmUgc291cmNlIHRoYXQgZW1pdHMgcGFydGljbGVzIGF0IGEgcmF0ZSBkZXNjcmliZWQgYnkgdGhlIGV4cG9uZW50aWFsIGRlbnNpdHkKJCRmKHQpPVxsYW1iZGEgZV57LVxsYW1iZGEgdH0kJAp3aGVyZSAkXGxhbWJkYT0gMSQsIHNvIHRoYXQgdGhlIHByb2JhYmlsaXR5ICRQKDAsIFQgKSQgdGhhdCBhIHBhcnRpY2xlIHdpbGwgYXBwZWFyIGluIHRoZSBuZXh0ICRUJCBzZWNvbmRzIGlzICRQIChbMCwgVCBdKSA9IFxpbnQgX3swfV57VH0gXGxhbWJkYSBlIF574oiSXGxhbWJkYSB0fSBkdCQuIEZpbmQgdGhlIHByb2JhYmlsaXR5IHRoYXQgYQpwYXJ0aWNsZSAobm90IG5lY2Vzc2FyaWx5IHRoZSBmaXJzdCkgd2lsbCBhcHBlYXI6Cjxicj4KKGEpIHdpdGhpbiB0aGUgbmV4dCBzZWNvbmQgIAokJFAoWzAsMV0pID0gXGludCBfezB9XnsxfSBcbGFtYmRhIGUgXnviiJJcbGFtYmRhIHR9IGR0ID0gXGludCBfezB9XnsxfSAxIGUgXnviiJIxIHR9IGR0ID0gLWVeey10fF97MH1eezF9fSA9IC1lXnstMX0tKC1lXnswfSkgPSAxLVxmcmFjezF9e2V9JCQKPGJyPgooYikgd2l0aGluIHRoZSBuZXh0IDMgc2Vjb25kcwokJFAoWzAsM10pID0gXGludCBfezB9XnszfSBcbGFtYmRhIGUgXnviiJJcbGFtYmRhIHR9IGR0ID0gXGludCBfezB9XnszfSAxIGUgXnviiJIxIHR9IGR0ID0gLWVeey10fF97MH1eezN9fSA9IC1lXnstM30tKC1lXnswfSkgPSAxLVxmcmFjezF9e2VeM30kJAo8YnI+CihjKSBiZXR3ZWVuIDMgYW5kIDQgc2Vjb25kcyBmcm9tIG5vdwokJFAoWzMsNF0pID0gXGludCBfezN9Xns0fSBcbGFtYmRhIGUgXnviiJJcbGFtYmRhIHR9IGR0ID0gXGludCBfezN9Xns0fSAxIGUgXnviiJIxIHR9IGR0ID0gLWVeey10fF97M31eezR9fSA9IC1lXnstNH0tKC1lXnstM30pID0gXGZyYWN7MX17ZV4zfSAtIFxmcmFjezF9e2VeNH0kJAo8YnI+CihkKSBhZnRlciA0IHNlY29uZHMgZnJvbSBub3cKJCRQKFs0LFxpbmZ0eSBdKSA9IDEgLSBcaW50IF97MH1eezR9IFxsYW1iZGEgZSBee+KIklxsYW1iZGEgdH0gZHQgPSAxIC0gXGludCBfezB9Xns0fSAxIGUgXnviiJIxIHR9IGR0ID0gMSAtZV57LXR8X3swfV57NH19ICQkCiQkPSAxIC0gKCAtZV57LTR9LSgtZV57MH0pICkgPSAxIC0gKCAxLVxmcmFjezF9e2VeNH0gKSA9IFxmcmFjezF9e2VeNH0kJAo=